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Geometrical considerations are used to obtain the form of the operator of the deformation potential for a 
screw dislocation. It is shown that the spectnun of an electron moving along a dislocation in a parallel 
magnetic field differs from the usual parabolic spectrum. 

PACS numbers: 61.70.Ga 

In the description of the interaction of an electron - dz - adq, while w, and w2 remain unchanged. The 
with lattice defects one frequently employs the defor- corresponding Laplace operator can be easily calcu- 
mation potential, which is a quantity proportional to  lated: 
the divergence of the displacement u. In the case of 
screw dislocations of interest to us, div u=O, whereas 2a a' 

A=a,+a,,+a,, +-a , ,+-a. , .  
the influence of the screw dislocation on the moving P rZ 

electron is subject to no doubt. We shall show how this It corresponds to a Hamiltonian 
difficulty can be overcome. 

1 a" 
The interaction of an electron with a screw disloca- = - (P~+P.'+P, . )  +V, V = + - j -p : )  , 

2~ 
tion will be described with the aid of the metric theory. 

where p, = - iE a,, and the operator V assumes here the The undeformed medium is assumed to be isotropic. 
role of the deformation potential. The eigenfunctions We consider f i r s t  the situation in the classical approach. of this are of the form Jlvl ,,,+,eie'" 

The electron spectrum prior to  the deformation is then where v =  m +an. They correspond to energies 
E = ( p i  +pay +p:)/2~, p is the particle mass, and p is the t i2(ka +x2)/2m. If the wave-vector component along the momentum. The principal assumption is that the tra- 

z axis is x =0, then V=O and the dislocation does not jectories a re  frozen into the medium and a r e  deformed 
influence the motion of the electron. together with the medium. Then uniaxial tension by a 

factor k along the x axis corresponds to a spectrum More meaningful results a re  obtained if a magnetic 
field H is directed along the z axis. Then the momen- 
turn operators in the Hamiltonian take the form 

Any homogeneous deformation can be resolved into 
similar tensions and rotations. In the case of an in- 
homogeneous deformation it is possible t o  introduce a 
metric ds2 such that the trajectories coincide with the 
geodesics. By, the same token, the behavior of a parti- 
cle in a deformed medium is completely described. 
The transition to quantum mechanics is in standard 
fashion-a Laplace operator, followed by a Hamiltonian, 
is constructed from the metric ds2. 

Let the screw dislocation in an isotropic medium be 
located along the z axis, and let a positive value of the 
Burgers vector b =2na correspond to a right-hand 
screw. We express the metric in the form ds2 = ot 
+ wi  + wZ,. In the absence of the dislocation we have 
w1 =dr,  w2 =rdp,  w, =dz. It is almost obvious that when 
the dislocation is introduced w, =dz is replaced by o, 

p.--iiia. +eary, p,--iAa, - 5 HZ, 
2c 2c 

p.=-wa.. 

We seek the I) function in the form $ = ~ ( r ) e ' " ~ e ' "  . The 
Schradinger equation then becomes 

Here w = 1 el ~ / p c ,  v =  m +ax .  The eigenvalues and 
eigenfunctions a re  given by1 

R=e-""'r'"'F(-I, l v  1 + l ;  y f ) ,  y=po/2h. 

Since alxl <<l, it follows that at m<O the dependence 
of the electron energy on i ts  velocity v =fix/p along the 
dislocation is the usual parabolic one. At m 3 0 this is 
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FIG. 1. 

no longer the case (see the figure). At m =0, the plot 
of the electron energy against its velocity along the 
dislocation has a kink a t  the point v =O. On the other 
hand, if m > 0 then the minimum of the energy is 
reached at the drift velocity -aw, and not a t  v =O. The 
numbers marked on the figure correspond to a = 0.5 
~ 1 0 - ~  cm, w =1.6x1OU rad/sec(H=lff G), and p =9.1 
X10-28 g. The depth of the bound state at m > 0 i s  very 
small (-1.8~10-lo eV). If x =0, then the screw dis- 
location exerts no influence on the electron. 

The subject touched upon here is related, for exam- 
ple, toRefs. 2 and 3. In Ref. 2 is considered the dy- 
namics of an electron near a linear defect with axisym- 
metrical potential V-l/r .  Such a potential offers no 
advantages to any of the two directions long the defect. 

In Ref. 3 i s  considered the case of a screw dislocation. 
Allowance for  the anisotropy of the conductivity tensor 
leads here to spiral  trajectories of the electron when 
moving along the dislocation, leading to the prediction 
that a weak magnetic moment appears, parallel to the 
dislocation when an electron is made to flow along the 
dislocation. This agrees with our results, since the 
states of the electron with m > 0 and m < 0 a re  not on a 
par a t  v + 0. 
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Calculation of critical exponents by quantum field theory 
methods 
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The Gell-Mann-Low function and the anomalous dimensionalities of the quantum-field model 
Clnr = - ( 4 ~ ) ~ g ( ~ 3 ~ / 4 !  are calculated in a four-loop approximation in the dimensional renormalization 
formalism. They are used to determine the coefficients of the c expansion for the critical exponents up to 
the degree 8 inclusive. To reduce the series of the c expansion, a summation method is used that 
includes a modified Bore1 transformation and conformal mapping. The obtained critical exponents are in 
good agreement with experiment and with results of other theoretical approaches. 
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1. INTRODUCTION 

The far-reaching analogies between statistical physics 
and quantum field theory' can be used effectively to ob- 
tain quantitative predictions concerning the character of 
the behavior of statistical systems in the vicinity of the 
phase-transition point.2 The decisive role in this ap- 
proach is played by the renormalization-group3 and E -  

expansion4 methods. On the basis of a calculation of the 
usual quantum-field Feynman diagram of the q4 model 
in a space of 4 - 2& dimensions, and of the solution of 
the renormalization-group equations, the critical ex- 
ponents of the phase transitions a r e  presented in the 
form of series in powers of c, with the physical (three- 
dimensional) case corresponding to a value & = 1/2. 

The greatest progress in this direction was made by 
Gurevich and ~ i r s o v '  and by ~ e v i n s o n h h o  succeededin 
calculating the contributions of the three-loop and some 
of the four- loop diagrams. However, in view of the as- 
ymptotic character of the obtained ser ies  in &, further 
progress in this direction presupposes not only inclu- 
sion of diagrams of ever increasing order, but also the 
use of methods for "improving" and summing the as- 
ymptotic series.  The realization of this program is the 
purpose of the present paper. 

Recently, a number of workers7' ' have developed sim- 
ple and quite effective methods of calculating contribu- 
tions of Feynman diagrams to the renormalizationgroup 
functions. The use of this technique has enabled us to 
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