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The value of the effective permittivity of a nonregular plasma at the resonance frequency and with 
inhomogeneities distributed according to the Cauchy law is found on the basis of an analysis of the entire 
iteration series for the mass operator of the Dyson equation for the mean field. 

PACS numbers: 52.25.Mq 

An important role i s  played in the electrodynamics of 
randomly inhomogeneous media by the effective-per- 
mittivity tensor Ee", which relates the mean (over the 
inhomogeneity ensemble) induction and electric field 
in the nonregular medium: 

In a statistically homogeneous medium the operator gaff 
i s  an integral operator with a difference kernel uniquely 
determining the mean Green function of the_ system. 
The knowledge of such characteristics a s  ceff allows us 
to reduce the problem of finding the mean field to the 
corresponding problem of finding the field in an "effec- 
tive'' homogeneous dissipative medium, to compute the 
losses due to radiation emission by the prescribed cur- 
rents (e.g., the emission of a charged particle moving 
in the inhomogeneous medium, the intensity of the ther- 
mal fluctuation field, etc.). 

There have in recent years been published a consider- 
able number of papers on the theory of multiple wave 
scattering in which equations of the Dyson and Bethe- 
Salpeter types a r e  used to solve general and specific 
problems.' In these papers, besides the investigation 
of the main problem involving the determination of the 
asymptotic form of the kernels of the equations, the 
Dyson equation for the mean field in a statistically hom- 
ogeneous and isotropic medium is solved. In this case 
ieff essentially coincides with the mass operator of the 
Dyson equation. However, in concrete computations 
use i s  made of one or  another approximation for the 
mass operator (the Foldy approximat i~n,~ the Bourret 
appr~ximat ion,~ the Finkel'berg approximation4), since 
it is  virtually impossible even in the case of homogen- 
eous fields to sum the topologically complex perturba- 
tion theory series and obtain the exact value of the 
mass operator (and, with it, Eleff). 

A similar problem ar ises  in the theory of phase trans- 
itions near a critical point,5 in the theory of percolation 
near the flow threshold,' in the description of strong 
turbulence, etc., where the summation problem has 
been tackled with the aid of the renormalization-group7 
and &-expansion8 methods. 

Besides this, use is  often made in the static problem 
of the "physical" solution obtained by the self-consis- 
tent field method, in which the effective permittivity 
(or the effective conductivity) of an isotropic medium 
i s  determined by the solution to the  axw well-odelevski: 

Here n is the dimensionality of the problem (n = 1,2,3) 
and the averaging is performed over the realizations 
of the random field &(r, w), the local permittivity of the 
medium. The results obtained by this method a r e  
graphic and, in a number of cases (especially for two- 
dimensional systems), a r e  excellently confirmed by 

But the well-known derivations of Eq. 
(2) in percolation theory (see, for example, Ref. 6 
for a review) and in multiple-scattering theory, where 
the solution to the  axw well-odelevski1 equation is the 
principal approximation for Ee" of a medium with small- 
scale inhomogeneitie~,'~ a re  to a large extent intuitive 
and not well grounded. Estimates obtained for the cor- 
rections to the formula (2) for a medium with three- 
dimensional inhomogeneities 6z = 3) in the random- 
phase approximation indicate the marked limitedness 
of this result.'' 

A classical example of a highly inhomogeneous med- 
ium i s  a turbulent plasma placed in an electric field 
E, = Eooe-iw of frequency close to the mean plasma 
frequency: w - (w,(r)). In fact, in this case the mean 
permittivity (&)-O, and even relatively weak fluctuations 
in the particle concentration of the plasma lead to huge 
relative permittivity fluctuations a,/(&)>> 1 (o, is the 
variance of the permittivity fluctuations). 

Let us consider the behavior of an electric field in an 
isotropic plasma-like medium, at each point of which a 
nonregular permittivity, &(w, r), relating the local in- 
duction D(w, r )  and electric field E(w, r )  is defined: 

D(w, r) =&(a, r)E(w, r). 

The last  relation i s  valid if the characteristic spatial 
scales connected with the thermal motion of the carr iers  
in the medium are  small in comparison with the in- 
homogeneity dimension. As the basic equations, let us, 
for simplicity, take the equations of quasi-electro- 
statics: 

div D=4npo, rot E=O, (3) 

where p, is the charge density of the external field 
sources. 

Assuming that the permittivity fluctuations a r e  statist- 
ically homogeneous and isotropic, we write the first  of 
the Eqs. (3) in the form 
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The quantity so(@) is the mean permittivity's renormal- 
ized value, which determines the renormalization of the 
unperturbed Green function of the system in question." 
To the Eq. (4) corresponds the integral stochastic equa- 
tion: 

azG(o,  r-r') 
~ ' ( o , r ) = j  d r ' [ e ( o , r ' ) - ~ ~ ( o )  1 axiax, Ej(o,  r') +F:' ( o ,  r). (5) 

Here G(w, r )  is the Green function for the n-dimensional 
Poisson equation in a medium with permittivity c = E, 

and 
aG(o,  r-r') PI'' ( o ,  r) --4n jar' axi PO (r'). 

The differentiation in (5) should be understood in the 
sense of the differentiation of generalized functions; 
therefore, it is expedient to represent the singular 
function a2~/8xiax,  in the regularized form: 

where gi,(r) is a tensor having in the k representation 
the following form: 

Using (6), we can reduce Eq. (5) to the form 

where we have introduced the new variables 

Solving Eq. (7) by the method of successive iterations, 
and averaging the resulting ser ies  under the assumption 
that the [(w, r )  field i s  statistically homogeneous and 
isotropic, we can easily derive with the aid of the 
standard clpsure procedure an expression for the mass 
operator, C, of the Dyson equation for the mean field 
(E). In this case the kernel, Ei,(w,k), of the mass 
operator is represented by the following functional 
series in terms of the moments of the random field [: 

where i s  the spectrum of the multivariate mo- 
ment of the {(w, r )  field. 

I\follows from (8) that zeff can be expressed in terms 
of Z as  follows: 

The exact determination of zeff ispossible if we a re  
able to compute the mass operator C. The simplest 
way of accomplishing the latter is to find the conditions 
under which 5 = 0. Then 

and the problem of finding 2'" reduces to the problem 
of the self-consistent determination of the quantity c,. 

The possibility of the mass operator's vanishing is 
connected with the analytic properties of the trans- 
formation, (8), of 5 = ((&/&,). Indeed, let us assume 
that &, = i, I so 1 is  an imaginary quantity. Then it fol- 
lows from (8) that the domain of variation of the quan- 

tity 5(w, r )  in the complex [ plane is the circumference 
of the circle 

where the random "phase" q(w, r )  is distributed over 
the range I v  1 -C r. Let us  assume that the random 
phase i s  so  "randomized" that i t s  values at noncoinci- 
dent points a r e  not correlated. Then all  the moments 
of the random ((w, r )  field a r e  equal to zero, and the 
vanishing of all  the moments of the quantity 5(w, r )  is 
a sufficient condition for the vanishing of the mass 
operator. It follows from the formula (10) that (?)= 0 
if there exists a probability distribution, W(p), for 
the phase, such that the relation 

i s  fulfilled for any real  N .  I t  is easy to see that the 
right-hand side of the expression (11) determines the 
coefficients of the expansion of the distribution function 
W(p) into a Fourier series,  on summing which, we 
obtain 

Using (8) and (lo), we obtain E = -(n - 1) ( & , I  cot(q/2), 
from which i t  i s  not difficult to determine the probability 
distribution, W(&), of the permittivity to which the dis- 
tribution (12) corresponds: 

This distribution i s  none other than the Cauchy distribu- 
tion with variance a = 1 E, 1 and mean value (E) = 0. 

Thus, the effective permittivity of a chaotically in- 
homogeneous plasma at the resonance frequency (@= O), 
with the inhomogeneities distributed according to the 
Cauchy law, can be determined exactly, and i s  equal, 
in accordance with (9), to 

regardless of the dimensionality of the inhomogeneities. 
The imaginariness of the quantity aeff ((wd) is due to the 
resonance damping resulting from the conversion of the 
mean-field energy into fluctuation-plasma-oscillation 
energy.12 

In conclusion, let us note that, according to the optical 
theorem, the mean Green function i s  uniquely connected 
with the kernels of the mass operator and the intensity 
of the Bethe-Salpeter equation for the coherence function 
of the field. Therefore, the possibility should exist in 
the present model, which has enabled us to determine 
the mass operator, of finding the intensity operator also. 
This, however, falls outside the limits of the present ' 

investigation. 

The author expresses his gratitude to V.I. ~ a t a r s k i r  
for his attention to the work and for his valuable com- 
ments and to S.N. Gurbatov for a useful discussion. 

"1n the case of anisotropic fluctuations &,,(a) is a tensor. 
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