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The effect of fluctuations on the properties of layered superconductors in a magnetic field parallel to the 
layers is considered. The fluctuations lead to a phase transition with respect to the field. In strong fields 
the long-range order is destroyed in both the longitudinal and transverse direction. The pair correlation 
function falls off in a power-law manner along the layer and exponentially across the layer. In this state 
the superconductivity is retained along the layers but disappears in the direction perpendicular to the 
layers. 

PAC3 numbers: 74.40. + k 

In certain layered superconductors Josephson inter- 
action of the layers evidently occurs. The intercalation 
compounds TaS, and NbS, can se rve  a s  examples. The 
spectrum of the one-electron energies in the normal 
state of such compounds can be described by the depen- 
dence 

e (p) =pl?/2rn-2w cos p,d, (1) 

where is  the quasi-momentum along the layers,  rn is 
the effective mass,  p, i s  the quasi-momentum in the di- 
rection perpendicular to the layers,  and d is  the dis- 
tance between the layers. 

differences a r i s e  in a magnetic field parallel to the 
layers.  The Josephson interaction of the layers leads 
to the result  that the diamagnetic currents  a r e  limited 
in magnitude and cannot destroy the superconducting 
order  parameter. It was shown in Ref. 1 that only a 
paramagnetic effect can lead to suppression of the 
superconductivity in a parallel magnetic field. If the 
magnetic field is not very strong (pH<< T,, where p i s  
the Bohr magneton), o r  if the Chandrasekhar-Clogs- 
ton paramagnetic limit is absent for any of the reasons 
in Refs. 2-4, the modulus (A 1 of the order parameter 
is close to the value obtained in the BCS approximation. 
In this case al l  the magnetic properties a r e  described 

Josephson interaction of the layers  occurs when the 
by the changes in the phase. 

electrons can move over a distance of the order of the 
s ize  of a Cooper pair without once hopping to neighbor- 

In a purely two-dimensional superconductor, phase 
ing layers. This situation obtains if the condition 

fluctuations a r e  important and lead to destruction of 
WaT, (2) the long-range order.5 However, even a very smal l  

probability of hops f rom layer to layer leads to restor-  
is fulfilled, where T, is the superconducting-transition ation of the long-range order.' This result  is obtained 
temperature, calculated in the BCS approximation. in the absence of a magnetic field. A magnetic Jield 

In a paper by Bulaevskii,' Ginzburg-Landau differen- 
tial-difference equations were derived to describe 
layered superconductors. These equations go over into 
the ordinary Ginzburg-Landau equations for anisotropic 
superconductors if the temperature is  close to the cri t i -  
cal  temperature. In the opposite limiting case  

(T.-T)/T,=.rBW'/T,' (3) 

such a transition is impossible. The most important 

parallel to the layers weakens the interaction of the 
layers and enhances the fluctuations. In fields pH 
>> ~ / & d  the layers  cease to interact and the fluctuations 
become purely two-dimensional. In this region of fields 
the long-range order is destroyed. The pair correla-  
tion function within the layers falls off in a power-law 
manner. The superconductivity i s  retained within the 
layers but vanishes in the direction perpendicular to 
the layers.  
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1. CHOICE OF MODEL 

We shall consider a system of conducting planes. Let 
the one-electron energy be described by formula (a) 
with W satisfying the condition (2). Below we shall con- 
sider  the region of temperatures not very close to T,, 
s o  that the condition (3) is assumed to be fulfilled. The 
paramagnetic limit will be disregarded. This can be 
done if the fields a r e  not very strong: pH<< T,. In 
strong fields the paramagnetic limit is  unimportant if 
electrons from different layers a r e  paired: if strong 
spin-orbit interaction e x i ~ t s , ~  o r  if there is a strong 
Kohn anomaly in the phonon s p e ~ t r u m . ~  Under these 
conditions we can neglect changes in the modulus of the 
order  parameter. If triplet pairing occurs,2o4 the direc- 
tion of the spin also fluctuates. However, these fluctua- 
tions a r e  weakly coupled with the magnetic field and 
a r e  small  in al l  fields for al l  reasonable values of W. 
Only the fluctuations in the phase of the order param- 
e ter  a r e  important. The free-energy functional F des- 
cribing the superconductor in an external field Ho paral- 
l e l  to the layers can be written in the form 

In this expression, 

cD,=nc/e, hLZ=mcZ/4neZN, (T) , fI,Z=2nN. (T) W/E,, (5) 

where Go is  the quantum of flux, A, is the London pene- 
tration depth, N,(T) is the density of superconducting 
electrons, and the symbol V 11 denotes the gradient in the 
plane. Below we consider the case d<< h,. 

In the f i r s t  te rm in (4) the integral is taken over the 
plane and a summation over a l l  the planes i s  then per-  
formed, while in the second t e rm the integral is taken 
over the whole volume. In the derivation of formula 
(4) it was assumed that the variation of A,(n) with the 
coordinate n is slow (this is fulfilled for  Ho<< Go/dZ). 
The second te rm in the f i r s t  integral of (4) i s  the 
Josephson energy. The expression (4) is written for 
clean superconductors and band motion of the electrons 
between layers. It can also be used for superconductors 
with impurities if we understand the quantity N,(T) to be 
the corresponding quantity in dirty superconductors and 
replace W by We,. In sufficiently dirty superconductors 
We,, i s  determined by the hopping mechanism of the mo- 
tion of electrons between layers. 

Using the free-energy functional (4) we can calculate 
the f ree  e n e r g y y :  

and also al l  the thermodynamic quantities. In the follow- 
ing sections the calculations will be performed in the 
limits of weak (pH<< W/p,,d) and strong (pH>>w/~, ,d)  
fields. 

2. WEAK FIELDS 

In the region of weak fields pH<< W/P& the energy (6) 
can be calculated by the method of steepest descents. 

The zeroth approximation was considered in Ref. 1. The 
effect of the fluctuations can be estimated by calculating 
the corrections to the zeroth approximation. 

Let  the external field H, be directed along the X axis. 
Minimizing the free-energy functional (4), we obtain 
equations determining the vector potential A and phase 

9: 

The exact solution of Eqs. (7), minimizing the f r ee  
energy, i s  difficult to find. However, in fields p ~ < <  W /  
P,,d we can find a good approximation. This approxima- 
tion is a lattice of anisotropic vort ices,  analogous to 
the lattice of vortices in ordinary type-11 superconduc- 
tors .  The solution for  an  individual vertex a t  large dis- 
tances can be found by expanding the sine in Eqs. (7) 
and replacing the finite differences by derivatives. This 
solution has the form1 

In the formulas (8), 

and KO is the zeroth-order Bessel  function of imaginary 
argument. 

At shor t  distances p-d/AL the s ines  in (7) become of 
order unity, and the expressions (8) a r e  inapplicable. 
The region p - d / ~ ,  i s  the nonlinear "core" of the vortex. 
We emphasize that inside this core,  unlike in ordinary 
type-I1 superconductors, the superconductivity is not 
destroyed. The other properties of the state obtained 
a r e  analogous to those of the mixed s ta te  of type-I1 
superconductors. All the quantities can be calculated 
if in the corresponding expressions we change a l l  the 
sca les  along the y axis by a factor of A , h ,  and replace 
5 by d .  In particular, the field Hcl a t  which vortices 
f i r s t  penetrate into the sample is determined from the 
relation 

The vortex structure gives a good description of the 
state s o  long a s  the spacing between the vort ices is 
much grea ter  than the s i ze  of the core. The nonlinear 
cores  of the vortices begin to overlap in fields of the 
order  of H,,: 

H.,-Q,hJZndlhj. (10) 

However, a more  exact solution of Eqs. (7) in fields 
H 2 H,, i s  meaningless, s ince in this region fluctuations 
a r e  important. Fluctuations a r e  smal l  only the region 
H<< H,,. We shall estimate their contribution in the r e -  
gion of fields H,,<< H<< H,. 

We represent  the phase cp in the expression (4) i n  the 
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form quantity (15) is  smal l  for  al l  reasonable values of the 
hopping integral. 

For H 2 H c 2  fluctuations become important. In this 
region the approximations used above a r e  inapplicable. where r p ( O )  is the solution of Eqs. (7). Regarding rp(') a s  

a smal l  correction we expand the cosine in (4) to t e rms  
quadratic in cp(') and represent  the free-energy function- 
a l  F (4) in the form 

3. PAIR CORRELATION FUNCTION I N  THE REGION 
OF STRONG FIELDS . 

In the region of strong external fields H>>Hc, fluctua- 
tions have a substantial influence on the properties of 
the superconductor. In weak fields long-range order 
exists ,  since the phase fluctuations a r e  small. It  is of 
interest  to elucidate the behavior of the pair correlation 
function in the region of strong fields too. Strong fields 
penetrate almost wholly between the layers. Therefore, 
the free-energy functional (4) can be simplified. Dis- 
carding the unimportant constant t e rms ,  we obtain 

In this expression the energy F' i s  equal to the energy 
of the vortex state with neglect of fluctuations. For the 
calculation of the fluctuations, F' is not important. 

In the second te rm the vector potential A, has been 
omitted in the cosine. This can be done in fields H,, 
<< H<< H,. Using the expression (12) we can calculate 
the mean square deviation of the phase, ((q~( ' ))~).  For 
this we expand cp(') in a complete s e t  of functions $,: where Fo and F, a r e  determined by the following expres- 

s ions : 
cpU'(n, r )  =C Cq$dn, r ) .  

P 

As the functions $Q we choose the eigenfunctions of the 
"Schradinger equation" d H 2  

~ t [ c p l - - z x  cos (cp.+,-cp.-rh)cPr.. 
4n " 

In formula (17), 

h- (0,2ndHol@o, 0 ) .  After this it is not difficult to express  the mean square 
deviation in t e rms  of the energy eigenvalues E, of Eq. 
(13): 

In strong fields the cosine in F, oscillates rapidly. 
The contribution from F, can be regarded a s  a pertur- 
bation. Neglecting the energy F, i t  is not difficult to 
obtain the pair correlation function n,(R) within the 
layer: In the derivation of this expression the formulas (5) 

have been used. 

In the region of fields H<<Hc2 the vortex cores over-  
lap weakly, and the cosine in Eq. (13) can be replaced 
by unity. In this case the solutions of Eq. (13) a r e  plane 
waves. 

Calculating the Gaussian integral in (19), we find 

IIo ( R )  S ( E I R ) ~ .  (20) 

The energy E:) in the zeroth approximation is equal 
to 

In formula (20) 5 = V / T ,  is the Cooper-pair size. The 
index a can be written in the form 

a=Tml2ndN, ( T ) .  (21) 

The formulas (20), (21) show that in a strong field 
the correlation function in the layers falls off in a 
power-law manner, though very slowly. It is not dif- 
ficult to convince oneself that there is no correlation 
between different layers.  These results  a r e  obtained 
with neglect of F,. To calculate the exact correlator  it 
is necessary to replace Fo by F [ ~ ]  in (19). Then, ex-.  
panding the exponentials in F,/T, we can bring the f i r s t  
nonvanishing correction ~I(')(R) to the form 

Regarding 1 - cos(rp(,0!, - Coy)) a s  a perturbation and cal- 
culating the correction E(') to the energy, we obtain fo r  
small  k, 

Substituting the energy E into (14) and performing the 
integration we find the mean square  deviation of the 
phase: 1 In+m-Rlalmla 

n ' l ) ( R ) = -  (i) a ($)'J( ~ n + m ~ ~ ~ m - ~ ~ ~  - I )  

cos hn 
X -  dam d2n. 

(22) 
Inl'" 

This formula shows that fields H<< H ,  have only a weak 
effect on the fluctuations. The fluctuations in the ab- 
sence of a magnetic field were estimated in the paper 
by .Dzyaloshinskii and Kats.' In the region H<< H ,  the 

It is sufficient to perform the subsequent calculations 
in (22) in the limit of smal l  a. Performing the integra- 
tion in (22) in this limit and using the formulas (lo), 
(18), and (21), we obtain 
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n ( R ) =  (f) ' [ I - *  ( $ ) ' - 8 ( $ ) ' a l o R h ]  

This expression i s  applicable for not very large dis,- 
tances. As R tends to infinity the third t e rm in (23) be- 
comes of order unity. In this region we cannot confine 
ourselves to the f i r s t  corrections. 

The principal contribution for  large R is made by 
t e rms  of the form 

(a(H/H.,)' ln Rh)". (24) 

Calculation shows that allowance for these t e r m s  leads 
t o  renormalization of the index in formula (20). We 
must  suppose that a power-law decrease a l so  remains 
when the next corrections a r e  taken into account. In 
this case the correlator  IJ(R) at  large distances can be 
written in the form 

In the limit of strong fields H >>H,, the functions 
C(H,,/H) and /3(H,/H) can be obtained by comparing (25) 
with (23): 

The correlation function between different layers falls 
off much faster  than the correlation function in one 
layer. In the zeroth approximation in (H/H,)-' the 
layers do not interact with each other a t  all. Assuming 
that the replacement F , [ ~ J ] -  F [ ~ ]  has been made in (19), 
and expanding the exponentials in F,/T, we can convince 
ourselves that the correlations between layers  a t  a dis- 
tance nd apart  have order of magnitude (H,/H)~". For 
example, for  n = 1 a simple calculation leads t o  the fol- 
lowing formula: 

(exp {icpo(R) -icp, ( R ) }  )=2(H,,/H) exp {-ihr). (27) 

The forms of the correlation function (25) along the 
layers  and the correlation function across  the layers  in 
the region of strong fields differ from those of the cor-  
relation functions in the region of weak fields, in which 
there is long-range order.  This difference permits us  
to conclude that, a t  a certain field of order H,,, a phase 
transition occurs. We note that this critical field does 
not depend on the temperature, s o  long a s  the condition 
(3) is fulfilled. 

The pair correlation function permits us to conclude 
that there i s  a phase transition, but does not itself ap- 
pear in any physical quantities. The next section is de- 
voted to calculating some of the physical quantities, and 
also to elucidating the question of the superconductivity 
in the region of strong fields. 

4. SUPERCONDUCTIVITY IN  THE REGION OF 
STRONG FIELDS 

It was shown above that a strong field parallel to the 
layers causes the interaction between the layers to 
vanish. Electron hops from layer to layer cease to be 
important. The motion of the electrons can be assumed 
to be two-dimensional. To elucidate the possibility of 
superconductivity in one layer it is necessary to con- 
s ider  the possibility of formation of a vortex in one 

layer. If the probability of a fluctuation with formation 
of such a vortex is nonzero the superconductivity is 
destroyed, since the motion of the vortex leads to a 
decrease of the current. If the probability of such a 
fluctuation i s  equal to ze ro  a supercurrent  is possible. 
The lat ter  occurs in the two-dimensional XY model.' 
In layered superconductors the problem of a vortex in 
one layer requires a special analysis, since even for  
two-dimensional motion of the electrons a three-di- 
mensional magnetic field is  produced. Neglecting the 
hopping probability and minimizing the energy (4) we 
obtain equations determining the vector potential: 

The equations (28) a r e  written for a vortex a t  r = 0 in 
the plane with coordinate n = O ;  Aeff =kZL/d. In the 
cylindrical system of coordinates the vector 4 has com- 
ponents 

The right-hand side of the f i r s t  equation (28) is  obtained 
from the condition that the phase cp changes by 277 when 
we go round the vortex. We emphasize that the second 
t e rm in the f i r s t  equation (28) contains the three-di- 
mensional Laplacian. Applying a Fourier  transforma- 
tion to both sides of Eq. (28), we obtain 

where 

Amrq= I e-"'-'"All (r, z)& dz, 

zj Au (r, z) 6 (z-nd)e-"'-'q'd2r dz 

Expressing A 11 ka from Eq. (29) in t e rms  of ill ka and 
substituting into (30) we obtain a formula for Aka : 

ch kd-cos qd -' it.=.. [ 1 + 2 n . ,  sh kd I 
To find the vector potential in a plane a t  distance nd 

from the plane in which the vortex is situated we make 
use of the formula for transformation to the coordinate 
representation with respect  to the Z axis: 

@ 
Auk (nd) =d illrqe-'qnd - 2n' 

Substituting the expression (31) into (32) and performing 
the integration, we obtain 

where 

Using the formula (33) for  the vector potential of the 
nth plane, we can obtain an expression for  the current  
J, in this plane: 
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For  n = O  and d - m the expressions (33) and (34) go over 
into the corresponding expressions for a film.' 

The energy of one vortex can be written in the form 

Substituting the formulas (33) and (34) for  d<< A, into 
(35) and calculating the integral, we obtain the energy of 
the vortex: 

where R is the s ize  of the system. Formula (36) shows 
that the vortex energy increases logarithmically with 
the s ize  of the system and is not cut off a t  distances of 
the order of the penetration depth. This dependence of 
the vortex energy is characterist ic  for the XY model. 
In this respect  the situation differs from the case  of a 
superconducting film, in  which the vortex energy is 
finite. 

The fact that the vortex energy is  infinite leads to the 
result  that a fluctuation with formation of a vortex can- 
not occur, since the probability of such a fluctuation i s  
proportional to exp(-E,/T). In the absence of hops from 
plane to plane, arguments analogous to those for the 
XY model7 show that the superconductivity along the 
layers is not destroyed. The response to a weak vector 
potential All has the usual form: 

in=-- 
4nALX A,,. (37) 

The quantity A, in (37) is expressed by formula (5). 
Only in the very close neighborhood of the BCS tem- 
perature (T, - T)/T, - T , / E ~  is the contribution from 
vortex-antivortex configurations important. In this 
region the temperature dependence of A, i s  more com- 
plicated. 

To estimate the influence of hops we write down the 
general formula for  the current  in an external potential: 

In this expression the averaging is performed with the 
free-energy functional (4). In the region of strong 
parallel fields we expand the statistical weight 
exp(-F/T) in the te rm describing the hops. One can 
convince oneself that, in a l l  orders  of perturbation 
theory, there is no contribution from slow fluctuations. 
Therefore, the formula (37) with A, described by the 
expression (5) is applicable in the entire region of fields 
parallel to the layers.  

More interesting is the behavior of the response in 
the direction perpendicular to the layers.  In the region 
of weak parallel fields superconductivity exists in al l  
directions. To examine the question of the supercon- 
ductivity in the region of strong fields we write the 
formula for the current  perpendicular to the layers: 

In this formula, A, is the slowly varying external vec- 
tor  potential. The averaging is performed with the 
energy functional (17), in which the replacement Hy - Hy +A, has been made. Expanding the statistical 
weight in the t e rm with the hops and averaging, we ob- 
tain in the f i r s t  approximation 

j.= ~lF(r-r').vin(h(r-r') +A,(r) -Az(r1))dzr'. 
8nO.T 

(40) 

Going over to Fourier  components in (40) and expand- 
ing to linear t e rms  in A,, af ter  calculating the integral 
we obtain 

This formula shows that for k- 0 the response to the 
vector potential tends to zero  and there  is no supercon- 
ductivity in the direction perpendicular to the layers. 
Analysis of higher orders  of perturbation theory shows 
that for  k = O  the response i s  equal to ze ro  in any order. 

The absence of superconductivity in the perpendicular 
direction has  the result  that, in a parallel magnetic 
field, a ra ther  smal l  magnetic moment is produced. 
Calculating the f ree  energy in the f i r s t  nonvanishing ap- 
proximation in the hopping integral using the formulas 
(6), (16), and ( l7) ,  and using the usual formulas of 
thermodynamics, we obtain an  expression for the mag- 
netic moment M in an external field H >>H,,: 

In fields H<<Hc, the magnetic moment can be found from 
the usual formulas for  the mixed state in anisotropic 
superconductors. 

CONCLUSION 

The analysis car r ied  out above shows that fluctuations 
in layered superconductors in a magnetic field parallel 
to the layers  lead to a phase transition with respect  to 
the field. In order of magnitude the cri t ical  field is 
equal to w/&dll and does not depend on the tempera- 
ture. In fields lower than the cri t ical  field the fluctua- 
tions a r e  small  and the mixed-state picture proposed 
by Bulaevskii is applicable.' The cores  of the vortices 
a r e  not destroyed in this state. The vortices occupy 
fixed positions between the layers and cannot move 
across  the layers. This leads to the result  that the 
superconducting current  along the layers  does not de- 
crease.  The motion of the vort ices along the layers 
does not affect the longitudinal current. Neither does 
i t  act on the transverse current ,  since the motion of 
a vortex causes the phase in the current  s tate to change 
by 2n and this change of phase does not change the 
Josephson current. Therefore, the state with small  ex- 
ternal  fields is superconducting in a l l  directions. 

In fields grea ter  than the cri t ical  field the supercon- 
ductivity along the layers remains,  although long-range 
order i s  absent. The pair  correlation function falls off 
in a power-law manner. An analogous situation obtains 
in the two-dimensional XY model.' The correlation be- 
tween different layers  is weak. There is no super- 
conductivity in the direction perpendicular to the layers. 
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The theory developed above can be applied to the in- 
tercalation compound TaS2(~y),,,, whichdisplays super- 
conducting properties a t  low temperatures. For W <  T, 
and d - p i 1 ,  which, apparently, is fulfilled for this com- 
pound, the critical field should not exceed 50-60 kOe. 
Measurements in a parallel field with such values have 
already been p e r f ~ r m e d , ~  but only the longitudinal res is-  
tivity was measured. It was discovered that at low tem- 
peratures it is equal to zero even in very strong fields 
H- 150 kOe. Unfortunately, i t  is not possible to detect 
the phase transition considered above by measuring the 
longitudinal conductivity. Measurements of the trans- 
verse conductivity might clarify the situation. 
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The methods of Raman light scattering and optical probing are used to study the orientation-statistical 
properties of some new nematic liquid crystals of the tolane class: methoxy-amyltolane, ethoxy- 
hexyltolane, ethoxy-octyltolane. An improved method of Raman-scattering spectroscopy is proposed, 
which makes it possible to eliminate the effects of multiple scattering and to develop the spectroscopy of 
specimens with a thickness comparable with the scattered wavelength. On the basis of the experimental 
results, single-particle orientational distribution functions are constructed for the three crystals. It is 
shown that the negative order parameter observed experimentally is due to neglect of the anisotropy of 
the local field of the light wave. The effect of elongation of semiflexible segments of molecules and of 
increase of the mobility of their end groups on the orientation-statistical properties of a rigid molecular 
nucleus is explained. It is shown that the Maier-Saupe mean-field theory agrees satisfactorily with 
experiment far from the phase transition to an isotropic liquid, but that it does not give a satisfactory 
description of the orientational statistics of the mesophase in the pretransition temperature range. 

PACS numbers: 61.30.Gd, 78.30.Cp 

1. INTRODUCTION 

The physical properties of nematic liquid crystals 
(NLC) a r e  determined to a significant degree by the 
orientation-statistical properties of the structure of 
the mesophase. These in turn a r e  connected with the 
character of the intermolecular interactions and depend 
on the chemical nature and conformational properties 
of the molecules. The orientation-statistical degree of 
order of molecules in a NLC is described by the single- 
particle orientational distribution function %(q, 6 ,  i ) ,  
which gives the probability of finding the orientation of 
a molecule within a small solid angle dJZ close to  the 
corresponding Euler angles q ,  8,&. The latter deter- 
mine the orientation of the molecular system of coor- 
dinates with respect to the laboratory system (x, y , z ) .  
The z axis coincides with the direction of the director 
r, and the x and y axes lie in the plane perpendicular 
to it. On the basis of x-ray structural data it can be 
c o n ~ l u d e d ~ * ~  that the directions r and -r in a NLC are  

equivalent and that the projections of the long molecu- 
lar axes on the xy plane a r e  randomly distributed. 

The local uniaxiality of the nematic mesophase, the 
presence of rotation of the molecules about the long 
axes, and the closeness of their form to  cylindrical 
permit us to  regard a NLC a s  an ensemble of uniaxial 
structural units with an orientational distribution func- 
tion E(;Ie). This function can be represented a s  a se r i e s  
of even Legendre polynomials P, ( ~ 0 ~ 8 ) ~ :  

21+1 
F(0) = z--j-(~, (cos 8) )Pi  (cos 8), (1) 

i 

where the coefficients of the ser ies  a r e  determined by 
the expression 

(PI (cos 8) )=J PI (cos O)F(O)sin Od8. (2) 
0 

The first  three coefficients have the form 
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