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We study a system of solitons of the perturbed Korteweg-de Vries equation with nearly equal 
amplitudes. We show that in that case there may exist quasistationary systems with a large number of 
solitons for well-defined relations between the amplitudes. Such systems become stationary when there is 
a piston which compensates for the damping of the solitons and their mutual repulsion. Using such an 
approach we give a detailed description of the soliton structure of oscillatory shock waves. 

PACS numbers: 02.30.Jr 

1. In the present paper we study effects which occur 
when a permanent perturbation acts on a system of 
solitons, and we consider from that point of view the 
structure of shock waves in weakly dispersive media. 
To fix our ideas we consider here waves which a re  de- 
scribed by the perturbed Korteweg-de Vries ( K ~ V )  
equation 

where R i s  a (generally speaking non-linear) operator 
acting upon the function u(x, t) .  The general approach 
discussed here and several of the results turn out to be 
valid also in a number of other cases. 

As far  a s  the deformation 6u(x, t) is concerned we 
shall discuss here only i t s  "tail" part which is described 
by the e ~ ~ r e s s i o n s ~ * ~  

6u- = lim 6u = xzeq, 
z--- 

Indeed, 6u(x, t) is transformed into a flat tail already 
at a few soliton lengths behind the soliton, and this 
can also be seen from numerical solutions5 obtained 
for R = a2/ax2). 

The characteristic time scale, defined by the per- 
The evolution of a single perturbed KdV soliton is turbation, is' t,, =t,/.q, where t,= ( 2 ~ ) ~  is the char- 

described by the acteristic time connected with the unperturbed soliton. 
11 (2. t)  =u,(z, ~ ( t ) )  +6u(z, t ) ,  

u.(z, X )  =-Zx2 sccllZ Z, z=%lz-f (t) I ,  

where 

e= dt -5 4% jn~u.~sech~za, 

If, therefore, there a re  two solitons with greatly dif- 
(2) ferent amplitudes (6H=x2 - ~ ~ - x ~ , , ) ,  the time it takes 

the larger soliton to pass through the smaller one is of 
the order of t,. As t,<< t,, the interaction of the soli- 
tons does not appreciably interfere with the effects of 

(3) theperturbation. 
-- 

However, this interference may turn out to be im- 
d 5  -=422-- portant if the solitons have almost the same ampli- ' ~ R [ u . ~ ( r s e c h z z + t b z + L 2 z ~ d z .  
at 4 x 3  

- - (4) tudes, i. e. , xi , tx2 >> 1 h 1 .  We shall therefore consider 
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just this case." From the point of view of the gen- 
eral  perturbation theory apparatus'"*617 the problem 
reduces to evaluating a few matrixelements using two- 
soliton wave functions. Such an approach is, however, 
very cumbersome since the expression for the two- 
soliton solution is particularly difficult to visualize 
just for the case when b x i s  small. 

It turns out, however, that one can consider this limit- 
ing case very simply, i f  one uses the observation by 
Zabusky and ~ r u s k a l '  and Lax's results,' from which i t  
follows that the solution of the unperturbed KdV equa- 
tion can, when 16x 1 << nt,,, approximately be written 
a s  the superposition of two solitons with slowly changing 
amplitudes. These solitons approach each other up to 
a certain minimum distance, which is large compared 
to the dimensions of the solitions, and after that they 
diverge. It turns out in this way one can lucidly de- 
scribe the process of the collision of solitons with a 
small dx and obtain a phase shift which is to a high 
accuracy the same a s  the one obtained from the exact 
two-soliton solution of the unperturbed KdV equa- 
tion. 93 t0  This simple picture is valid also when E +  0. 
It is the basis of the approach made in the present paper 
which is given in Sec. 2 for  a system of two solitons and 
in Sec. 3 for an arbitrary number of almost identical 
solitons. It then turns out that for well-defined condi- 
tions there exists a state of a system of solitons such 
that the amplitudes of all solitons except the las t  one 
(the one furthest to the left) a r e  time-independent while 
their velocities a r e  the same. This is possible when 
the change in the soliton amplitudes due to their mutual 
repulsion is compensated by the action of the pertur- 
bation &[u]. As regards the last  soliton, such a com- 
pensation is possible for  i t  only when some "external 
force" (such a s  a piston) is acting. If such a forcewhich 
produces a stationary state ceases to act, the equilib- 
rium is violated, but the more slowly the more solitons 
there a r e  in the system. One can thus speak of the 
possibility of a quasi-bound state for a system with a 
sufficiently large number of solitons. On the other 
hand, the above-mentioned action of a piston leadsunder 
certain conditions to the formation of a stationary shock 
wave, the front of which can be considered to be a sys- 
tem of solitons with smoothly varying parameters. 
Such shock waves have already been known for a long 
time in plasmas,"~t2 in non-linear electrical circuits,I3 
and in dispersive media with viscoisty and thermal con- 
ductivity. l4 The theory given below, in Sec. 4, allows 
us  to give a detailed description of their soliton struc- 
ture for a very wide class of perturbations &[u],  in-  
cluding a s  particular cases  the perturbations acting in 
the above-mentioned cases. 

2. We shall look for a solution of Eq. (1) in the form 
of a superposition of two expressions of the form(2) 

where we have substituted the quantities n, and [,(i 
=1,2) for x and [ which satisfy Eqs. (3) and (4) in which 
ER[U,] is replaced by 

Here E'RI, is the perturbation caused by the overlapping 
of the two solitons, while c"R; is connected with the 

FIG. 1. Case when the second soliton "sits on the tailv of the 
first one; a= - ( b ~ - ) ~ ,  b= -(buJ2.  We assume that the perturba- 
tion was switched on when the center of the first soliton was at 
the point x=  0. We have not drawn here the oscillations at the 
end of the tails (they are unimportant for the effects considered 
in the present paper). 

fact that one of the solitons is in the region of the tail 
of the other soliton. It will become clear from what 
follows that c'- (bx/x)'<< 1 and if"' E .  Neglecting small  
quantities of second order (and, in particular, E E ' )  we 
can write 

[v,  = sech2z, and z, = (x - (,)I. Assuming that > 5, 
we have for the case when the second soliton enters the 
region of the tail of the f i rs t  soliton (see Fig. 1) 

~~R<=Gex~q,du,.ldx, E"R,"=o. (8) 

Using (6) to (8) and the smallness of bxwe find after 
simple calculations 

- 
- L ~ R [ U . ]  4x9 (zsechzz + thz + th2z)dz. (12) 

-- 
Here r=  5 ,  - t2 >0, %= 1/2(x1 +3), @([I = I([> 0),0([) = O  
= 0 (x< O), and we assumed that the perturbation ER was 
switched on at the moment when the f i rs t  soliton was at 
the point x=O s o  that the left-hand limit of i t s  tail l ies 
in the vicinity of the point x = 0. 2*3  I t  will become clear 
in what follows that always I (x, - 3 ) r  1 << 1 and 
exp(- 2 r)  5 [(T~ - 3,,)/nl2. In first-order perturbation 
theory we neglected in the right-hand sides of (9) to 
(12) the difference between x i  and 3 in the terms con- 
taining the exponential (and also &). 

We consider f i rs t  the results of these equations at 
E = 0, i. e . ,  when we have the usual two-soliton so- 
lution. I t  then follows from (9) and (10) that %! +% 
= const. , i. e., x is an integral of the motion. Intro- 
ducing the notation 

p(t) =x,(t) -x,(l), Ax---p(-m)>O, 

we get furthermore2' 
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dpldt=128x4 exp ( - 2 9 4 ,  

drldt=8xp-128%' exp ( - 2 x r ) .  

These equations without the second term in (15) were 
obtained in Ref. 10 by another method. One can neglect 
this term when p>> 16xexp(-%MY), i. e., a t  sufficiently 
large r. We consider that region first. We then get 
from (14) and (15) 

p - r 4 x I e x p  (-2xr,)  -exp ( - 2 4  ] Ih ,  (16) 
drldt-$32xa[exp (-Zxr,) -exp ( - 2 x r )  I". (17) 

Here ro is an integration constant, the magnitude of 
which can be found by putting Y = ~  in (16) and using 
(13): 

It is clear from (16) that in the vicinity of the point 
r=ro one cannot neglect the second term in (15) and 
one must thus reconsider the solution (161, (17). To 
obtain a more exact result we note that when x(+- yo) 

<< 1 we can put r=ro in the right-hand side of (15). One 
can easily verify that then one obtains the solution of the 
se t  (14), (15) by adding to (16) the constant term 
16xexp(- 2w0), i. e. , by.writing instead of (16) 

p = r 4 x [ e x p  ( -2xro)  -exp ( - 2 x 4  ]"+16x exp ( -2xr , )  
o r ' l x [ 2 x  (r-r,)  1" exp ( -xr , )  +16x exp  (-Zxro) (19) 

and retaining (17) without change. 

It is clear that (19) is valid in the whole range 
( r  - ro) << 1. Remaining in that region, but assuming 

that 

[ 2 x ( r - r , )  IHB4 exp ( -xr , )  =Ax/%,  (20) 

we can neglect the second term in (19). The second 
terms on the right-hand sides of (15) and (19) a re  thus 
important only when 

I t  follows from (17) that the quantity ro is the minimum 
distance between the solitons. It i s  convenient to as- 
sume that ro=r(0) .  In that case r(t) decreases at 
t <O and increases a t  t > 0, i.e., the negative (positive) 
signs in (16), (I?), and (19) must be taken a t  t < 0 (t > 0). 
At t<O the amplitude of the first  soliton (the one on the 
right) increases and that of the second one decreases. 
The magnitudes of x,(t) become equalized a t  the point 
r' which we find from (19): 

In what follows we have x,(t) >nZ(t) at t >tl. As t -rn, 

where (16) is again valid, we get p ( m )  = An, i. e. , 

I t  follows from this and from the fact that n is constant 
that the amplitudes a re  exchanged a s  a result of the 
collision. **' 

We turn to the case E #  0. In that case Eq. (14) re- 
mains unchanged and instead of (15) we get 

drldt=8xp-128%' eap ( - 2 x r )  + 6 x Z ~ q f 3  (Ez). (23) 

The quantity x(t) now changes according to the equa- 
tion 

which follows from (9) and (10). 

We consider again the collision of two solitons, as- 
suming that "prior to the collision" the second soliton 
is outside the region of the tail of the f i rs t  soliton and 
after the collision i t  is in the tail region. In that case 
the collision process is irreversible. Assuming that 

we can neglect the change of n in Eqs. (14) and (15). 
Proceeding as in the case E = 0, we a r e  led again to Eq. 
(17) but instead of (19) we shall have 

~ = ~ k [ ? r . ( r - r , )  I"=+ 16x exp ( - 2 % ~ ~ )  -6xZeq, x ( r - r o )  < i .  

(26) 
In the point r=ro where the soliton velocities become 
equal (dr/dt = 0) 

3. We turn now to a study of the interaction of an 
arbitrary number of solitons, assuming that the condi- 
tions 

a re  satisfied. The f i rs t  of them means that the per- 
turbation E R [ U ]  leads to a decrease in the soliton ampli- 
tudes when they interact with one another, while the 
second one gives (6u_), < 0. 

Introducing the notation 

and using the same expressions a s  before for the per- 
turbations which describe the interaction of a soliton 
with i ts  nearest neighbors we get the following equa- 
tions 

dx,/dt-64%; exp ( - 2 x I r , )  -&A,,  (30) 

dxm/dt  = - 64x:-$ e x p ( -  2x,-irm-i)+ 64xm4exp(-  2 % ~ ) -  eAm, (31) 

d x N l d t  - - 64&-, e ~ p  (- ~ x N - ~ T N - ~ )  - E A N ,  (32) 
dE,/dt=4x?-16%> exp ( - 2 x , r I )  -eB,,  (33) 

dE,ldt = 4 x 6  + 112x:-~ e x p ( -  2xm-irm-~)  

111-1 

- 16xm2 exp (- 2 % ~ ~ )  - 6eq1x: - EB., 
1-r 

n-1 

dbN/dt  = 4 x N z  + 1 1 2 ~ : - ,  e x p ( -  2%-,r,- ,)  - E 6 e q j x , 2  - EBS,  
j ,  , 

where m = 2 , 3 . .  . , N - 1  and 

We elucidate now under what kind of conditions a sta- 
tionary (or quasi-stationary) state of our system is 
possible. I t  follows from (30) and (31) that the condi- 
tion for stationarity of the amplitudes of the first  N - 1 
solitons has the form 
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and the condition that their velocities (33) and (34) a re  
equal is 

(m = 1,2, . . . , N - 1). As regards the last, N-th soliton 
under these conditions dnN/dt + 0 and dtN/dt + dtNmi/dt. 
Thus, if for some reason o r  other a t  some time condi- 
tions (36) and (37) a r e  established, i. e. , dn,/dt = 0, 
d(,/dt = dtl/dt for i = l , 2 ,  . . . , N - 1, a t  later times 
they a r e  violated and the system will "collapse. " How- 
ever, the decay will proceed more slowly, the larger 
N. For large N the conditions (36) and (37) thus de- 
termine a quasi-bound state of a system of solitons3' 
with a lifetime that increases with increasing N. 

4. The system considered might remain stationary, 
if there acted upon it yet another external force, apart 
from the perturbation cR[u], and compensated the ten- 
dency to decay. Such a situation is realized in a shock 
wave which for well-defined conditions is found as the 
result of the action of a piston moving with a constant 
velocity V and of an external perturbation ER[U]. The 
leading part (front) of such a shock wave consists of a 
system of solitons with slowly changing amplitudes 
moving with the same velocity V. As the amplitudes of 
the solitons decrease, the wave profile tends to a con- 
stant value v (see Fig. 2). 

The shock waves discussed here exist if Eq. (1) has 
stationary solutions of the form uk-Vt) satisfying the 
boundary conditions 

Substituting u(x- Vt) into (1) and integrating once we get 

Substituting x - -m and using (38) we get - 
3vZ+Vu-eT=O, T = j ~ [ u ( s , t ) ] d z .  

-- 
From (40) we get 

When c = 0 and using the second of conditions (38) we 
see that the solution of Eq. (39) has the form of a soli- 
ton moving with a velocity V. For sufficiently small 
c we get the picture shown in Fig. 2, i. e . ,  a shock 
wave with a leading part that can be considered to be 
a stationary sequence of slightly overlapping solitons 
having the same velocity V. The structure of such a 
system is described by the relations obtained in Sec. 

FIG. 2. Profile of an oscillatory shock wave. 

3. Putting the velocity (33) of the f i rs t  soliton equal 
to the quantity V we get the parameter 9 determining 
i t s  amplitude and size: 

The amplitudes of a l l  subsequent solitons and the dis- 
tances between them a r e  determined by Eqs. (36) and 
(37). The distances r, between the solitons a r e  then 
of the order of l n q ,  and decrease slowly with increasing 
m; all p, > 0 thanks to conditions (28) (i. e., x, 
> O), and the maxima of the profile - u k ,  t), which a r e  
situated in the peaks of the solitons decrease gradually. 
The difference between two consecutive maxima of the 
quantity -u is equal to 

The relations (421, (361, (37), and (43) completely 
describe the structure of the leading (soliton) part of 
the shock wave. Their correctness is violated when 
the perturbation theory which is the basis of the cal- 
culation ceases to be applicable. The conditions for the 
applicability of the perturbation theory a re  

As a simple example we consider the KdV-Burgers 
equation where R[U] = a2u/ax2. In that case3 

A,=8x?/15, €pi=-8e/15xj, j=l, 2,. . . , (45) 
r , = ( ~ x , )  -I ln (120x,/e). (46) 

Substituting (45) into (37) we get 

For sufficiently small & the number of solitons in the 
shock wave is large. For solitons with large numbers 
m we get 

One checks easily that to f i rs t  order in c Eqs. (48) and 
(49) turn out to be valid also for small m (m = l , 2 ,  . . . ). 
It is clear from (47) and (48) that the number of soli- 
tons in a shock wave is of the order n1/c (in the limits 
considered & has the dimension of "1. In particular, 
for m = 0.5 xi/& we have 

xmlx,=0.75, rm=2.36x,-', ~,=-1.36~,* .  (50) 

For m = 0.75 xi/& we have urn?;,= 1.88, i. e., the first  
of conditions (44) is already not satisfied. We can thus 
assume that to a fair  approximation m = 0.5 xi/& gives 
the number of solitons in the shock wave. It is in- 
teresting to note then that the quantity u, in (50) is very 
close to the limiting value v in (38). Indeed, according 
to (411, (42) v =  -1.33 $ which differs only by 0.034 
from the peak of the soliton with m = 0.5%/&. 

Using (50) we can estimate the length of the "soliton 
parC' in the transitional region: 
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The relations obtained agree with estimates following 
from the averaging method. " l i 3  

Returning to the general case we must note that in 
order that to enable the perturbation a [ u ]  in ( 1 )  to 
lead to a shock wave i t  is necessary that certain con- 
ditions be satisfied and guarantee the continuous transi- 
tion of the described soliton structure of i t s  front to 
small profile oscillations, which a r e  damped a s  
x  ---, against the background u ( - 9  = v .  One condh- 
tion is the convergence of the integral in (40) .  As al- 
ready noted in Ref. 16, this condition i s  not fulfilled 
fo r  a number of perturbations, for instance, for  

This expression describes according to Ref. 17 the ef- 
fect of Landau damping on non-linear ion-sound waves. 
Another perturbation for which T diverges isi6 ~ [ u ]  =u 
[we note that in that case i t  is impossible to satisfy 
also simultaneously the conditions (28)  at  any sign of 
& I .  

We consider yet another condition which is necessary 
for a continuous transition to the region where u  -v. 
Putting in (39) u  = v + u(x - V t ) ,  linearizing in C, and 
using (41) we get 

Equation (52) must have a solution satisfying the condi- 
tion Ck)  -0 b - - -1. For small  c this solution must 
be found from perturbation theory. We put 

E (x) =D(ex) cos [V"'(X-Z~) ]+eE, (x), 
. . 

i. e., dl)/dx and &tii a r e  assumed to be quantities of 
f irst  order in c and d2D/dx2 of second order. Sub- 
stituting (53) into (52)  we get after simple transfor- 
mations the following equations: 

R [u+D (y) cos az] dz=O, 
-xi= 

(54)  

TRlu+D(y)cn axbin a h - 0 ,  
-.rlo. 

where CY = vilZ and y = E X .  Equations (54) a r e  some 
conditions which the operator R must satisfy, while 
(55) is an equation for D ( y )  which one must solve with 
the boundary condition DQ) -0 (y - - m). We illustrate 
this again with R = d2/dx2 a s  the example. One checks 

easily that (54)  is satisfied automatically while (55)  
give dD/dY = 0 / 2  which agrees with the asymptotic so- 
lution of Eq. (39) for this case. 

"we shall consider elsewhere another interesting case  when 
% >>Hi r tsl - t p 2 .  

"we emphasize that in the exact two-soliton solution one can 
speak of solitons only a t  t= Fm. We shall denote the param- 
e t e r s  of the latter solitons byxi, (-uiO2 a r e  the time-indepen- 
dent eigenvalues of the SchrGdinger equation for the two- 
soliton potential). They a r e  connected with ourui ( t )  (at &= 0) 
a s  f o l l o w s : ~ ~ ~ = ~ ~ ( - m ) ~  u ~ ~ = u ~ ( - ~ ) .  According to (13) we 
retained the symbol A x  for  ~ ~ ~ - u ~ ~ .  

%uch states were apparently observed experimentaLly in Flef. 
15. I use this opportunity to thank L. A. Ostrovskii for draw- 
ing my attention to that paper. 
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