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of antiferromagnetic bonds 
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It is shown that replacement of one ferromagnetic bond in a ferromagnet by an antiferromagnetic bond 
leads to appearance of local energy levels. The spectrum of these levels and their contribution to the 
thermodynamic functions are investigated. For a spin s = 1/2, the problem is solved exactly and an 
expression is obtained for the only energy level existing in this case and for the wave function. At s > 1/2 
the problem is solved approximately. In this case several local levels can exist. Their energies are 
calculated. Turning on an external magnetic field causes these levels to cross, and this leads in turn to 
strong bursts of the susceptibility and of the heat capacity in magnetic field corresponding to the level 
crossing. 

PACS numbers: 75.10. - b 

1. INTRODUCTION of the ant i ferromagnet ic  bonds. 

T h i s  paper  d e a l s  with the proper t i es  of a Heisenberg 
ferromagnet  with low concentration of randomly dis-  
posed ant i ferromagnet ic  bonds. Many recent  p a p e r s  
are devoted to models  of t h i s  kind in connection with the  
spin-glass  problem (a detailed bibliography can b e  
found in the  review^"^). In pract ice,  however, in  all 
the p a p e r s  the  problem was solved i n  the  molecular-  
field approximation or f o r  the  case of a n  infinite inter- 
action rad ius  (see, e. g.,  Refs .  3-5 and t h e  re fe rences  
therein), and for  the  mos t  par t ,  fu r thermore ,  f o r  a n  
Ising magnet. No attention w a s  paid whatever to  all the 
phenomena connected with the  presence  of localized 
spin-wave excitations in the  ferromagnet .  It  is t h e s e  
phenomena t o  which the presen t  paper  is devoted. W e  
confine ourse lves  h e r e  t o  the  case of low concentration 

It mus t  b e  noted f i r s t  that  the  cited papers14 deal t  
with a problem with a Gaussian distribution of the ex- 
change integrals ,  i. e . ,  with a purely model problem. 
On the  o ther  hand, t h e r e  exist magnets  in  which t h e  
exchange in tegra l s  can b e  randomly both ferromagnet ic  
and ant i ferromagnet ic .  T h i s  situation arises when the  
interact ion is via  indirect  exchange and the c rys ta l  con- 
t a ins  two s o r t s  of a t o m s  that  effect the  indirect  ex- 
change, the  f i r s t  leading t o  ferromagnet ic  exchange the  
second to t h e  ant i ferromagnet ic  one. Examples of such 
substances are the al loys CrTe,-,Sb, (Ref. 6) and 
CO(S,-S~,-,), ,~*~ where C r T e  and CoS, are fe r romagnets  
and CrSb andCoSe, are antiferromagnets. We consider  
there fore  a fe r romagnet  with nearest-neighbor interac- 
tion and with a ferromagnet ic  exchange integral  J, con- 
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taining a small admixture of antiferromagnetic ex- 
change bonds I. It turns out that a t  I > 25 the purely 
ferromagnetic state is unstable and the spins that sur- 
round the antiferromagnetic bond begin to  deviate from 
the direction of spontaneous magnetization. This de- 
viation decreases exponentially with distance. Such 
formations a re  in effect localized spin waves. 

Since the projection of the total angular momentum 
on the z axis commutes with the exchange Hamiltonian, 
we shall characterize the ground state of the system 
by the deviation AM of this projection, from the maxi- 
mum possible value sN, where s is the spin of the in- 
dividual atom and N is the number of atoms in the crys- 
tal. If I does not exceed greatly the threshold value 25, 
when the ground state corresponds to the case AM=-1. 
It is easily understood that for s=$ this i s  the 
ground state for all I > 25. In fact, it will be shown be- 
low that what deviate mainly a r e  the spins in contact 
with the antiferromagnetic coupling. The deviation for 
their nearest neighbors i s  quite small. If the latter 
deviation is neglected then it i s  clear that the case AM 
=-2 for s = $  corresponds to total flip of the spins in 
contact with the antiferromagnetic coupling, a situation 
that is energywise unfavorable, since we gain nothing 
in the antiferromagnetic exchange and lose in the ferro- 
magnetic one. Therefore the energy corresponding to 
AM =-2 will be higher for s = $ than that of the purely 
ferromagnetic state, and a t  s = 4 the ground state cor- 
r esponds toaM=Oat I<2Jand  to m=-1 at I>2J .  

It turns out that the case AM =- 1 can be solved exact- 
ly. The problem for s=$ has therefore an exact solu- 
tion a t  all I, and for other s i t  has a solution in some 
interval of I. This simplest case will be considered in 
Sec. 2. 

Next, if s > $, then a t  sufficiently large I the ground 
state corresponds to AM <- 1. This means, so  to speak, 
two and more spin waves localized in one place. It is 
then necessary to take into account the interaction of 
these spin waves with one another. Naturally, this 
problem can no longer be solved exactly. We solve i t  
approximately in Sec. 3. In Sec. 4 we consider the 
thermodynamics in an approximation linear in the con- 
centration of the antiferromagnetic couplings. It turns 
out that a t  low temperatures the thermodynamic quanti- 
ties a re  oscillating functions of the external magnetic 
fields, and at higher temperatures the oscillations be- 
come smoothed out, but all  the quantities a r e  anoma- 
lously large compared with their ordinary values. 

2. THE CASE AIW = -1 

The Hamiltonian i s  of the form 

where J,, is the exchange integral, s, is the spin opera- 
tor, h is the external magnetic field, and i and j 
number of lattice sites. 

The purely ferromagnetic state rko is defined a s  fol- 
lows: 

The wave function q1 of the state with AM=-1 can be 
written in the form 

It i s  easy to  obtain for rp, the equation 

Here &I =El - Eo and E l  i s  the energy of the state q,. 
Equation (4) was used by a number of authors to study 
various disordered magnets-see, e. g. ,  the book by 
Izyumov and Medvedev. If AM =-p, where p > 1, then 
an equation similar to  (4) can be obtained for the wave 
function rpi l .  . . i, of a complex of p coupled spin waves, 
with account taken of their repulsion. Such an equation 
was obtained, e. g . ,  in Ref. 10. We, however, will 
use for p > 1 an operator equation. From (1) we get, 
using the known commutation relations, 

We shall use Eq. (5) in the next section to study the 
spectrum a t  p > 1. 

We proceed now to a detailed study of Eq. (4). It is 
easy to show, using (31, that the magnetization a t  the 
i-th site is equal to 

The normalization condition is equivalent to  the condi- 
tion AM =- 1. Let the antiferromagnetic coupling be 
between sites 0 and 1 (see Fig. l a ) .  Then Eq. (4) takes 
the form 

Vi=O for i+O, 1, 

v,=-v,, V0=2s(I+I)  (q,-qo). 

The sum over j in (7) is over the nearest neighbors, J 
and I a r e  the ferromagnetic and antiferromagnetic ex- 
change integrals. We shall consider henceforth, for the 
sake of argument, a simple cubic lattice. Generaliza- 
tion to other lattices is elementary. 

For a simple cubic lattice, the solution of (7) is 

From (7) and (81, taking into account the normaliza- 
tion condition (6), we obtain the condition for the exis- 
tence of a level and the explicit form of rpl: 

FIG. 1. 
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The equation for the level energy ~1 can be rewritten in 
the form 

The last equation can be easily obtained from the defi- 
nition of G:!' in (8). Using the tables of the function 
G:~'(W) (they a r e  given, for example, in the book by 
Izyumov and ~edvedev') ,  it is easily seen that a t  w < 0 
the quantity (3 - c) /c  increases monotonically and i ts  
minimum value, 2, occurs a t  w = O .  It follows there- 
fore that the critical value of I, a t  which a level f i rs t  
appears is equal to 25. At I > 25 we have ~ 1 -  h < 0 and 
a real local level. At I < 25 we have ~ 1 -  h > 0 and a 
quasilocal level near the threshold. Since ~rnG::'(w) 
, wl/ 2 a t  w > 0, i t  is seen from (10) that the ratio of the 

damping to the level frequency is of the order of ( ~ 1  
- h)9'2. We note that in scattering of an ordinary spin 
wave by inhomogeneities we also have y(k) - W ~ ' ~ E ( ~ ) .  

It is curious to note that the quantity (3- c ) / c  is very 
well approximated, in the large energy interval from 0 
to - 12Js, by the linear function 

The error  does not exceed 396 in this interval. Using 
the approximation ( l l ) ,  we obtain an explicit depen- 
dence of &1 on I/J: 

We recall that (12) is meaningful only a t  EX - h < 0, since 
damping sets  in a t  & I -  h > 0. We note that Eq. (12) is 
only a good extrapolation in a large energy interval. 
It does not describe correctly, however, the asymptotic 
behavior a t  I E - h 1 << 4Js. In this region it i s  easy t o  
obtain ~1 from (10): 

Comparison of (12) and (13) shows that the coefficients 
of I/J- 2 differ by 30%. Formula (13,  however, is 
valid in a rather narrow range. 

We consider now the asymptotic form of rpi a t  R, >> d. 
From (8)-(10) we have 

121s 
Ti=  - T,(~:P'  -G$ ) 

where 

x2=- (el-h)/2JsdZ>0, 

d is the lattice constant, and Rlo = RI - Ro. 

To conclude this section we note that if we place two 

antiferromagnetic couplings in tandem, then the criti- 
cal value of I decreases. For  example, the configura- 
tion in Fig. 1 corresponds to  I c r  = 1.187, while the con- 
figuration in Fig. l c  corresponds to I, = 1.135. By 
exactly the same method a s  used in the present section 
for the problem with one antiferromagnetic coupling, 
we can solve completely also problems with two coup- 
lings, but this will not be done here. 

3. ARBITRARY A M  

We consider now the case of arbitrary p =-AM. We 
use for this purpose Eq. (5). For  the case of one anti- 
ferromagnetic coupling located between sites 0 and 1, 
Eq. (5) can be rewritten in the form 

where 

In contrast to Eq. (7) for rpi, in the present case Wt 
differs from zero not only a t  i = 0 and 1. The formal 
solution of Eq. (14) i s  of the form 

c4 

si+ ( t )  = dt' G I ; '  (t-t') Wj+  ( t ' )  , 
-or 1 

" d o  
G!,? ( t )  =; 

-GI:' ( a )  e-I.'. 
-- 2n 

Equations (14) and (15) can, naturally, not be solved 
exactly. We therefore solve them approximately, and 
then show that the e r r o r s  of this approximate solution 
is of the order of several per cent. Our approximation 
consists of taking into account in the expression for 
in (14a) only the contribution from the antiferromag- 
netic coupling, i. e., from sites 0 and 1. In this case 
we obtain from (14) and (15) 

" 
s,+ ( t )  = j  dtr(~,:O'  ( t - tr )  -GI:' ( t - t f ) }  w 0 + ( t 1 ) ,  

-c4 (16) 
Wo+ ( t )  =-2sJ(s,+-st+) -2l(s,+s,'-sI+soa). 

Equations (16) describe a diatomic antiferromagnetic 
molecule, and the sites 0 and 1 that enter into the mole- 
cule interact with one another and with themselves via 
the virtual spin waves of the ferromagnetic matrix, 
and the latter interaction i s  taken into account in the 
harmonic approximation. The states of such a mole- 
cule a re  characterized by two quantum numbers, the 
total angular momentum L and i t s  projection M on the 
z axis. We, however, a r e  interested only in the quan- 
tum number M .  This means that we must find the state 
with minimal energy a t  a given M .  It is easy to show 
that such a state is obtained a t  L =M. The correspond- 
ing wave function is 
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( 0  ( 0 )  Y M , M = X  (M, MIS, 8, m, M - ~ ) x , , ~ x ~ , ~ - ~ .  (17) 
" 

In (171, L, M 1 s, s, m, M - m) a r e  Clebsch-Gordan coeffi- 
cients, and )$'fk a r e  the wave functions of the si tes 0 
and 1. It is very important in what follows that the 
operators s; and s; transform Q M , ~  into *M+~.M+l, or 
more accurately 

Here a ( s , M )  is a function that depends only on M and s. 
The last equation in (18) is a consequence of the f i rs t  
two. Equations (18) can be easily obtained by using the 
explicit forms of the Clebsch-Gordan coefficients" a t  
L = M  

(s+m) ! (s+M-m) ! 
(M.  M I S .  S .  m, M-m)  = ( - I )  ",A (s, M )  ( )" (19) 

(s-m) ! (s-M+m) ! ' 
a ( s ,  M) =A ( s ,  M ) I A  ( s ,  M+1). 

It is seen from (18) that a l l  the operators in (16) 
transform the state I M, M )  into 1 M + 1, M + 1). Calcu- 
lating the matrix elements of these operators between 
the states ( M  - 1, M - 1) and I M, M),  we get - 

exp[- i (EM-,-EM) t ] =  d t ' {~ , I ' '  ( t - t ' ) - ~ i : '  ( t - t ' ) }  -- 
~ e x ~ [ - i ( E M - , - E M )  t ' ]  (4Js+2IM). (20) 

Recognizing that p = 2s - M, we easily obtain from (20) 
the following equation for cP = E, - Eo: 

P - 1  

~ P = E . + ~ - E P ,  cp=C a*. 
L-0 

It i s  seen from (21) that &l=wo, and the equation for  wo 
coincides with Eq. (10) for ~ 1 .  Equation (21) solves the 
problem of determining the energy levels &,. 

We consider now the corrections for this formula. To 
avoid the use of non-commuting operators, we consider 
for simplicity the problem for classical angular momen- 
ta, i. e . ,  the problem with p >> 1 and s >> 1. It will be 
shown later that s determines only the energy scale, 
and that p enters a s  part of the combinationp/2s, so  
that the smallness of the corrections i s  not connected 
with the conditions p >> 1 and s >> 1. This is precisely 
why we a r e  using this limit. In the classical limit we 
have from (5) 

here 

s;=sm;, s ~ ~ = s m ~ ~ ,  
sca=s(l-m:)", mcl=(rn:)'+ (mtU)'; 

where m, is a planar vector. We shall be  interested 
henceforth only in a solution of the precession type, for 
which 

m;=mi cos o t ,  m,q--m, sin o t ,  

c3mtz/c3t=omi", am,V/at=-am:. 

From (22) and (23) we obtain for the case of one antifer- 
romagnetic coupling the following equation: 

In analogy with (8) and (15) we can express the formal 
solution of (24) in the form 

Equations (25), however, a r e  still too complicated to 
solve. To simplify them, we note that m i  << 1 if i + 0 o r  
i # 1. Therefore the t e rms  "mf in (24) will be neglec- 
ted. We a r e  left then in (24) only with W i  with i = 0, 1 , 2  
. . .11, where the numbering of the s i tes  is illustrated 
in Fig. 2. If we write out (25) fully after this simplifi- 
cation and se t  mi in the left-hand side of (25) equal in 
succession to mo, . . . , mil, then we obtain a 12-th order 
system of equations. From the structure of this sys- 
tem it  is seen that 

and thus, there a r e  only three independent quantities, 
which we choose to be mo, m,, and mil. We obtain for 
these quantities the equation 

where 

I  
A = - - m  ,(1-m,')'~2-m0+2m,[l-(1-m,l)"l+1/1m1,[l-~l-m~~'hl, 

J B = l - ( I - n o Z ) " ,  (2 7a) 
G ( i ,  j ,  I ,  a )  =~JsG:; ( 0 ) .  

Here G\\: a r e  the matrix elements of G'O' with coordi- 
nates R = ie, + je, + le,. If we neglect in the right-hand 

FIG. 2. 
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side of (27) the small  t e rms  of order q and mll, we 
get 

It i s  quite clear that with increasing ( w ( at  w < 0 the 
quantities a(o) and b(w) will decrease, so  that the con- 
tribution from m6 and mil is maximal a t  w = h =O. We 
consider f i rs t  this case. 

Using the explicit form of some matrix elements9 and 
estimating the remaining ones from the asymptotic 
forms a t  large R, we obtain a t  o = h = 0 

If we compare in the f i rs t  equation of (29) the contribu- 
tion from XQ and m u  with the corresponding contribu- 
tion from these quantities to A, we see that it of the 
order of a(O) and b(0), and consequently this contribu- 
tion i s  of the order of mi/ma and m:l/rn;, and such con- 
tributions were already neglected in the derivation of 
(27). Next, the term with mil can be neglected in the 
equation for %, and the term with Bm, necessitates 
a small correction, 0.2, for  m,. This correction is 
also of the order of mi/mi,  and i t s  inclusion is an  ex- 
aggeration of the accuracy. The situation is analogous 
in the last equation. We see thus that al l  the t e rms  
containing B in (29) can be neglected. Turning now to 
Eqs. (24), (25), and (27), this means that we need take 
into account in (25) only Wo and Wl. In this case we 
have from (25) 

which is the analog of (9). For  % and mil we get, nat- 
urally, Eqs. (28). For  mo we have from (241, (25), and 
(28) 

where c(w - h) is defined in (10). 

We now determine p. Since we a r e  considering a 
cluster of 12 atoms, we have M = 12s - p. On the other 
hand m6 << 1 and mil << 1, therefore 

Formulas (31) and (32) define w as a function of p. 
From these formulas we get 

If D = 1, we obtain Eq. (21). The expression for D con- 
tains no parameter capable of making I D  - 1 I <.  1. It 
turns out, however that there i s  a numerical smallness 

that leads to ID- 11 << 1. For  example, near the 
threshold 1 ~ 2 5  and I w - 4Js I <<Us ,  and there D- 0.96. 
We have next compiled a table of values of U a t  I *4J. 
It turns out that when w var ies  from zero to -8Js the 
value of D differs from unity by not more than 3%. 
Since our entire theory cannot claim a higher accuracy, 
we shall not take these corrections into account. 

Thus, there exists a numerical small  parameter that 
makes Eq. (21) valid. We note that in the derivation of 
Eq. (33) the classical character of the problem played 
no role, for otherwise the answer would contain the 
small  parameter l/s. In the classical limit we get 
from (21) 

P (34) 
e , = j  dkoa. 

a 

The f i rs t  equation in (34) coincides with (33) a t  D = 1, 
and the second can be  obtained directly from the classi- 
cal equations of motion (22). 

If we use the extrapolation (111, we obtain for cp from 
(2 1) 

Formula (35) is valid s o  long a s  w,,l< 0, for a t  wp,l > 0 
the quantity c(w#,i) becomes complex. It is seen fur- 
thermore from (21) that the lowest level a t  h=O is 
determined by the value of the angular momentum 

where E(x)  is the integer part  of x .  It follows from (36) 
that poe2s a t  I >> 2J, a physically obvious fact. 

We note that a t  h + 0 the relative positions of the levels 
change, but the decay properties of the levels do not 
change. This is physically obvious, since the decay is 
due to spin waves, and a t  h+ 0 the spin wave spectrum 
has a gap equal to  h. 

4. THERMODYNAMICS 

We consider now the contribution made by the discrete 
levels to  the thermodynamics. The corresponding part  
of the f ree  energy is 

where No is the total number of the antiferromagnetic 
bonds in the crystal. Let initially Po = 1. We then ob- 
tain from (37) for the heat capacity C and for the sus- 
ceptibility X: 

-2 No -8 

C = N o -  ( ch- >) , x=-(chd-) , 
4T 2T 

el=h+an, 

where ff, no longer depends on h. At typical values of 
the parameters, the spacing between the levels a t  h = 0 
is of the order of 4Js, i. e. ,  of the order of T,. Since 
we a r e  interested in the case T<< T,, a t  the character- 
istic values of the parameters the heat capacity and the 
susceptibility a r e  exponentially small. At finite h , how - 
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ever, the magnetic field can cancel 00 (in our case a0 
< 0). It is seen from (38) that a t  h--00 the susceptibi- 
lity has a 6-like burst, and the heat capacity has two 
bursts a t  1 E* 1 -T and a dip a t  I c i  I << T. Let now po > 1 
in our case. It is seen from (37) that altogether, in- 
cluding the pure ferromagnetic state, we have po + 1 
levels. It is easily seen that susceptibility bursts 
of the type (38) appear only upon intersection of only 
the two lower levels, and the two bursts and the dip of 
the heat capacity will occur when any two levels inter- 
sect. Therefore when the magnetic field is increased 
the susceptibility will have po 6-like bursts, and the 
heat capacity will have po(po + 1)/2 minima each brack- 
eted by two bursts, i. e. , in all  po(po + 1)/2 minima and 
po(po + 1) maxima. Since the described picture is con- 
nected only with the presence of Po magnetic levels, it 
should be observed also for other magnetic systems. 
In particular, the same picture is observed in the anti- 
ferromagnetic-impurity problem10 (not to be confused 
with the antiferromagnetic coupling). 

We note that if the antiferromagnetic exchange inte- 
grals a r e  random quantities, then we obtain near I h 
+ a 0  ( -T, averaging over the distribution of this ran- 
dom quantity: 

We consider in conclusion the case s>> 1. Here we 
have a region w <<T <<T, in which the described oscilla- 
tions a re  smeared out. The sum in (37) must then be 
replaced by an integral. Calculating the heat capacity 

and the susceptibility by the saddle-point method, we 
get a t  h>>T 

where pl is the minimum of cp at h* 0. Since a p  ,/ah 
< 0, it follows that x in (40) is positive. Thus, C and 
X do not depend on temperature in this region. 

In conclusion, the author thanks S. V. Maleev and I. 
Ya. Korenblit for a discussion of the work. 
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Cross section for electron capture by a charged dislocation 
in a semiconductor 
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The cross section for multiphoton capture of an electron by an edge dislocation in an n-type 
semiconductor is calculated in the quasiclassical approximation. Analytic dependence of the cross section 
on the electron-phonon interaction constant, on the temperature, and on the charge per dislocation unit 
are obtained. 

PACS numbers: 61.70.Ga 

1. INTRODUCTION 

According to the experimental data, an edge disloca- 
tion in a semiconductor leads to the onset of a one-di- 
mensional band with a bottom ED located in the forbidden 
band. The investigations performed to date a r e  still 
insufficient for final conclusions concerning the carr ier  
dispersion in this band, but i t  can be regarded a s  esta- 
blished that the width of the dislocation band Eo is much 
less  than i ts  depth ED, which is comparable with the 
width of the forbidden band E,. In accordance with the 
general concepts, such a " deep one-dimensional band" 

should contribute to  the effective recombination of the 
excess carriers.  The statistics of the electron and 
hole recombination in semiconductors were considered 
by ~ u l ~ a e v , ~  who obtained the dependence of the life- 
time of an electron-hole pair on the concentration of the 
excess carr iers  and capture cross  sections. It was 
noted that the quantity corresponding to  the capture 
cross  section should be referred to the length of the 
dislocation, in view of the extended structure of the lat- 
ter,  and the concept of capture radius was introduced by 
the same token. The purpose of the present study was 
to find the radius for the capture of an electron by a 
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