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A microscopic theory is used to calculate the connection between the current I with the phase difference 
q of the order parameter, as well as the current-voltage characteristic (CVC) of a superconducting bridge 
of length 2d < t ( T )  (1 - T/T,)'". The case of voltages V<A at a temperature T close to the critical value 
T,, and the case of V>A at arbitrary temperature are considered. At low voltages V ,  the dependence of 
the Josephson current I, on q is determined by the ratio of the characteristic frequency V, of the 
variation of q and the reciprocal time 7;' of the energy relaxation. In the case 7,VC>1 the function 
Is(q) differs from a sinusoid, and this explains the presence of subharmonic steps on the CVC when 
monochromatic radiation acts on the bridge. In the case r,V,<l the Is(q) dependence is sinusoidal as in 
the stationary case. At high voltages and arbitrary temperatures, the I (V)  dependence differs from Ohm's 
law by an amount [A(r2/4 - l)/eR]tanh(V/ZT), which determines at V > T the excess current. The 
response of the bridge to a weak alternating signal in the presence of a direct current smaller than the 
critical value is also determined. 

PACS numbers: 74.50. + r, 85.25. + k 

1NTRODUCTION takes the form 

The theory of the nonstationary Josephson effect has 
been developed in sufficient detail only for tunnel junc- 
tions. Other types of weakly coupled superconductors 
have been much less studied. Yet the Josephson effect 
in them is accompanied by interesting phenomena that 
do not occur in tunnel junction. The difference is due, 
in particular, t o  the fact that flow of a current larger 
than critical (I >Ic) through structures of bridge type 
with constrictions or through point contacts produces 
at the center of the junction oscillations of the energy 
gap and these cause, generally speaking, a strong de- 
viation of the quasiparticle distribution function from 
equilibrium. 

The study of the Josephson effect in bridges with con- 
strictions was initiated by Aslamazov and Larkin1 on the 
basis of simplified nonstationary Ginzburg-Landau 
(GL) equations that a r e  valid only for zero-gap super- 
conductors. They have shown1 that near T,  the Joseph- 
son effect in a short contact [d << [ (T), where 2d is the 
length of the contact and [ (T) is the correlation length] 
can be described within the framework of a simple re- 
sistive model, in which the current is made up of the 
quasiparticle conduction current and the Josephson cur- 
rent: 

1 acp I=-- +I.  sin cp, 9 = 2 ~ ( t ) .  
2~ at at 

Here cp is the difference between the phases of the order 
parameters and V is the voltage on the contact (the elec- 
tron charge is set  equal to unity). 

Likharev and YakobsonZ analyzed a bridge of variable 
thickness, likewise on the basis of the GL equations, 
but with account taken of the time derivative of the order 
parameter. It was shown that in the case of sufficiently 
high voltage (and correspondingly currents), such that 
the characteristic distance (DT/V)'/~ (D is the diffusion 
coefficient) over which the electron diffuses over the 
time n/V becomes shorter than the bridge length 2d, 
the current-voltage characteristic (CVC) of the bridge 

I=v/R+I,,, sign V ,  I,,.-I., (2) 

where I,,, is the so-called excess current, which is in- 
dependent of the dc voltage V. The voltages V at  which 
(2) holds correspond to currents I2 Z,[((T)/~]~, i.e., the 
asymptotic form defined by formula (2) is reached at 
currents that differ from I, by the large factor [ ( ( ~ ) / d ] ~ .  
The parameter d/<(T) characterizes the weakness of the 
coupling. 

The GL equations used in the theories of Refs. 1 and 
2 a r e  valid fo r  zero-gap superconductors. In supercon- 
ductors with gaps it is necessary to  take into account 
in these equations also the anomalous t e rm that de- 
scribes the disequilibrium of the quasiparticles. This 
was done by Aslamazov and Larkin,' who considered a 
bridge with a constriction under rather stringent lim- 
itations on the bridge length: 

(7, is the energy relaxation time). The f i rs t  of these in- 
equalities means that the retarded (advanced) Green's 
function satisfies the usual relations 

i.e., a t  each point inside the bridge the state density 
takes an equilibrium form with a gap that depends on the 
coordinates and on the time. They have shown that the 
oscillations of the gap decrease the number of the quasi- 
particles at the center of the bridge. This in turn causes 
and increase in the time-averaged value of the gap and 
stimulates the superconducting current. 

Kulik and Omel'yanchukq have considered the case of 
a shorter contact of length 2d, satisfying the inequality 

In this case the expressions given above for gR(A' do not 
hold. The condition (3) allows us to discard from the 
equations for  the Green's functions all but the gradient 
terms. Following this idea, Kulik and Omel'yanchuk 
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considered the stationary Josephson effect at arbitrary 
temperatures. What remained unexplained is the more 
interesting nonstationary effect, wherein deviation from 
equilibrium takes place. A step in this direction was 
made by Mitsai.' He investigated the linear response 
of a bridge to a weak alternating current of frequency 
w in the presence of a dc superconducting current 
I< I, through the bridge. 

We present in this paper a theory of the nonstationary 
Josephson effect in short bridges, when the conditions1' 
(3) and  AT^ >>I a re  satisfied. In the general case of a r -  
bitrary frequencies w, and accordingly voltages V, the 
problem cannot be solved. We consider therefore the 
limiting cases V, w << A and V, w >>A, where A is the 
energy gap far from the bridge (in the shores). In the 
former case we can confine ourselves to  a quasiclassi- 
cal expansion in W/A. We obtain thus an expression for 
the current I and draw some conclusions concerning the 
form of the CVC near T,. The point is that only near 
T, is the characteristic voltage on the bridge Vc I I$ 
= nh2/4T much smaller than A .  It will be shown that the 
expression for I depends strongly on the ratio of V, 
and 7;'. In particular, formula (1) is valid only in the 
limit a s  7c Vc- 0. In the latter case (V>>A) we obtain 
the form of the CVCI(V) atarbitrary temperatures. It 
turns out that the I(V) dependence is determined by for- 
mula (2), i.e., that t& excess current I,,, is  present. 
The value I,,, - A/R- (T,/A)I, differs from that obtained 
in Ref. 2, particularly near T, we have in accord with 
experiment7 I,, >>I,. In addition, the asymptotic form 
of (2) is reached at currents and voltages that are  not 
connected with the coupling-weakness parameter d/[(T). 

1. BASIC EQUATIONS 

We assume the previously a n a l y ~ e d ~ , ~ . ~  model of acon- 
tact or bridge of variable thickness. We consider a 
filament with cross  section a2 and length 2d>>a, con- 
necting two massive superconductors (shores). All the 
isotropic functions a r e  assumed on the shore to be in 
equilibrium and to correspond to a given phase x and a 
given potential @. The superconductors a r e  assumed 
dirty (TT <<I). Actually the assumed model describes not 
only a bridge of variable thickness, but any other short 
three-dimensional bridge with a constriction. In par- 
ticular, the problem of a contact in the form of a hyper- 
boloid of revolution reduces to the considered one-di- 
mensional model (see the Appendix), in which all  the 
functions depend on the coordinate x along the filament. 

To find the current in the bridge it is necessary to 
solve a system of equations for Green's functions inte- 
grated with respect to the variable 5,= ( p  -~,)p/m.~-'O 
This system takes the matrix form1' 

The Green's function G and the self-energy part 5 a r e  
here matrices in the form 

In turn, 6R(A' and a re  (2x 2) matrices made up of or-  
dinary Green's functions g and Gor'kov functions f: 

The notation in (4) is 

ie 
~ ( t )  =- - p~ ( t )  6,-ih ( t )  +ie@ ( t ) .  

m 

In our case th? _vector potential can be neglected. The 
matrix product GE means convolution with respect to 
the internal time variable. The function G satisfies the 
additional normalization conditionlo 

O Z ~ " ~ = i 6 ( t - t 1 ) .  (6) 

The current density i s  expressed in terms of the func- 
tion G via the formula 

In the considered case of a dirty superconductor, the 
Green's function 6 can be represented in the form 

6=6,+ (pip) G,. (8) 

The condition (3) allows us to neglect in Eq. (4) for cl 
= (6,, 0,O) a l l  but the gradient terms 

a - - G,=O. 
dz 

(9) 

It follows therefore that 6, does not depend on x. The 
constant c, can be found from the normalization condi- 
tion (6) by using the boundary conditions 

where 

?I*';+ (t') 

a r e  isotropic retarded and :dvanced Green's functions 
in the shores. The matrix S(t)  takes into account the 
presence of the phase ~ ( x ,  t ) :  

The functions z;(*' a r e  the equilibrium Green's func- 
tions at x = 0. They a r e  obtained from one of the equa- 
tions in (4), which takes in the homogeneous and station- 
ary case the form 

where the square brackets stand for the commutator, 
and the matrix 9R : 

determines the damping via the electron-phonon col- 
lisions a,, = (n/4)L ph/0i,8, = sp, and s is the speed of 
sound. 

From- (12) it follows, when the normalization condition 
(i t) '= 1 is taken into account 

(~+ir ,~)O.+(A+iy , )  id, 
goR= 

((e+irLR)'-  (A+irzR)")" ==f(e)a.+fR(e) ib,. 
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The function $, for which = -jR, is similar in form. 
The function G', is expressed in terms of 6;'"' (Refs. 
7,8): - 

&or=&onn-nGoA, 

n=dnS+, n ( e )  =th (e /2T) .  (14) 

From the normalization condition (6) and from the 
boundary condition (10) we get an equation for 6, 

( ~ ~ ~ e , + e . ~ ~ ~ + e . ~ e ~ ~ + e , ~ ~ . ~ ) . ~ , ~ = o .  (15) 

Thus, to determine the sought function 6, we must find 
6:("). We use a relation that follows from (t) (Ref. 10): 

- - 8 . .  
G.= -1Go - Go, 

ax (16) 

where 1 = (p/m)r is the mean f ree  path. A solution of 
(16) is the function 

G ( x )  =&lo) exp (-&/I). 

We add and subtract the values of the functions C,(x)  
at x = *d. Then, introducing the notation 

C , = ! I , ( G ~ ( ~ )  * ~ , ( - d )  ), (1 7) 

we get 

E + = ~ ~ ( o ) ~ h ( G ; d l z ) ,  G - = - G ~ ~ ( o ) s ~ ( & ~ / I ) .  (18) 

As follows from (6), the matrices do(0) and dx anti- 
commute with each other, and [6,(0)]~= I. Multiplying 
G+ and 6- we get from (18) 

We separate the matrix components (1 , l )  and (2,2). 
Then, a s  can be easily verified, we obtain 

We write down also an expression for 6, in ser ies  form. 
We shall find it useful in the determination of the CVC in 
the case of high volt?ges (V>>A). To this end we separ- 
ate the component (G,),, in (19). After simple transfor- 
mations and taking (20) into account we obtain 

A= ( G + ~ ) ~ ~ ^ - - G + ~ ~ - u + * + G - ~ ~ - & ~ * - ~ ~  

The functions n , and a r e  defined in terms of 2 and 
in analogy with (1 7). 

Thus, the function 6, has singularities in both the up- 
per and lower & half-planes. We shall obtain also an 
expression for 6; in the case when the phase difference 
cp=  x(d) -x ( -d )  is either constant in time o r  varies slow- 
ly in comparison with A-'. We express 6; in terms of 

(13) with the aid of the matrix S and recognize that 
x(d) = -x(-d) = cp/2. Then 

A sin (cp/2) ), 
en en 

Formula (22) was obtained earl ier4s5 by another method. 

The function d, a t  low voltages (the quasiclassical 
case) is easier to obtain by starting not from formula 
(21) but from Eq. (15). We seek the solution of this equa- 
tion in the form 6, = 6:% - l%:. We then obtain from 
(1 5) 

(eonp-p&aA)=-,d= ( & A - k o A ) , , d .  (23) 

Adding and subtracting the equations (23) at x =  *d we 
arrive a t  the system 

&tRP-PG,A=G,nn--r~-G,A, (24) 

6 A 

where Fa = F -2,. We represent the current density J ,  
in the form 

J . = I = ~ + J ~ =   no/^^) s p  o, (&,nln+-n+b.*+~=a), (25) 

where the current J: is determined by the first  two 
terms in the parentheses, and the an?m?lous current 
4 is determined by the function G,O = G:F -~6:, which 
has complicated analytic properties and describes the 
deviation from equilibrium. 

2. LINEAR RESPONSE OF A BRIDGE AT A CURRENT 
SMALLER THAN CRITICAL 

Assume that a direct current I , < I ,  and a weak alter-  
nating current Ii <<I, flow through the bridge. The phase 
difference if then cp = q, + ql, where cp, <<l. In the cal- 
culation of Fa we take into account the fact that 

n-- a, sin cpl(t) -w (t') *z cpl(t) -v1( t1)  
4  4 '  

i.e., F" - cp,. Linearizing (24), we get 

where E,=E* w/2. With the aid of (25), (26), and (22) 
we determine the current 

+A (f" (8,) l-f'(r-) ) cosa ( 4 2 )  ] } [ t h  (e+/2T) - t h  (a-/2T) I 

x [s in(qo/2)  ( fR(e+)  - f A  ( e - ) )  I-'. (27) 

We obtain the function 6:::) - &f,f' by linear- 
izing the equation [the function G:~' (cpd is given by 
(2211 

Multiplying (28) by i6, and calculating the trace, we get 

icp,(o)l 
s p ( a , e . ~ ( ~ + ,  e-1 ) = 4d sin ((po/2) (bn(e+)  [ (gn(e+)  -gn(e-1) e, 
+ ( f " ( e + ) + f " ( e - ) ) A  cosS(cpoW) l+bR(e-)  [ ( f ( e + ) - f ( e - ) ) e -  (29) 

- ( f " ( e + ) + f " ( e - ) ) A  cosZ(cpo/2) 11 [ fR(e+)-fR(e-)  I-'. 

The current I' is equal to 
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The first term under the integral sign determines the 
static part of the superconducting current calculated in 
Ref. 4. From (27), (29), and (30) we obtain in the case 
w <<A and A << T, in the principal approximation in A/T, 

where account is taken of the fact that near T, 

At w >>v, formula (31) goes over into the formula ob- 
tained by ~ i t s d ~  by another method.2) 

3. DISCUSSION OF RESULTS AND CHEMO- 
EXCITATION MODEL 

We now obtain the solufion of (24). It is convenient to 
introduce a new matrix X connected with by the rela- 
tion 

~ = e - ~ x + x e - ~ .  (32) 

Substituting (32) in (24) and using the fact that the ma- 
trices and e! anticommute [this follows from (6)], 
we obtain for 2 the equation - 

G + R X + X G + A = - i i - = - n ( t - t ' ) i s i n  
4 (33) 

We take into account the fact that in our case of low fre- 
quencies (v<<A) the dependence of all the matrices on 
the time difference is faster than the dependence on the 
time sum (t +t1)/2. Using this circumstance, we carry 
out a Fourier transformation with respect to the differ- 
ence variable (t -t'). Then, accurate to terms -V/A, 
Eq. (33) reduces to a partial differential equation 

( gR8"d, t cos ..o id, x + x g ~ a .  + cos 2 id, 
2 1 -  - (  2 ) 

l a c p a  e =---- th - a,, 
4 at ae 2T (34) 

where cp and 2 are  functions of the time t. It follows 
from (34) that 2 =x,I +XI&=. 

The character of the solution of (34) varies with Id. 
At I c ( < A  we have 

where v, is the frequency of the energy relaxation [see 
(3l1)]. Multiplying (34) by 6, (or by 6,) and calculating 
the trace, we obtain two equations 

Recognizing that gag/as =faf/a&, we obtain from (35) 
for the function 

X,=Xl exp (-v . t )  

the equation 
cp a f  a x ,  asin(cp/2) ax sin----.- i  f--I---- 
2 ae at at a8 8T e v c t  2 . (36) 

The first integral of (36) is readily obtained 

The solution of (36) is 

XI = 
A acp ( t i )  sin rp  ( t l )  exp (v.tl) 

8TxZ(8,  t )  j d t i d t _ ' 2 ( x ' ( e ,  l) - sint(rp(tI)/2))'11 ' (38) 
- - 

With the aid of (38), (32), and (25) we obtain the con- 
tribution made to the current by energies ( & /  < A : 

d A dAi A 
I;= zlj de sp(az&) = - j d~ f sin (+) XI SP 8 . ( W - a A )  = I P { p } .  

4TRl 
0 

We now calculate at I & I  > A. From (24) we determine 

Therefore 

12a=P-z,a . 

The regular part I' yields the usual superconducting 
current4 

I .=I ,  sin cp, Z,=n1A2/4TR. (41) 

Gathering together (39), (40), and (41), we obtain in the 
principal approximation in A/T 

The last term in (421, which contains the function ~ { q } ,  
is due to the deviation from the simple resistive model 
described by formula (1). From expression (39) for 
~ { q }  it follows that this deviation does not depend on 
the length 2d of the bridge (of course, if the condition- 
(3) i s  satisfied), and is determined by the relation be- 
tween V, and the characteristic frequency of the change 
of the phases q(t). 

We consider now the limiting cases. 

(a) h = V~T,  e l ,  i.e., n~'7-,/4~<<1. At low voltages 
V<<v,= V,/A the functions that depend on q(t,) in (39') 
can be taken outside the integral with respect to the 
time t, [making the substitution cp(t,)- cp(t)], and inte- 
gration with respect to the variable k yields 
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where [p] is a function with period 2r, equal to qp at 
lql < n. If cp = q,+ cp,, expression (43) coincides with the 
next to the last term in (31) in the limit when WT, << 1. 
The function P { ~ }  can be represented in the form 

where 

b,=2 1 1 1  2-1=0.39, b,=5  In 2-3=-0.23; 

The first term of the series (44) determines the change 
of the contact resistance, and the remaining terms yield 
the contribution to the interference current. We note 
that the sign of b,  is opposite the sign of the coefficient of 
the interference term (acp/at) cos cp in a tunnel junction. 

We obtain the form of the CVC at voltages V<<v,, 
using (42), (43), and the formula 

-1 

-- I s i n  I+A ctg 2 (.-Sin cp))  . 
at ( 2 

The calculation of expression (45) yie1ds.a sum of inte- 
grals in the form 

I 9 ctg (~12)  + j dcp 2 cy2k/2) 
(a), a= - Id' a-sin9 

-I -x 
sin cp-a 1. ' 

the first of which i s  calculated by integration in the com- 
plex plane along the contour shown in Fig. 1. We get 

where 

At currents I>>Zc, the CVC takes the asymptotic form 
I= ~/g ,  where 

R=R/(l+h(2 In 2-1)) <R. (46') 

Thus, the bridge conductivity is increased by the devia- 
tion from equilibrium. We note that a similar expression 
follows from the series (44). The conductivity increase 
obtained by G o l d  differs from the one given here. In 
Golub's paper the second term in the denominator of 
for mula (46) contains, besides a weaker (logarithmic) 
dependence on T,, also at the small parameter [d/[(~)]~ 
<<I. 

a b 

FIG. 1. Contours in complex cp plane, which are used to cal- 
culate the form of the CVC (a) to calculate the Fourier-expan- 
sion coefficients of the function ~ { d  (b). 

At voltages V>>v, we can obtain from (39) 

The angle brackets denote here averaging over the peri- 
od T =  T/V, which is effected with the aid of the expres- 
sion for acp/at (42) : 

In the considered limiting case X << 1 the inequality 
V>>v, means that I>>Ic. We therefore obtain from (48) 
in the principal approximation 

( (4-kz sin2 (cp/2) ) '&> = (2/n) E (k) , 

where ~ ( k )  is a complete elliptic integral. For the total 
current we get from (42) and (47) 

As seen from (49), the total current contains besides 
the ohmic part also a component 131~1, which depends 
on the difference of the phases cp in a nonsinusoidal man- 
ner. The function g{rg) obtained by numerically calculat- 
ing the integral in (49) i s  shawn in Fig. 2. 

We expand ${cp) in a series - 
~ { p )  = a,, sin ncp, 

(I-I 

sin ncp sin cp 
X 

(I-k2 sin2(cp/2))" ' 

Using for the integration of the integral with respect to 
cp the contour shown in Fig. lb,  we can shaw that at 
large n the quantity a, decreases like (-1)"n-'. We note 
that since F{q} contains the harmonics sinnq, sub- 
harmonic steps at voltages 2V= w/n appear on the CVC 
when external radiation of frequency w is applied to the 
junction. 

An analytic expression for the CVC can be obtained 
in the considered case VT, << 1 in the entire range of 
variation of V. At Vc cv,, the function I(V) is deter- 
mined by formula (46), and at V>> Vc this relation can 
be obtained directly from (39'), noting that in the prin- 
cipal approximation q = 2Vt. To this end we must sub- 
stitute the expression for &,) in (39'), expand the latter 
in a Fourier series in t and t', and average over t. As a 
result we obtain an expression for the CVC in series 

FIG. 2. Plot of F{cp), obtained by numerical calculation of the 
integral in Eq. (49). The points show the plot of sincp. . 
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form. In the limiting case V<<v the CVC coincides with 
(46) ,  and at V w v ,  the deviation of the CVC from Ohm's 
law decreases in proportion to v, /V.  

(b) X>>1. In this case at practically all voltages V >  v ,  
the function P{@) is given by (47) .  Substituting (48)  in 
(47) we obtain an integral equation that determines the 
form of the function 

Thus, at X >>I even the form of the function I'(cp) in (42) 
depends on the current I that flows through the bridge. 

If I  -Ic, the function PIq} can apparently be deter- 
mined only numerically. However, definite conclusions 
can be drawn concerning the form of I(V).  In particular, 
p{q.~:(cp) can again be represented in the form of the series 
(50) ,  whose coefficients at n >>l also decrease like 
(-l)"/n2. In the case I>>Ic the expression (49)  for the 
current is again valid, and the expansion of Z(V) in 
powers of Vc/V takes the form 

where the function f l c p )  is determined by the second 
term in (49) ,  and its form is shown in Fig. 2. Thus, 
the value of the integral in (52)  is of the order of unity 
and the CVC approaches Ohm's law, just a s  in the case 
of the simple resistive model ( I ) ,  like Vc/V.  

At voltages lower than Vc but higher than v,, the form 
of the CVC can be obtained analytically from (51) .  If 
v,<< V<< Vc the main contribution to the integral is made 
by the region near the maximum of the function qp} ,  
which can be represented in this vicinity in the form 

P{q}=P(rpo)-'/,/p,I (q-PO)'. 

We then get from (51)  

' kdk 1-ka sin' (cpo/2) 
p {d==ain%j  -( i -k '~ in~(rp /2 )  ) "* , ~ { r p ~  = sin To.  

0 

The angle po is determined from the condition that the 
derivative a@/aq.I vanish at the point p,, and turns out 
to equal 1.92. For the CVC we get from (51)  

Thus, at finite voltages the current in the junction can 
be less than the critical value, i.e., hysteresis takes 
place. 

To conclude this section, we calculate the change of 
the critical current induced by a weak alternating volt- 
age. We consider the most interestingcase of sufficient- 
ly high frequencies w >>v,. The phase p consists of a 
constant part po and a small alternating one q,: 

q=rpo+@i, Bi=qi sin ot. 

The current is obtained from (42) and (47) 

and the averaging is over the period 2n/w. 

We expand (53) in powers of $, accurate to second 
order inclusive: 

I= -- ( 
a ' a" + I .  sin h i - I . ~ ~  cos r - s in*  J dy- ln  q (c. y ) )  

ZR at  avo - 
' a2q(rpo, v) @?sinqo+ sin r p ,  j dy - (<@,')-@?) 

a90 

We note that the terms linear in c p ,  in (54)  coincide with 
(31) in the limit wr,>>1. Averaging over the time, we 
obtain from (54)  the dc current a s  a function of cp,. To 
determine the maximum current we must substitute 
q0 = r/2. As a result we get 

Thus, in the presence of a weak alternating signal the 
critical current decreases. 

4. REGIONS OF HIGH VOLTAGES V>> A 

The condition V>>A means that the voltage V on the 
bridge exceeds the characteristic frequency Vc = I 9  of 
the Josephson oscillations. Therefore the phase shift 
cp is given in the principal appraximation by rp= 2Vt. 
We calculate the current in this case on the basis of 
Eqs. ( 7 ) ,  (20) ,  and (21) .  Using the form iR and formul- 
as  (11) and (17) ,  we determine GI:(*): 

For brevity we have left out here the indices RM), and 
u = v / 2 .  

On the basis of these expressions we have 
p̂,G+n'A) * p * i b r + p r ~ ~ ,  (55) 

where 

2p2=[g(&-u)+g(e+3v)  ] f (e+v)6(&-e'+V) - f  (e-u)  
x [ g ( e + v )  +g(e-3v)  ]6(e-8'-V),  

2p3=f (&+u)  f ( ~ + 3 ~ ) 6  (E-E1+2v) -f ( E - V )  f ( ~ - 3 ~ ) 6  (e-8'-2v). 

In the calculation of the sums of the series (20)  and 
(21) we separate the sets of terms in which the singul- 
arities accumulate near energies E that satisfy the rela- 
tion 1 & * v 1 = A .  We calculate first the direct current. 
To this end we determine that part of the sum of the 
series (20) and (21) which is proportional to b(& - E'). 
Separating the principal part, we get 

where N ,  = ( 1 / 2 [ 9 ( & )  -gA(&)] is the reduced state den- 
sity of the homogeneous superconductor. 
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We represent each term of the sum in (21) in the form 

Taking (56) into account, we can reduce the sums in 
(57) to a sum of the terms of a geometric progression, 
which adds up to 

& + I = [ D ~ + ~ ( E - - ~ ) A  (e )+DUICl(e -v )A (e-u)+D,+,(e+v)A (8 )  
+D,,+, ( e+v)A(e+v)  ]d,6(e-e') ; 

(p)a(k+t)- ( f ~ ) ~ k + t )  
D**+,(e)=- yn)r-( j");  9 

f* (f") "*+'-fR(f*)'"" 
DZk+, (el = 

( jR lZ-  (f-'Y 
Substituting the expression obtained for a,,,, in (21) 

we obtain for the dc part of the current 
1 

Z& = - Jde N .  ( e + v ) ~ ,  (e-v)  [D(e+v)  +D(e-v)  -11 
2R 

E+U 
~ [ t h - -  (58) 

2T 
Arsh f"(e ) -  Arsh y ( e )  

D ( e ) =  
f"(e ) - fd (e )  

When integrating in (58) we recognize that 

Then 

In the expression for IT, the terms that a re  constant in 
time are  of the order of A / V  and can be neglected. The 
second term of (59) yields at V>>2T the excess current 
I e x .  

We note that the solution (19) of Eq. (4) was obtained 
neglecting terms that contain time derivatives. B- 
pression (59), however, which determines the for- of 
the CVC at V >> A, remains valid also at V>>D/d2. This 
can be verified by substituting in (4) the solution (19) in 
which the principal terms in a / ~  are retained. 

To calculate the oscillating terms of the current we 
must separate in expressions (20) and (21) the terms 
with the 6 functions 6(c - c' * 2V). The terms containing 
6(c - E'  * &V), where n 2 2, a re  of next order of small- 
ness in the parameter A/V. As a result we obtain for 
the oscillating part of the current 

Z,..=I, ( V )  sin (2Vt)  +12(V) cos (ZVt), 

where in the case A - T 

with increasing V, as i s  the case also in tunnel junc- 
tions. 

The theory developed enables us to describe the be- 
havior of superconducting point contacts or  sufficiently 
short bridges of variable thickness. In the latter case 
the condition (3) on the length of the bridge is easiest 
to satisfy by using in the experiment materials having 
a low energy relaxation frequency v, (e.g., aluminum1'). 
At low voltages V<<A the dependence of the current I 
on the phase difference cp is essentially determined by 
the relation between v, and V, =I$. In particular, at 
v,<< Vc the dependence of the current 

a q  1 I - - -  
at 213 

on cp near Tc deviates substantially from sinusoidal. 
At the same time, the CVC of the bridge differs little 
from the relation1 I= R (VZ+ ~3'' (see Figs. 3 and 4). 
The most distinguishing features of the considered mod- 
el  at low V a r e  a certain increase of the bridge conduc- 
tivity at 7, Vc << 1 [see Eq. (46)] and the presence of hy - 
steresis at r,VC >> 1. The general form of the CVC at 
a temperature close to Tc is shown in Fig. 3. Figure 
4 shows the initial sections of the CVC in enlarged 
scale at different values of A. These curves were ob- 
tained by numerically integrating EQ. (42), in which the 
functional ~ { c p )  was replaced by the model functional 

1 
a cp 

P.Icp}=sincp 5 dt, sin cp(ti) -exp[v. (t,-t) 1, 
-- at ,  

which reflects the main properties of ~ { c p ) .  It i s  seen 
that at low V the CVC differs little from the relation 
I=R(V2+ c)''2. At V>A the CVC is determined by for- 
mula (59) (Fig. 3) and the I(V) curves becomes asymp- 
totically a straight line shifted relative to the ohmic 
straight line by an amount equal to the excess current 
I,,, = (n2/4 - l)A/eR. At low temperatures I,,, -I, - A /  
eR, while near T,  we have I,,, - h/eR >>Ic - (A/eR)(h/T). 
The quantity I,,,, its temperature dependence, and the 
law that governs the change of the current to the asymp- 
totic form (59) agrees with the experimental data ob- 
tained for point contacts.' 

The authors a r e  grateful to 0. Yu. ~ o l ~ a n s k c  and 
A. Ya. Shul'man for help with the numerical calcula- 
tions, and B. L Ivlev, A. L Larkin, and Yu. N. Ovchin- 
nikov for a helpful discussion. 

FIG. 3. Form oc the CVC at temperatures close to critical 
b / ~  = 1/2). The points show the plot of I = V/R. i.e., the amplitude of the "Josephson current" decreases 
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From (16) we get for 6, 
G,-G(-m) exp [-Gp(nl2+arctg a)lll. (A. 3) 

FIG. 4. Form of the CVC at V<<A and different values of h 
=Vc7, : 1)  h=20; 2)  A= 1.  The point show the plot of I 
= (9+ V:)'~~/R, and the dashed line the plot of I= V/R. 

APPENDIX 

The derived expressions for the current in the bridge 
contains no characteristics whatever connected with the 
bridge geometry, other than its resistance R. This sug- 
gests that the results do not depend on the shape of the 
bridge (or of the point contact). We examine below a 
contact in the shape of a single-cavity hyperboloid of 
revolution, and show that the total current in it is de- 
scribed by the same expressions as  in the case of a fil- 
ament that joins bassive superconducting shores. 

The general expression from which the total current in 
the contact is determined is obtained by multiplying (19) 
by the cross section area of the filament: 

E,=s&= - * ~ n h ( 2 6 + ~ - ) .  
R (A. 1) 

We obtain the equivalent expression for a contact in the 
form of a hyperboloid. To do so we change to the coor- 
dinates a, 7, cp of an oblate ellipsoid of revolution 

x'=a'(1+o2) (1-z') cos'cp, y'=aZ(l+aZ) (1-z2) sin'cp, 

z=aoz, -m<o<m, O<z<l, O<(p<2n. 

Let the surface of the contact be determined by the apex 
angle 0 of the cones and by the smallest radius r0 of the 
neck. Then r ,=a sin(0/2), and the contact surface is 
given by the condition T = cos(8/2). Under condition (3) 
(which now takes the form r,,/sine<<q) the Green's func- 
tions that determine the current are  obtained from Eq. 
(9) and take the form 

G=(G.[ (ot+zt) (l+ot) I-", 0, 0). (A. 2) 

where the matrix &, does not depend on the coordinates. 

From (A. 3), since (?(-a) and GI, anticommute, we ob- 
tain in analogy with (19) 

(A. 4) 

where 6, = (1/2[6,(u) * Go(--)] are  equilibrium functions. 
The total current i s  expressed in terms of an integral 
of (A.2) over the cross section of the contact: 

Recognizing that the resistance of the hyperboloid is 
R =p/2a  cos(0/2), we find from (A.4) and (A.5) that the 
total current through the contact is determined by the 
same expression (A.l) a s  in the case of a filament. 

"we note that the nonstationary Josephson effect in short 
bridges (d<  5(T)) was analyzed by ~ o l u b ~  in the case of low 
voltages (V < T&-') .  However, his solution of the equation for 
the anomalous Green's function that determines the current i s  
incorrect in the considered case. His results therefore dif- 
fers  substantially from ours. 

2'A factor 2 is placed erroneously in Ref. 2 in front of sincpo in 
the last term in the curly brackets. 
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