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The amplitude of the rearrangement reactions that accompany fast molecule collisions is analyzed within 
the framework of the eikonal approximation. Calculation of the eikonal integral by the stationary-phase 
method establishes the presence of diierent process mechanisms, each connected with a region of 
scattering angles and energies in which the mechanism makes the decisive contribution to the cross 
section. For the diierential cross section in the vicinity of the principal directions connected with these 
mechanisms, simple analytic formulas are obtained and connect the angular distribution with the 
parameters of the binary potentials between the atoms. The rate constants of the chemical reactions are 
estimated on the basis of the obtained approximate expressions. 

PACS numbers. 82.20.Hf, 82.30.Eh 

The development of effective analytic methods for the 
estimate of the c ros s  sections, and also of the constants 
of chemical reactions in the energy interval from sev- 
e r a l  electron volts and upwards is of grea t  interest  for 
a large number of gas dynamic problems a t  high tem- 
peratures. 

It is known that a t  such energies the dominant mech- 
anism i s  in many cases  the mechanism of direct  reac- 
tions,' which means both the absence of an intermediate 
complex and a decrease of the role of the nonadiabatic 
transitions between the potential surfaces. These reac- 
tions were investigated most consistently in the impulse 
approximation2 under the conditions. 

where w is the characteristic frequency of the vibrations 
of the nuclei, T is the collision time, F is  the amplitude 
of the pair scattering, and p, is the average distance 
between atoms. In addition, an additive model of inter- 
action potentials was used. I t  must  be  stated that the 
second condition of (1) is too stringent, a s  is incidental- 

ly a l so  the f irst .  

Much more  accurate is the eikonal approximation de- 
veloped for  the rearrangement reactions in our preced- 
ing  paper^.^" It is not connected with the second condi- 
tion of (1) and makes it possible to relax the f i r s t  some- 
what. The eikonal formulas take fuller account of the 
interaction between the particles and make i t  possible, 
as we shall  show below, to describe correct ly within the 
frameworkof a single expression the "stripping," "pick- 
up," and "knock-out" mechanisms. In the present paper 
we obtain from the eikonal expression a general formu- 
la  of quasiclassical character  for  the amplitude of the 
stripping and pickup reactions, which yields the contri- 
bution to the small-angle scattering. This. formula a t  
lower energies than in the impulse approximation. Next, 
for  a l l  three mechanisms a t  higher energies, we obtain 
simple analytic formulas for the scat tering amplitudes, 
applicable for  mass  calculations of the c r o s s  sections 
and of the r a t e  constants of reactions a t  high tempera- 
tures. We obtain for  the r a t e  constants of the reactions 
analytic expressions that depend on the principal pa- 
rameters  of the colliding partners. 
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$1. GENERAL EIKONAL FORMULA FOR THE 
REACTION AMPLITUDE, AND THE STRIPPING, 
PICKUP, AND KNOCK-OUT MECHANISMS 

We consider for the sake of argument the process 

for which a general eikonal expression was obtained for 
the scattering amplitude 

Here pi  is the reduced mass of the particle 1 and of the 
(2,3) pair, r l ,  , a r e  the radius vectors of particles 1 and 
2 relative to particle 3, cp,, a r e  the wave functions of 
the bound states, and V,,, a r e  the potentials of the inter- 
action in the entrance and exit channels. For the incre- 
ments ASi,, of the action in the input and exit channels 
we have the expressions 

AS,. f=x,rl+xzr2+di,,, - - 
6, = - J Vi (pc-vit, pz)dt, 61 = - J V z ( ~ i ,  ~ z + v ~ t ) d t .  (4) 

I 

In (4),x1,, a re  the momenta transferred to particles 1 
and 2 in the laboratory frame (x, =k, - ~ r n , / ~ , ~ , x ~  
=kt, k,, &A a r e  the momenta of particles 1,2 and the 
pair (1,3) in the laboratory frame), pl,, are  the Jacobi 
coordinates of the particles, vi =k,/ml, vf =b/rn, 
- A/M~, a r e  the relative velocities of the particles 1 and 
2, respectively. 

I t  was shown in Ref. 5 that expression (3) describes all 
three direct-reac tion mechanisms (stripping, pickup, 
knock-out) that manifest themselves distinctly in the an- 
gular distribution, depending on the ratio between the cou- 
pling constants y, = (2mZ3 l~ , l )~ '~ /P i ,  y, = (2ml3 I E , ~ ) ~ / ~ / E  
of the pairs (2,3) and (1,3). Choosing the wave func- 
tions cp,,, in the form (we take into account for simpli- 
city only the spherically symmetrical states) 

and introducing the arguments of the exponentials in the 
classical action, we consider complex actions defined 
by the condition (for the stripping and pickup mechan- 
isms) 

These complex actions must be considered in order to 
introduce complex trajectories for the nonclassical re- 
action mechanisms. As will be shown later on, for the 
knock-out mechanism it  is useful to introduce the vari- 
ables ~ = h ( r ~  +r,), r =rl - r, and express the classical 
actions in the form 

We consider now those simplifications that can be in- 
troduced in (3) when it comes to describing the angular 
distribution near the eikonal directions corresponding 
to the three different reaction mechanisms. The con- 
clusions presented below follow from a simple analysis 
of the values of the classical action (6) and (7). 

a) At y, << y, the eikonal direction is determined ob- 
viously by the condition 

and makes i t  possible to introduce the following simpli- 
fying assumptions (we choose the additive model of the 
interaction and we assume the pair potentials, for sim- 
plicity, to be spherically symmetrical): 

V , = V i 5 ( r , ) ,  V 2 = V I . ( r Z ) + l i ~ 2 ( r r ) ,  rl<r2. (9) 

This is the nonclassical stripping mechanism, wherein 
particle 1 "tears out" the particle 3, and the pair (1,3) 
travels approximately forward, while particle 2, lo- 
cated at a large distance from 3, plays the role of the 
"nonparticipating observer ." 

b) On the contrary, a t  y, >> y, the maximum of the an- 
gular distribution corresponds to the conditions 

and makes it possible to introduce the simplifications 

These conditions characterize the pickup mechanism, 
wherein the particle 1 "pushes out" 3 approximately for- 
ward and, being scattered from particle 2 in the same 
direction, forms the pair (1,3); the particle 2 then 
moves approximately backwards. All this takes place a t  
a large distance between particle 1 and the pair (2,3). 
These two mechanisms make separate contributions 
which a r e  predominantly directed forwards. 

c) At y,= y,, besides the foregoing, there is another 
effective mechanism, knock-out, characterized by the 
conditions 

x,+x*=O, A k i c k ,  (12) 

and by the simplifying assumptions 

V l ~ V 2 ~ V i z ( r ) ,  r a R .  (13) 

Within the framework of this mechanism, particle 1 
"knocks out" 2 by frontal collision forward, and the pro- 
duced pair (1,3) travels predominantly into the rear  
hemisphere. I t  is clear that a t  an arbitrary ratio of y, 
and y, i t  is necessary to take into account the contribu- 
tions of all three mechanisms. We shall now use the 
simplifying assumptions (9), ( I l ) ,  and (13) to calculate 
by the stationary-phase method the angular distribution 
near the eikonal directions characterized by conditions 
(81, (101, and (12). 

$ 2. CALCULATION OF THE ANGULAR DISTRIBUTION 
NEAR THE EIKONAL DIRECTIONS BY THE 
STATIONARY-PHASE METHOD 

1. In the investigation of the six-dimensional integral 
(2) as  Pi- 0 by the stationary-phase method6 we must 
first  find the stationary points ry and r!, which a re  ob- 
tained from the conditions (for the stripping and pickup 
reactions) 
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After subtracting the imaginary increments which a re  
small as ti-- 0, Eqs. (14) acquire a simple physical 
meaning, namely that the increments of the momenta of 
particles 1 and 2 during the collision time a r e  equal to 
the corresponding momenta of the forces. We note that 
the separation of the variables in Eqs. (14) takes place 
within the framework of the approximations (9) and (11) 
for the potentials, which we in fact employ. It is easy 
to verify that the stationarity configurations a r e  planar 
(z! =z !  = 0). To calculate xty and x&; we choose the co- 
ordinate system in the following form: we direct the x 
axis along the bisector of the angle 9: (b, A) s 8, and the 
y axis antiparallel to the vector kf. Retaining in the nu- 
merators only the terms proportional to 8, we obtain 
ultimately 

where 

We discuss now Eqs. (15) and (16). The f i rs t  equation 
of (15) obviously yields a finite negative value xt de- 
termined by the short-range part of the potential V13. 
The first equation of (16) for the stripping mechanism 
(x, - 0) leads to an infinite value of x! if the imaginary 
increment cc ti is neglected, corresponding to degeneracy 
of the asymptotic form. From the physical point of view 
this means that the stripping mechanism has a nonclass- 
ical character, i.e., it is realized on a complex trajec- 
tory determined with account taken of the imaginary in- 
crement =A,  in analogy with the case of elastic scatter- 
ing through small angles.? Neglecting the contribution 
of the remaining complex solutions x!, we confine our- 
selves only to that value of x! which has the smallest 
imaginary part and goes over a s  ti- 0 into the classical 
solution. For the classical pickup mechanism ( I ;  = m d  
m,) we can neglect the imaginary increment. If x! is 
complex, I2 i s  taken to mean a contour integral. In the 
calculation of y! we can omit the imaginary increment to 
xi. We now represent the initial expression (3) in the 
form 

and assume that the stationary-phase point i s  determin- 
ed by the total increment of the action on the trajectory 
(V,,AS+ =0, V,,AS+ =O). It i s  obvious then that within the 
framework of our assumptions concerning the potentials 
the equations for the stationary point coincide with the 

previous equations (14). What we seek here essentially 
is a "true" eikonal trajectory consisting of two branches. 
One is specified by the initial momenta kin and final coor- 
dinates r:ri, and the other by initial coordinates ryri and 
final momentakfm. The presence of two potentials V ,  and 
V ,  in different channels leads to a natural separation of the 
total trajectory a t  the point r!r! into two branches (in 
analogy with the "impact-parameter plane" in the exci- 
tation problem). It is easy to verify that under our as- 
sumptions concerning the potentials, we have the follow- 
ing equations for the determinants: 

D+(rl" rr.') =D,(a")D,(r>), (20) 

Using (15) and (16), we obtain next after a number of al- 
gebraic transformations, which will not be given here, 

As seen from (22), Df #O(X:#-) for the stripping mech- 
anism only in the presence of an imaginary increment in 
the f i rs t  equation of (16), i.e., we have a nondegenerate 
case for which the standard stationary-phase method 
equation is valid.6 The use of this equation yields ul- 
timately 

Equations (15), (16), (21), and (22) make i t  thus possi- 
ble, by using fundamentally simple calculations, to de- 
termine the small-angle angular distribution, with ac- 
count taken of the stripping and pickup mechanisms. We 
consider now the question of obtaining a quasiclassical 
formula that describes the angular distribution of the 
produced (1,3) pair in the rea r  half-plane, within the 
framework of the knock-out mechanism. In this case 
we make the change of variables r , ,  r,- r, R and use the 
classical actions (7). Taking the approximation (13) into 
account, and neglecting also the phases of AS-, we have 
for the knock-out amplitude an expression that is ob- 
tained when the integral with respect to r is evaluated 
by the stationary-phase method: 

  ere 7 is the amplitude of the elastic predominantly 
backward scattering of particle 1 by particle 2 ,  calcu- 
lated by applying the stationary-phase method to the ex- 
pression 

mi, ,(E, *)=,J dr V.,(r)erp [ + { F r  

The stationary-phase point r0 (9 ,  E )  = (x,, 0,O) is obtain- 
ed from the equation 
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which determines the function xo(8,  E ) ,  9 = n  - < (k,, b). 
In the solution of (26) one uses, a s  is customary, a co- 
ordinate system with a y axis perpendicular to the plane 
of the vectors k, and kt, a z axis directed along the bi- 
sector of the angle between the vectors k, and k,, and an 
x axis directed antiparallel to the vector A . ~ ' *  The 
quantity J ( E ,  8) is defined by 

By specifying the functions V12(r), q,,,,,, we can calculate 
the amplitude of the rearrangement reaction that pro- 
ceeds via the knock-out mechanism. 

$3. SIMPLIFIED ANALYTIC FORMULAS FOR THE 
REARRANGEMENT AMPLITUDE IN THE HIGH- 
ENERGY LIMIT 

We consider a simplified version of formulas (23) and 
(24) under the following assumptions. The energies of 
the colliding particles a re  assumed to be s o  large that 
the eikonal phases can be neglected. This is true under 
the condition 

where 7 and a a r e  the mean value and the radius of the 
action of the corresponding potential, and v i s  the cor- 
responding velocity. Rearrangement reactions were in 
fact investigated in this high-energy approximation in 
Ref. 9. Our analysis, however, which is based on the 
general eikonal formula (3), enables us to show which 
regions of the action of the pair potentials make the most 
substantial contribution to any particular mechanism, a d  
consequently to choose the corresponding approximations 
used in the estimates. In contrast to Ref. 9, we can use 
in our analysis arbitrary potential functions, including 
singular potentials. For  the latter case we can asume 
a natural cutoff, which can be realized in a general for- 
mula with conservation of the eikonal phases." Bearing 
in mind this cutoff for the singular potentials, we as- 
sume in the general case that the potentials have Four- 
i e r  transforms. 

We consider f i rs t  the stripping mechanism. In the ap- 
proximation where all the eikonal phases a re  equal to 
zero, we cannot s tar t  from the quasiclassical formula 
(23), and must use a factorized version of the initial 
formula (3), which is given in Ref. 5 (ti = 1): 

where $,, a r e  the Fourier transforms of the wave func- 
tions of the bound states, while the quantities Ici(xl), 
Ic,(xz) a r e  defined by the formulas 

For the pickup mechanism we have the corresponding 
expressions 

The main contribution to (29) and (30) is made by the 
terms $. (x2)Icl (xi) and ?m(x1)~n2(~2),  which contain the 
Fourier transforms of the potentials V,, and V,, a t  short 
distances. The remaining terms contain Fourier trans- 
forms of the potentials V2 and V,, respectively, and 
therefore make a smaller contribution. The angular 
dependence -is determined mainly by the functions q,(%), 
G,(x,) of the weakly bound states, which have a maxi- 
mum at  zero values of the arguments. The energy de- 
pendence of the amplitude is determined mainly by the 
quantities I,, and I,,, and to calculate these quantities 
we must make additional assumptions concerning the 
Fourier transforms of the pair potentials a t  short dis- 
tances, and on the wave functions. 

We use for the wave functions of the strongly bound 
states the functions of the cut-off harmonic oscillator in 
the momentum representation 

q, ( p )  = ( 1  6n"o) '"p- ' H , ( p / a )  exp ( -pa /2a ' )  

30 ( p )  exp ( -pV/2a2) ,  a= ( p o )  ", 
where H, i s  the Hermite polynomial of order j ,  w is the 
frequency, and p is the reduced mass. It is clear that 
this function is concentrated in the region p s p o  =a. To 
estimate the Fourier transforms of the pair potentials 
we use the asymptotic form frequently employed in the 
calculations" 

so  that 

.. 
The corresponding expressions can be used for V23 in 
the pickup mechanism. The potential (35) has a smooth- 
e r  behavior than the wave function (33) and can be ap- 
proximately characterized by an action radius P, =fli3.  
At Po-#, (light particles) we use the following approxi- 
mations for I,,,, and I,,,: 

Conversely, a t  Po >> p, (heavy particles) 

When estimating the second and first  terms in ex- 
pressions (29) and (31) respectively, we take into ac- 
count the fact that q,,, a r e  functions of weakly bound 
states and their Fourier transforms have sharp maxima 
near zero. We then have 

I,,, 2=v2(x2)cp,.(o), ~ p , l = Y , ( ~ f ) q m ( 0 ) ,  (38) 

and i t  must be remembered that Vl,, a re  Fourier trans- 
forms of the potentials V,,,(r) a t  large values of the ar- 
gument. Choosing as the attraction potentials V1,i2 _the 
Sutherland potentials, we have (the expression for Vz is 
obtained by making the change of indices 1 - 2) 
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where E, is the depth of the potential well and 0, is the 
radius of the hard core. At small values of the argu- 
ments we can put approximately 

As a result we obtain for the stripping and pickup mech- 
anisms in the case of heavy particles 

We can write down the following general approximate 
formula for the description of the small-angle scatter- 
ing: 

f m . ( t ,  k t )  - M ~ , ( X ~ ) ~ . ( X ~ ) ,  (43) 
where M(xI,x2) should be taken to mean a certain func- 
tion that depends little on i ts  arguments, such as 

M- (%?'I+Bpu x ~ ' ) / ( x , ' + x ~ ' ) .  
(44) 

which tends to the corresponding constants B,,, and B,  
for the stripping (x2-0) and pickup (xi -0) mechanisms. 
Thus, from (43) and (24) we can calculate the contribu- 
tions made to the reaction cross  section by scattering 
through angles close to 0 and n. We represent the small 
momentum transfers X, and u, for the stripping and 
knock-out mechanisms respectively by 

The angle 0 in the f i rs t  expression is between the vec- 
tors k, and A, and in the second i t  is formally a small 
angle charterizing the change of x, near the eikonal di- 
rection. We use next Eq. (28) and represent the wave 
functions of the weakly bound states in the following ap- 
proximate form: 

.. 
In (46), cp,,,(O) a r e  the pre-exponential factors that de- 
pend little on the angle, and which we calculate a t  zero 
values of the arguments. We retain the principal de- 
pendence on the angle in the arguments of the exponen- 
tials as kt---. We then have 

(48) 
where E ,  i s  the resonance defect. 

When integrating (47) and (48) we make f i rs t  the sub- 
stitution sin(0/2) -- 8/2 and extend formally the integra- 
tion with respect to 8 from 0 to Q as kt - m. For the 
total cross sections we then obtain the following approx- 
imate expressions2 ': 

To simplify Eqs. (24) and (27) which pertain to the 
knock-out mechanism, we rewrite the integral (27) in 
the momentum representation 

The main contribution to this integral is made by the 
region in the vicinity of the origin k r o  S 1, s o  that we 
can use the approximation 

xi+x* k' 
, ( k )  = ,  ( ) e p k - - 1 ,  (51) 

2a:,." 2a:... 

in which we retain in the argument of the exponential 
the terms linear and quadratic in k, and confine our- 
selves to tbe zeroth term of the expansion in k in the 
pre- exponential factor, following the conclusions of Ref. 
22, in which integrals of the type (50) a r e  calculated. 
Using then the approximate formula of Ref. 12 and put- 
ting x1+x2E0 in  the pre-exponential factor of (51), we 
obtain for J the estimate 

Approximating next yo andFrespectively with the aid 
of the expressions for oI2 and 0iJ4, where Ui2 is the 
radius of the hard core of the potential V,, (see Ref. 8), 
and using also the relations x,  + x, = ~ m , / ( r n ~  + m,), A 
= 2ki sin(8/2), we obtain for the differential knock-out 
cross  section 

where 

Integrating (53) with respect to 8 we obtain in the same 
approximation as before for the total knock-out cross  
section 

n M' ;I;' )K u~,,=--B.- - 
4 mr" 

Recognizing that the quantity 2(2n)*a$~:a~ I cp,(0)~(0) / 
a t  an 3 am is of the order of unity, we get 

The total cross section of the reaction (2), with account 
taken of all three mechanisms, can be  calculated from 
the formula 

6,at. un. 

Am-. 

FIG. 1. 
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FIG. 2. 

By way of example we consider the process T +H, 
--TH+H, which was investigated in Ref. 13 within the 
framework of the stripping mechanism on the basis of 
Faddeev equations. Calculation by formulas (49) and 
(56) shows that at energies E 5 10 eV the contribution of 
the stripping mechanism predominates, and only the 
asymptotic form at  E 2-20 eV is determined by expres- 
sion (56). Equation (49) determines the characteris- 
tic maximum of the scattering cross section, both 
with respect to the energy a t  fixed m, and with respect 
to m at  fixed energy (Figs. 1 and 2). At E-5-7 eV, 
when the conditions for realizing the stripping mechan- 
ism a re  satisfied to the highest degree, Eq. (49) yields 
resu l t .  that coincide essentially with those of Ref. 13. 
Since Eqs. (49) and (56) have all the qnalitative distin- 
guishing features that manifest themselves in the more 
exact calculations, they can be used to estimate the 
cross sections. 

8 4. ESTIMATES OF THE RATE CONSTANTS OF 
CHEMICAL REACTIONS AT HIGH ENERGIES 

The rate constant of a chemical reaction (per collid- 
ing pair) will be calculated from the formula 

where p = p,, E = pkT/2mt is the energy of the colliding 
particles in the c.m.s., 6(E,) =E, a t  E, > 0 and 6(E,) 
= O  a t  E, < 0. We confine ourselves to allowance for the 
contribution of only the stripping mechanism, which is 
predominant in a wide energy interval, since i t  is con- 
nected with a large region of impact parameters in per- 
ipheral collisions. The contributions of the remaining 
mechanisms a r e  just as easy to estimate. We s ta r t  
from the f i r s t  equation of (49) for the reaction cross 
section. Substitution of this equation in (58) with allow- 
ance for the representation (33) of the wave function $, 
yields (E, > 0) 

As seen from (59), a t  the lower limit the important role 

is played by the function (E - E,)"~, and a t  the upper 
limit by the exponential. Therefore we use an approxi- 
mation in which we take outside the integral sign the 
remaining smoother functions, which we calculate a t  E 
= E,. Then, introducing the new variables E/&T =e 
+a,, E,/~T =8,, we have .. 
K,,,--CS(E.) exp(-8.) 18% exp (-qs.@)d8-CF(E.) cE exp (-8.). 

In particular-, a t  small kT we obtain the usual Arrhenius 
law." It should be noted, however, that in the calcula- 
tion of the macroscopic ra te  constant, i.e., when aver- 
aging over the levels, the Arrhenius law is not obtained 
in any approximation, owing to the strong dependence of 
Yon E,. Equation (60) can be used to obtain data on the 
scattering cross sections from the experimental data. 
For example, for the reaction 0 +N2 --NO + N(DN2 = 225 
cal/mole, DNo = 150 cal/mole) we obtain, for the transi- 
tion to the ground state 8, = 37 5 0 0 / ~ ,  K, E, =0.12 a.u. 
If we use for the maximum cross  section the value 6 
X 10"~cm" obtained for the 0 + N2 system by substituting 
E = E ,  in (49), we get in the limit of small kT the esti- 
mate 

Km6.89.10" exp - - 1 1 m e  

which differs from the experimental results14 only by 
the factor (6.89- 6.5). 

Thus, the proposed theory, obtained by a rather rig- 
orous method in the eikonal approximation, makes i t  
possible to investigate the angular distribution of the 
products of chemical reactions as functions of the pa- 
rameters of the potentials and of the wave functions on 
the basis of explicit analytic formulas of the type (23), 
(24), (47), and (48). It permits simultaneously to obtain 
relatively simply theoretical estimates of the ra tes  of 
chemical reactions a t  high temperatures, including 
summation over the vibrational levels of the molecules 
in the initial and final states. A comparison of the theo- 
ry with direct experiment on the angular distribution, 
and also with experimental data for the ra te  constants of 
reactions, can yield sufficiently reliable theoretical es- 
timates of the effectiveness of a chemical reaction a t  
high temperatures. 

 he work was performed as part of an agreement of creative 
collaboration of the Leningrad and Stockholm Universities. 

 he factor $,(O) i s  not a well defined quantity for an arbitrary 
potential model; to avoid misunderstandings, we can assume 

+,(o) =$,(an). 
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A new method is proposed for the study of the behavior of wave packets in various quantum systems, 
including anharmonic ones. It is shown how to approximate such a packet optimally with the aid of a 
Gaussian. A closed system of ordinary differential equations is obtained for the position and width of this 
packet. The proposed method is applicable during the time in which the difference between the true 
solution and the approximating Gaussian solution is small. Wave packets in both one-dimensional and 
multidimensional systems are considered. It is shown, with a quantum nonlinear string as an example, 
how to effect the transition from the multidimensional problem to the field problem. The obtained system 
of ordinary differential equations can be used to set up a numerical experiment on the excitation of 
molecules. It is shown how to vary the frequency of the field with time at a given anharmonicity, so as 
to ensure an effective rapid excitation of an oscillator. 

PACS numbers: 03.65.Db 

INTRODUCTION We shall call such wave packets pseudo-coherent states. 

Much attention is being paid recently to the buildup of 
oscillations in molecules. This question is important 
for the understanding of the phenomenon of collisionless 
collective dissociation, of the excitation of molecules 
by intense light,'" of the excitation of oscillations of the 
field of surface  force^,^ etc. The behavior of such non- 
linear systems in monochromatic fields was considered 
in a large number of papers (see, e.g., Refs. 7-9)." In 
Refs. 8 and 9, computer calculations were used to con- 
sider both classical and quantum problems dealing with 
the behavior of a particle in a one-dimensional potential 
well of non-harmonic type under the influence of an ex- 
ternal exciting force. In many of the cases considered 
in Ref. 8, a curious regularity was observed: despite 
the relatively strong anharmonicity, the solution in the 
quantum case was a more or less localized wave packet 
moving along a trajectory close to classical, but in con- 
trast  to the well known coherent state in the harmonic 
o ~ c i l l a t o r , ' ~  the shape of the packet varied with time 
(the packet pulsated). A situation is possible (and is 
certainly realized a t  least during the initial stages of the 
the excitation), wherein the shape of such localized 
formations does not deviate noticably from Gaussian. 

In view of the large complexity of the calculation, i t  
is impossible to use directly the method of Refs. 8 and 
9 for a numerical experiment on molecules. We pro- 
pose in this article a method that makes i t  possible to 
calculate, in the presence of pseudo-coherent  state^,^' 
the position and width of a wave packet a t  each instant of 
time in both the one-dimensional and miltidimensional 
cases. Since the method reduces to a solution of a sys- 
tem of ordinary differential equations, i t  can be used in 
principle to se t  up numerical experiments also for 
multidimensional systems that describe molecules. 

When working with pseudo-coherent states we can 
make use of the following device: we introduce an aux- 
illiary potential Ul(x, t )  which, on the one hand, approx- 
imates a t  each instant of time in "optimal" fashion the 
true potential U(x, t) a t  the location of the packet [U, 
(x, t) can differ quite strongly from U(x,t) in places 
where there is no packet], and on the other hand greatly 
simplifies the procedure of solving the Schradinger 
equation. We can choose Ul(x, t) to be a potential ih the 
form o(t )  + P(t)x +y(t)x2.11 Then, i f  a t  the initial instant 
the packet had a Gaussian form, the solution of'the 

446 Sov. Phys. JETP 50(3), Sept. 1979 0038-5646/79/090446 08$02.40 @ 1980 American Institute of Physics 446 


