
is small. A more detailed allowance of the dissipation 
is not a simple task, since the geometrical-optics 
equations used here (which a re  connected with Eqs. 
(7) and (6a) a re  essentially based on the assumption 
that the tensor EI is  Hermitian. On the other hand, the 
quasi- isotropic approximation [formulas (4) and (6)], 
although not using this assumption, likewise do not 
guarantee a correct description of the effect (see Sec. 
2). 
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Radiative transitions in collisions of atoms and the 
photodissociation of vibrationally excited molecules 

1. I. Ostroukhova and G. V. Shlyapnikov 
I. V. Kurchatov Institute of Atomic Energy 
(Submitted 12 December 1978) 
Zh. Eksp. Teor. Fiz. 77, 483-491 ( A u p t  1979) 

We haw developed in the quasiclassical approximation a theory which permits detennination of the 
probability of radiative electronic transitions in the case when the extremum of the difference in the 
potential energia occurs close to the turning points on the potential curves. This theory contains 
previous results as limiting cases and, together with them, solves the problem of determining the spectral 
chamct&tia of the considered hlnsitiona over the entire frequency region. 

Rdiation and absorption of photons in mlfisions of 
atoms is due mainly to transitions between the electron- 
ic  terms of the quasimolecule formed in the collision 
process. The basis of the classical and quasiclassical 
theory of processes of this type was set forth in the 
work of Kramers and ter-Haar,' ~ a t e s ?  and ~ a b l o n s k i . ~  
Subsequently this theory was extended to the photodis- 
sociation of molecules with high vibrational 
The classical approach, which assumes that the nuclei 
a re  moving along classical trajectories, leads to  a de- 
pendence of the cross sections for these processes on 
the difference of the potentials of the two electronic 
states. This approach is not valid, however, in the re-  
gion of internuclear distances where the potential dif - 
ference has an extremum, and for determination of the 
cross sections i t  is already impossible to use the con- 
cept of a classical trajectory of the motion of the nuclei. 
In this case an applicable method is that which uses 

quasiclassical wave functions of the nuclear motion for 
calculation of the probability of an electronic radiative 
transition. Both approaches a re  incorrect if the radia- 
tive transitions occur near the turning points on the 
potential curves. Use of quantum-mechanical nuclear 
wave functionss in this region of distances permits the 
transition probability to be obtained if the difference 
of the slopes of the potential curves near the turning 
points is sufficiently great. '' 

In the present work we have developed a quantum- 
mechanical theory which permits determination of the 
radiative transition probability even in the case when 
the extremum of the difference of the potential curves 
occurs close to the turning points (the slopes of the po- 
tential curves at the turning points differ hsignificant- 
ly). This theory contains the previous results as limit- 
ing cases. By combining this theory with existing the- 
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oriesl-' we can solve the problem of finding the spectral 
characteristics of the considered processes over the 
entire frequency region. 

1. The cross sections for the radiative processes 
under study are determined by well known formulas 
(see for example Refs. 10 and 11). The matrix ele- 
ment of the dipole moment in the Born-Oppenheimer 
approximation, which enters into these formulas, re-  
duces to the form 

Here R i s  the internuclear distance; x,(R) and x,(R) are 
the wave functions of radial motion of the nuclei in the 
lower and upper electronic states. The dipole moment 
of the electronic radiative transition d(R) is a smooth 
function of the internuclear distance in comparison 
with xl(R) and x,(R). In addition, the relative variation 
in the dipole moment in the region of distances respon- 
sible for the principal contribution to Dl, i s  usually 
small. Therefore the dipole moment d(R) affects main- 
ly the absolute value of the cross section. The depen- 
dence of the cross section on the frequency of the ab- 
sorbed or  emitted photon is determined by the shape of 
the potential curves of the electronic terms, in terms 
of the square of the overlap integral 

The structure of the potential curves shown in Fig. 1 
occurs rather frequently. In this case there i s  a point 
R, at which the difference of the potentials has an ex- 
tremum. We shall obtain formulas which determine 
the frequency dependence of the cross sections for a 
photon energy close to the value Ew,= U,(R,) - U,(R,), 
when the radiative transitions occur mainly in the vicin- 
ity of the point R,, [U,(R) and U, (R)  are the potential 
curves of the lower and upper electronic terms]. If 
Ul(Ro) < 0 and U,(R,) > 0, quantum-mechanical effects 
associated with the closeness of the point R,, to the turn- 
ing points on the potential curves R, and R, (see Fig. 1) 
appear in the photodissociation and photorecombination 
processes. We shall assume that the bound states of 
the molecule correspond to high vibrational levels, and 
far from the turning points in the classical region we 
shall determine the wave functions of radial motion of 
the nuclei on the basis of the quasiclassical approxima- 
tion: 

IT " ) " s i n ( ~ / P l ( R ' ) d R ' + r ) .  
"")- ( nRg(El) PI ( R )  

81 

Here P(R) i s  the classical momentum of relative mo- 
tion of the nuclei, p is the reduced mass of the atoms, 
and g(E,) is the density of bound states. The wave func- 
tions (2) have been normalized by the condition 

xd(R)aR=1, j x U I ( ~ ) ~ u r * ( ~ ) d ~ - 8 ( ~ - ~ ' ) .  

The usual quasiclassicaf approach utilizes the station- 
ary-phase approximation. It is assumed that the main 
contribution to the overlap integral S, is from the vi- 
cinity of the stationary-phase point R, determined from 

FIG. 1. Potential curves of electronic terms of the quasimol- 
ecule: R is the internuclear distance, Ui@) and U2@) are the 
potential curves of the lower and upper electronic terns, and 
R ,  is the extremum point of the difference of the potentials. 

the condition of equality to zero of the derivative of the 
difference of the arguments of the trigonometric func- 
tions (2) [P,(R,) = P,(R,)]. In the case considered here, 
in which radiative transitions occur at the region of 
distances R -R,, the stationary-phase point, i f  it exists, 
also lies in this region. To take into account effects 
related to the closeness of the point R, to the turning 
points R, and R,, we shall abandon the stationary - 
phase approximation and shall use the correct quasi- 
classical wave functions. The criterion of applicability 
of this approach will be given below. 

Near the point R, we shall approximate the effective- 
potential-energy curves by the quadratic dependence 

where F,(R,) =F,(R,) = F i s  the slope of the potential 
curves at the extremum point, 

P'(R) -8U(R) /dRa.  

The structure of the potential curves, which i s  shown 
in Fig. 1, corresponds to the case 

This approximation can be used in the preblem under 
discussion if the period of the first oscillations of the 
wave functions x,(R) and x,(R) near the point R,, which 
has a magnitude -(E/2 p I F  1 ) ' I3, i s  significantly less 
than the characteristic distance J F / F ~ I  in which the 
slopes of the potential curves change. In the opposite 
case the potentials (3 ) with F, (R,) = F,(R,) are applicable 
only in a very narrow region of distances (R - R,) which 
does not contribute substantially to the result. This 
leads to the condition 

Another restriction arises from the condition of small- 
ness of the quadratic term in (3) in comparison with the 
linear term in the region of distances between the turn- 
ing points and the extremum point R,. It has the form 
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where AE = E - U(Ro). 

We shall find the overlap integral S, by using the 
wave functions (2). The integrand in Eq. (1) is 

I' - 1 1 
cos - PI (R')  dR' 

nh  I P , ( R ) P , ( R ) g ( E , )  lah [ ( h 

and here the main contribution to the integral is from 
a the f i rs t  term of this expression. In the region of dis- 

tances R - R,,, << I F/F;,, I, corresponding to the poten- 
tial-curve approximation (3), we shall expand the argu- 
ments of the trigonometric functions (2) in powers of 
R-R, and R - 4 :  

1 F,' x ( R - R ~ ) ~ - - - ( R - R ~ ) ~ ~ ~ } ,  10 I F I  

Assuming that R - R,,, is much greater than the distance 
between the turning points I R, - R,I and at the same 
time the following condition is satisfied, 

IAAo/AE,,tl <I, Ao-@-ao ,  (7 ) 

we also carry out the expansion of 

in powers of (R, - R,)/(R - R,). Confining ourselves to 
the first  two terms of the expansion of the term 
g(2 p 1 F I )1'2ti-1(~ - R,)~ '~ ,  which has the greatest order 
of magnitude, and setting R, = R, in the remaining 
terms of (6b), we obtain 

where AF'= F;  - F;. Here we have taken into account 
that in view of the quadratic dependence U,,,(R) of Eq. 
(3) the distance between the turning points i s  deter- 
mined by the relation 

R,-R,=hAollFI +AF'(AE,)z121F('. 

From this we find 

--. 
1 AF' ) , - - )  ) (8) 10 IF1 

We note that all terms of this expression can in princi- 
ple be quantities of the same order. Utilizing i t  in in- 
tegration in Eq. (1) and making the substitution of var- 
iables 

we obtain 

The parameters a and 4 are  determined by the expres- 
sions 

Equations (9) and (10) preserve their form on change of 
the sign of the slope of the potential curves a t  the ex- 
tremum point. On change of sign of the quantity A F '  in 
Eq. (10) i t  i s  necessary to make the substitution P -  -P.  

In using Eq. (8) for calculation of the overlap integral 
S,, in Eq. (11, we have thereby assumed that the main 
contribution to this integral is associated with the re -  
gion of internuclear distances in which the following 
condition is satisfied: 

If 1 a 1 s 1 and 1 P I  s 1, then the integral in Eq. (10) is 
accumulated mainly a t  values y - 1, which is equivalent 
to 

R - Rl - (AzlFl/2p(AF')')"s +l-"'IF/Fi,;l (13) 

(we a s s u h e  that in order of magnitude AF' -Fie,). It 
is evident from this that the upper bound in (12) follows 
automatically from the inequality (4). The lower bound 
is equivalent to the two inequalities: 

Both of these a r e  satisfied in view of the conditions (4) 
and (7), and here in the region of small values of the 
parameter 0 the latter is not obligatory. 

For  large values of 0 i t  is sufficient to consider two 
limiting cases: I a 1 >> P2 and 1 I << @ (the latter corre- 
sponds also to the region in which I s 1, I PI >>I). In 
both cases the principal contribution to the integral (10) 
is from large values of y (respectively y - I 1'" and 
y - 191 'I4). Thus, the inequality (4) again assures the 
upper bound in Eq. (12). For  I I >> the lower bound 
reduces to the following inequalities: 

The first  of these inequalities is valid in view of the 
condition (4), and the second leads to appearance of an 
additional condition: 

In the other limiting case (1 a 1 << 82)  the inequalities cor- 
responding to the lower bound in (12) have the form 

247 Sov. Phys. JETP 50(2), Aug. 1979 1 .  I .  Ostroukhova and G. V. Shlyapnikov 247 



RAo AE,F:, F 
AE, F 

F , AE'AF' F' AE '/a 

R-R,-I-" 171 1 ~ 1  I*>-- 1 ~ 1 .  I -II FZ 1 l a i ' h ~ - " m  1 F 1 
1.2 I.' 

and are valid if the conditions (14a) a re  satisfied and 

We note, however, that in a real situation the parame- 
ter y never exceeds -10'. Therefore, the conditions 
(14a) and (14b) are  essentially equivalent to (5) and (7). 

The result [ ~ q s .  (9) to (ll)]  takes into account the 
closeness of the point R, to the turning points on the 
potential curves in terms of the quasiclassical method. 
Therefore the criterion of applicability of the quasi- 
classical method is determined also by the legitimacy 
of use of the quasiclassical wave functions (2) in the 
region of distances which provide the principal contri- 
bution of the overlap integral S,,. The most unfavor- 
able case here i s  the situation in which I ff I s 1, I P I 5 1, 
and the size of this region i s  determined by Eq. (13). 
However, even in this case the condition of applicability 
of the quasiclassical approximation in the region indi- 
cated (2 g IF I /A')"~(R - R1) >> 1 i s  automatically satis- 
fied in view of the inequality (4). Thus, as a whole the 
criterion of applicability of Eqs. (9) and (10) for the 
overlap integral S,, is determined by the inequalities 
(4), (51, and (7). It is necessary to mention that for 
small values of the parameter ff the criterion becomes 
less strict: the necessity of the inequality (7) disap- 
pears. 

We note that in principle the overlap integral S,, 
could be found by using the wave functions x,(R) and 
xl(R), whi~h a r e  exact solutions of the Schradinger 
equation in the potentials (3). This approach, however, 
does not give new results, since by using in this prob- 
lem the quadratic dependence (3) we are clearly assum- 
ing satisfaction of the criteria (4) and (5). 

The position of the extremum point R,, the slopes of 
the potential curves, and their derivatives at this point 
depend, generally speaking, on the rotational angular 
momentum of the quasimolecular j. However, in most 
cases this dependence i s  weak and the overlap integral 
S,, can be assumed to depend on j only through the pa- 
rameter a. 

$. We shall obtain analytical expressions for the 
function fl ff, /3) in a number of limiting cases. First  
consider the region of small values of the parameter 
a (I a 1 << 1). For I f l  I<< 1 the main contribution to the 
integral in Eq. (9) i s  due to the third term of the argu- 
ment of the cosine and 

JL'- 

B )  = 1v/*r (Vs)  cos (2rd.5) 
= 0.78. 

However, if I ,f31>> 1, we find on using the method of 
steepest in the integration that 

Equation (16) is valid also for 1 0 I -1. 

Let us consider now the region of large positive val- 
ues of the parameter a! (a! >> 1). We shall carry out the 
integration in (10) also on the basis of the method of 
steepest descent. In this case there are, generally 
speaking, two complex saddle points: 

I/I, r~ (a f ) l -Tbg  

which for 

lie near the point y = all2. Here there is an overlap of 
regions of values of y in the vicinity of these points 
which a re  responsible for the main contribution to the 
integral. Therefore in calculation of the integral we 
shall use the following procedure. In Eq. (10) we shall 
expand the argument of the cosine at the point y = dl2 

in powers of y - a''' with accuracy to the cubic term. 
Here the quadratic term of the expansion vanishes. As 
a result we find 

1 -4 " $ 
f (a, 1) = cos (A  - as/: - - 2 pa%) (-- ) @ {-I, 

2 ( 24  (18) 

where @ ( x )  i s  the Airy function. Equation (18) can be 
obtained also on the basis of a quasiclassical approach 
using an expansion of the arguments of the wave fmc- 
tions (2) at the extremum point with accuracy to the cu- 
bic term. In this connection we note that the result of 
Sando and Wormhoudt,ls which was obtained for the 
case ,f3 < 0 by just this method but with expansion not at 
the extremum point but at  one of the stationary-phase 
points, i s  not completely correct, since it does not 
take into account the presence of a second stationary- 
phase point. According to Ref. 13, in the designations 
of the present work, f (a ,  p)  is determined by Fq. (18) 
but with the argument of the Airy function equal to 
j3/2[2(a - m ) ] ' l 2 .  It can be seen from this that the 
result of Ref. 13 agrees with Eq. (18) only when 0 
<< ffa/e. 

If the condition (17) i s  not satisfied, then the vicini- 
ties of the two saddle points contribute separately to 
the result. Let us analyze this case, when -a2 C f i  <O 
and 

a-~TiT"a. (19) 

Under these conditions the main contribution to the re-  
sult i s  due to the vicinity of the point y,= (a  - ) 81 )'I2. 
If y, << 1, then the value of the integral in (10) i s  deter- 
mined by the first and second terms of the argument of 
the cosine and 

f (a, B )  - 1 $ 1 -'I8@ {- (a -Ym)  I B I" '} .  (20) 

In the other limit (y, 2 I), carrying out the integration 
in (10) by the method of steepest descent, we find 
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FIG. 2. Cross section for photodissociation T(w) of the mole- 
cule Na2 (the electronic transition X'Z f - ~ ' l l , )  as a function 
of the frequency of the absorbed photon w, obtained on the 
basis of the method developed in the present work (curve 1) 
and in terms of the ordinary quasiclassical approach (curve 2). 

cos (V1 1 p I (a - l'm) + (a - l'm)sfz + nI4) 
f (a, B) = 

IpI"*(a- Ym)"* (21) 

With accuracy to the term (a - m ) 5 ' z  in the argument 
of the cosine, Eq. (21) coincides with the limit (20) for 
large values of the argument of the Airy function. We 
note that Eq. (20) actually is the result of Refs. 6-9, 
and Eq. (21) is the result of the classical a p p r o a ~ h . ' ~ ~  

3. We shall use the results  obtained above for cal- 
culation of the c ross  section for photodissociation of the 
Na, molecule as the result of the electronic transition 
X'C; - B'n,, corresponding to resonance excitation of 
one of the atoms. In this case the photodissociation 
process occurs efficiently only from high vibrational 
levels of the ground-state term XIC;. At a gas tem- 
perature T 2 300 K these levels a r e  heavily populated 
since the energy of a vibrational quantum of the mole- 
cule is less  than the temperature of the gas. The 
photodissociation cross  section averaged over the vi- 
brational states of the ground-state t e r m  is determined 
by the expression 

D (22) 
Xg, S,,YE,, o )g (E , ) e -E t lTdE , .  

Em," 

This formula assumes that the distribution function of 
the molecules over the vibrational levels i s  a Boltz- 
mann function and that the difference in the energies of 
neighboring levels is significantly less than the tem- 
perature of the gas. The energy El  is measured from 
the bottom of the potential well, Z i s  the statistical sum 
of the vibrational states of the lower electronic term, 
and gz i s  the statistical weight of the upper electronic 
term. The lower limit of the integration Emin corre-  

sponds to the condition that photodissociation of the 
molecule is energetically possible only from levels 
whose energy is E, a Em,, and D is the dissociation en- 
ergy of the molecule. The overlap integral s,, is deter- 
mined by Eqs. (9) and (10) in which averaging over ro- 
tational sublevels has been carried out. 

The photodissociation cross section F(w)  in the f re-  
quency region 21 700-22 000 cm-' for T= 500 K obtained 
on the basis of the method developed in the present 
workz' and in t e rms  of the ordinary quasiclassical 
method is shown in Fig. 2. The potential curves and 
the value of the dipole moment of the electronic transi- 
tion have been taken from Refs. 14 and 15. As can be 
seen from Fig. 2, the results  of the two approaches dif- 
f e r  substantially, i.e., allowance for the influence of 
the turning points greatly changes the value of the 
photodissociation c ross  section. 

The result given in the book by Landau and ~ i f s h i t z ~  utilizes 
a linear approximation of the potential curves near the turn- 
ing points and is obtained in the problem of nonadiabatic ra- 
diationless transitions. In application to the problem of ra- 
diative transitions in collisions of atoms, a similar approach 
has been used in Refs. 7-9. 

2, In addition to the analytic expressions obtained, we have 
utilized the results of a numerical calculation on the basis of 
Eqs. (9) and (lo), which are not given here because of their 
cumbersome nature. 
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