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A functional integration method is used to obtain the first two terms of the asymptotic form of the 
Green's functions at (o,k) = p 4  and the principal asymptotic terms of the self-energy parts of three- 
dimensional and two-dimensional superfluid Bose systems at T = 0. It is shown that the anomalous self- 
energy part tends to zero like (lnRp)-' for three-dimensional system and like p for the two-dimensional 
system. 
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I t  was  shown by A. A. and Yu. A. ~ e ~ o m n ~ a s h c h i k h " ~  is the  perturbed Green 's  function, and p is the chemical  
that the anomalous self-energy p a r t  of a three-dimen- potential. 
sional superfluid Bose  s y s t e m  a t  T = O  is exactly equal 

T h e  low-frequency asymptotic f o r m  of the Green 's  
to z e r o  a t  p = (w,  k) =O. This  r e s u l t  is somewhat  unex- 

functions a t  T = O  
pected f rom the point of view of perturbation theory, 
where (for the Bose- gas  model) the f i rs t -  o r d e r  approxi- G ( p )  ---G, (p) =-mp,/pp2, p 2 = k 2 + ~ Z ~ - 2  (3) 
mation for  the anomalous self-energy p a r t  is constant 
and differs  f rom z e r o  a t  s m a l l  p.3 The r e s u l t  of Refs. 1 
and 2 indicates that the approach of Gavoret  and No- 
~ i e r e s , ~  who a s s u m e  a nonzero anomalous self-energy 
par t  a t  p =0,  is incorrect .  

In this paper  we  calculate  the asymptotic f o r m s  of the 
self-energy p a r t s  of three-dimensional and two-dimen- 
sional Bose s y s t e m s  a t  T = O  with the aid of functional 
 method^.^ The  obtained formulas  (28) and (30) yield 
anomalous self-energy par t s  that vanish in  the l imit  as 
p- 0 in accord with Refs. 1 and 2. 

We calculate f i r s t  the asymptotic Green 's  functions, 
and obtain the self-energy p a r t s  f r o m  the Dyson-Bely- 
aev equations: 

I .  \ 

w e r e  f i r s t  obtained by N. N. ~ o g o l ~ u b o v . ~  W e  obtain 
h e r e  fo r  the asymptotic Green ' s  functions the t e r m s  of 
o r d e r  higher  t h a n p m 2 ,  which are needed t o  de te rmine  
t h e  asymptot ic  f o r m s  of the  self-energy parts .  

The normal  and anomalous Green 's  functions of the 
Bose s y s t e m  a r e  determined by the fo rmulas  

where  x=(T,x) ,  y = ( r l , y ) ,  x , y ~  V a r e  the spa t ia l  vari- 
ab les ,  7 ,  T'E [O,P], and P-' = T is the absolute tempera- 
ture. The formulas f o r  T = O  are obtained by taking the 
thermodynamic l imi t  a s  V- m and T - 0. 

The  averaging symbol  (...) in (4) can  b e  understood a s  
the quotient of the continual integrals  

(1 I 
where  S is the functional of the action: 

H e r e  G(p) and G,(p) a r e  the total normal  and anomalous 5- I d4x a.+(x)-G- &ix) ; Y ( x )  +p$ (11 ) 
 ree en's-functions, A ( p )  and B(p)  a r e  the normal  and an- - 
omalous self- energy par t s ,  

Go (p) = (io-k2/2mf p) -' (2) u(x- y)  is the paired interaction potential of the Bose  
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particles. 

We use the method developed in Ref. 5, Secs. 18 and 
19. I ts  idea consists of consecutively integrating f i r s t  
with respect  to "fast" and then with respect  to "slow" 
fields, using different perturbation-theory schemes dur- 
ing the different stages. This approach gets around the 
infrared divergences a t  p -- 0. 

We define the "slow" field Jl,(x) a s  that par t  in the ex- 
pans ion 

1 
$ ( x )  =-- e'(UT+kr)a ( a ,  k )  

( P V )  o,, 
with k smal ler  than a certain k,. The remaining part  of 
the sum will b e  called the "fast" field Jl,(x). Thus, 

t ( x )  =$o (4 +$t ( 4 .  (8 

The order of magnitude of k, depends on the concrete 
Bose system. It was determined for  a Bose gas in Ref. 
5, Sec. 18. 

After integration over the "fast" fields $, and $,we 
a r r ive  a t  the formulas 

G ( z ,  Y ) = - ( ~ ~ o ( x ) + o ( Y )  )or G i ( x .  ~ ) = - ( $ o ( x )  $ o ( Y ) ) o ,  (9 

where Jl, and '5;0 a r e  the "slow" fields, (...), denotes 
averaging over the "slow" fields with weight exp S,, 
where S, is the functional of the "hydrodynamic" action, 
defined by 

exp Sh= J esp s dg,d+, (1 0) 

and calculated in Ref. 5. 

Since we a r e  dealing with "slow" fields, i t  is conven- 
ient to change over to the variables density and phase 
(polar coordinates) in accordance with the formulas 

(,z) =p"=(x) e'Ud,  (2) =p'/z(x) e-'rc"l. (11) 

The expression for  S, will be  taken in the quadratic 
form5 

Here 
n ( ~ ) = p ( x ) - p 0 ( k o ) ,  

where p,(k,) is determined from the condition ap/apo =0,  
with p = S  JPV calculated under the condition cp(x) =0, 
p(x) =po =const. The quantity po(ko) tends to the density 
p, of the condensate a s  ko- 0. The coefficients p,, p,,, 
pup,, pPpO in (12) a r e  the derivatives of P =S,,/~V with 
respect to the variables JL and p,. 

We express the Green's functions in the form 

Putting p(x) =po(ko) +n(x), p(y) =po(ko) +n(y) and expand- 
ing in powers of n(x), n(y), cp(x)*cp(y), we obtain the 
equations 

in which only the t e rms  that a r e  significant as I x - y I- 
a r e  indicated. Taking the Fourier  t ransforms 

G ,  ( p )  = j e - ' ~ " - ~ ' ~ ~  ( x - y )  d (x-y) , (16) 

we obtain for  smal l  p + 0: 

The Green's functions g,,, g,,, g,, of the slow fields 
were  calculated in Ref. 5, Sec. 19. They a r e  given by 

g w ( e )  =-P,,,,Z-', g , , (p )  =-g. , (p)  =ew,oz - ' ,  
(18) 

g.. ( p )  = ($ k2+pwa' )  2-1. z = p - d - p ,  (E m k2+pwWz) . 

In particular, the function g,,(p) can be  written in the 
form 

m m 
=- g w ( ~ ) =  (kZ+oZ,CZ) pp* (19) 

if we use  the formulas (Ref. 5, Sec. 19) 

Pu=P* P W - P ~ J P W = P ~ ~ C ~ >  (20) 

where p is the total density of the system and c2 is the 
square  of the speed of sound. The convolution 

takes upon substitution of (19) the following asymptotic 
form as p- 0: 

From (17)-(19) and (22) we easily obtain the asympto- 
tic forms of the self-energy parts. Solving the Dyson- 
Belyaev equations (1) with respect  to the self-energy 
parts  A(p)  and B(p) we obtain 

The denominator in (23) can be  simply expressed in 
te rms of the functions g: 

G ( p )  G ( - p )  -G,'(p)  =g,,z+gwg.z+~pozgw(gwrg~)~ (24) 

and for  the numerators we can confine ourselves to the 
f i r s t  t e rms  in the right-hand side of (17) (*p,g,,). The 
resul t  is 

B ( p )  = A  ( p )  -Go-' ( p )  = 
* ~ O g w [ g V ~ " ~ w g ~ X + ~ ~ O ~ g ~ ( g ~ * ~ ~ )  1 -' 

= ~ ~ [ g ~ ~ + g , ~ ~ g ~ - ' + 2 p ~  (gw*gw) I-'. (25) 

By virtue of (18) we have 

g . 7 x + g ~ x 2 g w - 1 = - ~ / p m .  (26) 

Substituting (22) and (26) in (25) we get 

1 Po 
-- ~ n ( ~ ) n ( y ) ) ~ - ~ ( ~ ( x ) c p ( y ) ) ~ +  ..., 

 PO The dependence on the auxiliary parameter  k, should 
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drop out of the final answer, and therefore the quantity 
itself should depend logarithmically on k,. This 

reasoning allows us to rewrite (27) in the form 

B(p )  =A (p)  -G0-I(p) =blln ( i / R p ) ,  b = ~ z ~ 2 1 m 2 c ~ o ,  (28) 

where R is a constant with the dimension of the length. 
We have obtained the sought asymptotic formulas for the 
self-energy parts of a three-dimensional Bose system 
at T =O. The anomalous self-energy part B(p) tends to 
zero a s  p- 0 in accordance with Refs. 1 and 2. 

Carrying out analogous calculations for a two-dimen- 
sional Bose system at  T =0, we obtain asymptotic for- 
mulas for the Green's functions: 

and for the self-energy parts we get 

B ( p )  =A (p)  -Go-'(p) =8p2plmz~p0+o (p )  . (30) 

The anomalous self-energy part tends here also to zero 
as p -- 0, and furthermore more rapidly ( ~ p )  than in the 
three-dimensional case, where i t  decreases in propor- 
tion to ln- '( l /~p).  

APPENDIX 

We trace the cancellation of the dependence on ko in 
(27) for a model of a low-density Bose gas. We use the 
formula 

It expresses ppOPO in terms of po(ko) and the self-energy 
part B,,(O) calculated during the course of integration 
with respect to the "fast" fields by perturbation theory, 
in which the integrals with respect to the momenta a re  
cut off a t  the lower limit ko. At k, =0, Eq. (A.l) goes 
over into pop, =-p,"B(~) and is given in this form in Ref. 
5, [(16.23)]. The formula is valid, however, also a t  k ,  
+ 0. 

We subject ko to the condition 

mc exp (-€I-".) <k,<mc, (A.2) 

where 0 is  the gas parameter (0 a is the effec- 
tive interaction radius of the Bose particles, and p is 
the density). In this case po(ko) differs little from the 
condensate density po, and the main contribution to 
B,,(O) i s  made by the sum of diagrams 

The circles with three arrows in (A.3) correspond to the 
constant factors 2p01/2to, where po is the density of the 
condensate, to is the value of the paired t matrix a t  zero 
energy and zero momenta. The thick line of diagram b, 
corresponds to the total anomalous Green's function s o  
that (A.3) is an equation. The calculation of bo + b, is 
explained in Sec. 17 of Ref. 5. At T =0, the analog of 
formula (17.33) of Ref. 5 can be written in the form 

The integral in this formula does not diverge logarith- 
mically a t  the lower limit, s o  that we can assume that 
it is taken over all k, and not only over the region I kl 
> k,. The contribution of diagrams b, - b, a t  p = O  is giv- 
en by 

which shows the logarithmic dependence on ko. Adding 
with the formula (A.5) for bo + b, and dividing by (-po), 
we obtain 

When the left-hand inequality of (A.2) is satisfied, the 
first  term (-to)" in ( ~ . 7 )  is the principal one, and the 
second gives a small correction. The coefficient pre- 
ceding the logarithm in (A.7) was calculated in first-or- 
der approximation. In this approximation p = po, and we 
can rewrite ( ~ . 7 )  in the form 

Substituting ( ~ . 8 )  in (27) we verify that ko cancels out. 
We obtain Eq. (28), where 

so  that 

R= (8mc)-I exp (13-4nzp2/m2cpozto). (A. 10) 
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