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It is shown that an auxiliary surface wave is produced in the region of a resonance between a surface 
polariton and willations in a transition layer and is due to spatial diipersion with respect to the 
parameter kd (k is the wave vector of the surface wave and d is the thickness of the transition layer). 
The law of diipersion of the surface waves is investigated and their propagation lengths are determined. 
The additional boundary condition is obtained, corresponding to the case of a dielectric film in the 
vicinity of the resonance of the surface polariton with the frequency of the longitudinal oscillations in the 
film. 

PACS numbers: 71.36. + c, 73.60.H~ 

I. INTRODUCTION 

The presence of the so-called transition layer on the 
surface of a medium o r  on an interface between media 
influences the dispersion law of the surface polaritons 
(SP). Since the dispersion of the SP is presently de- 
termined by various methods (the method of attenuated 
total reflection, Raman scattering, and others), this 
circumstance uncovers new possibilities of studying the 
physical properties of the surfaces in thin films.' The 
influence of the transition layer is particularly strong 
when the frequency w, of the dipole oscillations in the 
transition layer1' lands in the SP  frequency-restruc- 
turing region. As shown earlier2 (see also Ref. I), in 
this case a gap A is produced in the SP frequency spec- 
trum, with a depth of the order of (d/~,)"~, k, = 2 ~ c /  
w,, d i s  the thickness of the transition layer. This ef- 
fect of the splitting of the SP dispersion curve, a s  well 
as the square-root dependence of A on d, was f i rs t  ob- 
served in Ref. 3 for the IR region of the spectrum in a 
study of SP propagating along a sapphire surface covered 
with an LiF film (A = 20 cm-' at d = 100 A). The width of 
the gap increases substantially in the visible part  of the 
~ p e c t r u m . ~  In the last reference, the splitting effect 
was observed for SP propagating along an aluminum 
surface coated with silver films (d = 20 - 60 A). The 
splitting A at d =26 A turns out, in accord with the 
theory, to be = 0.4 eV. 

It appears that the resonance of the oscillations in the 
transition layer with the SP is a rather common phe- 
nomenon. In particular, its possible occurrence must 
be taken into account also in the analysis of the spectra 
of reflection of light from surfaces of molecular crys- 
tals (e.g., anthracene5), and also in the study (see Ref. 
6) of Fermi resonance with SP. 

in the transition layer becomes vital, particularly an 
analysis of the possible effects brought about by al- 
lowance for spatial dispersion. For the nonresonant 
situation this analysis was carried out in the author's 
earlier paper' (see also Ref. 7,  where energy dissipation 
in the transition layer was taken into account with the 
aid of a certain model). It was shown,' in particular, 
that in the region of the Coulomb frequency w, of the 
surface polariton on the interface with vacuum (the 
frequency w, satisfies the condition c(w,) = - 1, c(w) is 
the dielectric constant of the substrate) the transition 
layer produces an w,(k) dependence linear in the wave 
vector k of the SP, and this leads to the appearance of 
an additional surface electromagnetic wave. In the fre- 
quency region w = w,, however, the damping is large, 
and should hinder in particular the propagation of pre- 
cisely this additional surface wave. 

We note in connection with the foregoing that for SP 
propagating along dielectric surfaces, a rather strong 
damping can occur not only at w = w, but also at w < w,, 
i.e., for  the entire region of the SP spectrum. How- 
ever, for SP propagating along metal surfaces the sit- 
uation is, generally speaking, different. Inasmuch as 
for waves of frequency w = w, = w,/fi(w,) is the frequency 
of the volume plasmon) the surface-polariton field pen- 
etrates markedly into the metal, the SP  i s  strongly 
damped in this spectral region. In the frequency region 
o << o , /a ,  however, the surface-wave field penetrates 
only insignificantly into the metal, the damping of the 
SP is weak, and its propagation length turns out to be 
macroscopically large (on the order of several centi- 
meters, see  Ref. 8; a review of later experiments is 
contained in the book of Ginzburg and the authorg). As 
will be shown below, the relative smallness of the damp- 
ing is preserved in many cases, and in the region of the - - 

In view of the foregoing, further study of the dis- resonance of the oscillations in the transition layers 
persion of SP in presence of resonance with oscillations with the SP, provided that the frequency of these OS- 
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cillations is w,<< we/% and the transition layer is thin 
enough (see below). Therefore the observation and study 
of the additional surface waves a r e  apparently easiest 
to perform precisely under conditions when these waves 
propagate along surfaces of metals. 

2. DISPERSION OF SURFACE POLARITONS IN  THE 
REGION OF RESONANCE WITH OSCILLATIONS IN A 
TRANSITION LAYER 

We assume that an isotropic medium (11) with di- 
electric constant dw)  occupies the region of space z 
<0, and borders on vacuum (I) along the plane z = 0. 
When account is taken of the transition layer, whose 
thickness is d << A, where X is the wavelength, the an- 
alysis of the dispersion of the surface waves can be 
carried out by using, instead of the field boundary con- 
ditions that follow from Maxwell's equations on an 
abrupt boundary, the following boundary conditions on 
the surface z = 0, in an approximation linear in d/X 
(see also Ref. 1): 

where n and t denote the vector components normal and 
tangential to the plane z =0, k, = w/c, and w is the field 
frequency. 

The phenomenological quantities ~ ( w )  and p(w) in (1) 
a r e  determined by the properties of the transitionlayer. 
If this layer can be regarded as macroscopic, then 
y = dT: and p = d/E where E(w) is the dielectric constant 
of the layer. But if the layer thickness is of theorder 
of the lattice constant, then macroscopic theory must 
be used to find y and p. What is important to us here 
is only that the resonances y(w) and p(w) correspond, 
generally speaking, to different values of the frequen- 
cies. For the vicinities of these frequencies it suffices 
to retain in (11, in the case of sufficiently weak damping, 
only the resonant terms. In particular, for the f req- 
uency regions w = w,, d o , )  = m  (this is precisely the case 
corresponding to the experiments of Refs. 3 and 4) we 
can assume that the only discontinuity occurs in E,, 
with 

Ed(II)-Et(1)--ikEn(I)kd. (2) 

Assuming that in the considered frequency region 
w = w, and the dielectric constant is E(W) < 0, we have 
for the surface waves the dispersion law 

where k is the two-dimensional wave vector of the sur- 
face wave, 

At p = 0, Eq. (3) leads to the known relation 

If, on the other hand, p + 0, p = - A  d(w2 - w;)-', where 

A  is a positive quantity that depends little on w in the 
resonance region, then a t  w = w, the dispersion law of 
the surface waves becomes substantially altered. We 
consider hereafter, for the sake of argument, the dis- 
persion of surface waves under conditions that cor- 
respond to the experiments of Ref. 4. Namely, we 
assume that the medium I1 is a metal with plasma f re-  
quency w, >> w,, that the transition layer is macroscopic 
and i s  obtained by depositing on the surface z = O  a film 
of another metal with plasma frequency w,. 

Since k, = lo8 cm" for electrons on the Fermi sur-  
face, such a film can be  regarded as macroscopic if the 
inequality k g > >  1 is satisfied, and this will now be 
assumed. Assuming, in addition that the normal skin 
effect takes place, we postulate thereby 

where r and ? a r e  the electron collision frequencies in 
the metal II and in the transition layer. Substitution of 
expressions (5) in (3), with account taken of the fact 
that p =d/Z ,  leads to a relation that enables us to de- 
termine the dispersion of the surface waves in the 
presence of damping. 

We a r e  interested here only in a situation whereinthe 
frequency of the surface wave i s  a real  quantity 
specified by the surface-wave pump source. Under these 
conditions the quantity k = k' +ikn is complex, and the 
surface-wave propagation length is L = (2k")-l. If the 
damping of the surface wave is weak enough (i.e., if 
kt >> kt') then in first  order  approximation the damping 
can be completely neglected in the derivation of the 
dispersion law. This law, i.e., the function w,(k), is 
then determined from the equation 

where 

If w,,(k) is the frequency of the surface polariton on 
the abrupt boundary (i.e., under conditions when the 
presence of the transition layer is disregarded), then 
F(w&) = 0 and in the frequency region w = w,,(k) we have 

F- ( dF /do2 )~ [02 -OO. ' ] .  

From relation (6a) it follows that a t  w2<< W: and 
k2c2 << w,2 we get 

s o  that 
oo,'(k) zkZc'-kbc'/or'+ - .  ., 

and consequently 

Thus, Eq. (6) can be written for  the considered fre- 
quency region w = w, = wos(qo) in the form 
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Solving this equation for  w2, we get two solutions 
q ,(k): 

We have left out under the square-root sign in (9) the 
relatively small  terms proportional to k2d2. 

At k =go, where the frequency corn(&) = do, a second 
splitting of the branches takes place. In fact, a t  k =go 
a t  the frequencies w,,,(q,) we get 

s o  that the size of the gap A =  w,(qo)Lw2(90) is deter- 
mined by the relation 

o r  in terms of wavelengthsa 

where A, = 2nc/w,, = 2nc/w0- 

Besides the gap A = w,(q,) - w2(qo), we can introduce 
also the quantity A, = w,(min) - w2(max). In this relation 
w,(min) is the minimal frequency on the lower branch 
and corresponds to that value k,,,,,=w,,,/c, where the 
upper branch comes up against the asymptote o =ck 
[see ('la)]. It follows from (6) that a t  wo<< w, 

d 
o, (min) - o~ = - coocop. 

2c 

We note also that A,< A (see Fig. 1). The gap de- 
creases with increasing w,, namely A- w;'f2. The 
reason for the lat ter  is that when w, is increased the 
electric field intensity a t  z = 0 decreases and accordingly 
the interaction of the wave with the transition layer 
decreases. If, on the contrary, w, - 0 (this case ob- 
viously corresponds to a metallic film in vacuum), Eq. 
(6) takes the form 

FIG. 1. Dispersion of surface polaritons propagating along an 
aluminum surface &up = 15.8 eV) coated with a silver film 
@w0 = 3.8 eV, y, = wi/wi = 15), at different values of the pa- 
rameter ct = wod/c: a-ct = 0.05, b-ct = 0. l .  

It follows from this equation that the nonradiative sur- 
face waves discussed here occur only for  values of w 
and k such that kc > w, o < w,. There is no splitting of 
the surface-wave spectrum. As to the function w&), 
i t  is the same here a s  for two-dimensional systems 
(see Refs. 10 and 11). 

We return, however, to the analysis of the dispersion 
of surface waves in the case w, >> w,. We note first  that 
a t  k >> go when kc >> wp, i-e., in the nonrelativistic limit, 
Eq. (6) takes the simpler form 

It must be borne in mind that this nonrelativistic 
equation is  valid only if the inequality w,d/c << 1 holds. 
Only in this case does the transition in (6) to the non- 
relativistic limit not contradict the inequality kd << 1 
used to write down the boundary conditions (1). 

It follows from (12) that for the upper frequency 
branch, at large k (see also Refs. 1 and 7) 

whereas for the lower branch 

a, (k) =coo ( l - l l z k d ) .  (1%) 

The fact that for the lower SP frequency branch we have 
a linear dispersion law with a negative slope leads in 
the frequency region w s w, to the appearance of an 
additional (see below) surface waves. In this frequency 
region we have not one but two SP, having the same fre- 
quency but different wave vectors. 

The polariton dispersion law for the considered case 
(metallic film on bulk metal), without allowance for the 
damping, i s  shown in Fig. 1 for different values of the 
parameters a = wod/c and y, = w:/w:. We note that for 
aluminum coated with a si lver film we have y, = 15.2 
and w,/c = 2 lo5 cm-'. For an L iF  film on a silver sub- 
strate, y, = 45 and w,/c = 4.2 - loS cm-' (see Fig. 2). In 
the already cited Ref. 4, the gap in the polariton spec- 
trum for the Ag/A1 pair was investigated for films with 
parameters ff = 5 lo", 8 10" and 12 -10". 

0.7 

t L / %  *C/O@ 

FIG. 2. Diaper sion of surface polaritons propagating along a 
silver surface coated with an LiF film in the vicinity of the 
frequency wo = 670 cm-' (we used for the dielectric constant of 
LiF the relation 'Z(w) = 1. 9(w2 - wf) (w2 - cot)-', w,, = wo 

- 

= 670 cm-', w,=310 cm-'1, at various values of the parameter 
a = 0. 4wod/c: a-cu = 0.01, b-cu = 0.05. 
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3. DAMPING OF SURFACE POLARITONS IN  THE 
REGION OF RESONANCE WITH THE TRANSITION 
LAYER AND THE AUXILIARY BOUNDARY CONDITION 

When account is taken of the energy dissipation in the 
substrate and in the film, the quantities & and p in (3) 
a re  [see (511 complex even for real w : & = E' +isf', IJ. 

= kt +ipn.  In this case we can determine with the aid 
of (3) the real and imaginary parts of k =k' +ik" as 
functions of w. Since the electron collision frequencies 
in the metal a re  I' - 1014 and i' = loi4 sec" (see Ref. 12), 
we have w - w,- loi5 sec", r /w << 1, f /w << 1, for the con- 
sidered frequency region, s o  that I &' I >> s" and It' 1 
>> 2". This means that to find the values of k" in this 
case we can use" the first-order approximation in c" 
and t". Taking the foregoing into consideration, we 
obtain from (3) 

but now the quantity k =k(o), determined by the dis- 
persion law (31, (6), as well as the @ues of c and k, 
must be regarded as real (with I' = I' = 0). 

At p =0, i.e., under conditions when the transition 
layer is not taken into account 

and when account is taken of (5), at frequencies such 
that w, >> w >> I', we have 

If the transition layer is considered in the frequency 
region w s  w,, each value of w corresponds, as already 
mentioned (see Figs. 1 and 2) to two SP (ordinary and 
auxiliary), and relation (14) enables us to obtain for 
them the corresponding damping length L. We estimate 
first  the value of k"(w) corresponding to the auxiliary 
solution, bearing in mind f i rs t  that frequency region 
w < w, where the nonrelativistic approximation i s  already 
suitable. Inasmuch as in this spectral region n - x, = k, 
we obtain from (14), taking the inequality ) c ]  >> 1 into 
account 

k/ ( o )  --'/,p" ( o )  kz+e"k/3e' 

and, using (5) and (13b), we get 

In this case of extremely large k (but still k << l/d) and 
w < w, the SP field hardly penetrates into the metal. It 
is therefore not surprising that (15) does not contain 
the characteristics of the substrate and that this rel- 
ation, apart from a factor of 2, can also be obtained 
(when damping is taken into account) for a metallic foil 
in vacuum from the dispersion relation (11) taken a t  
k>>w/c. ~ t ~ / w , = 3 ~ 1 0 " a n d d = 3 0 ~ , k ~ = 2 ~ 1 0 ~  cm-l, 
which corresponds to propagation lengths L of the order 
of tenths of a micron. 

To estimate the propagation lengths ofboth the ordinary 

and the auxiliary polariton, which correspond to small 
k, i t  i s  necessary to use the general relation (14). In 
dimensionless quantities this relation can be rewritten 
in the form 

k N = o 0 ~  (r,  Y )  I rB(x ,  Y ) ,  (14a) 
A ( x ,  y )  = a s r y " - ( y - l )  -'+\.ypy-alz e-'I (2 - e y ) t e - '  

+ y / 2 ( x - e y ) ' " ] ,  
B ( x ,  y )  = ~ ' ~ ( e - ' ( x - e ~ ) - " + ( x - y ) -  ' + 2 a y ( y -  I ) - ' ) ,  

where 

Since y, >> 1 by assumption, in the region x 2 1 and 
y - 1 (where I ~ ( y )  I =y,/y >> 1, the expressions for 
A h ,  y) and B(x, y) take the following simpler form 

A (z, y) = a v x y " ( y - 1 ) - ' + v ( y / y , )  ", 
B ( s ,  y )  =x"{(x-y) -"+2ay  ( y - I ) - ' ) .  

For example, a t  a! = 1 W 2  and y, = 45 (see Fig. 2a, 
6 = 1V2, v = 0.27) the value y = 0.98 ( o  = 0 . 9 8 ~ ~ )  corre- 
sponds to x = 1.1 (ordinary wave) and x = 1.9 (auxiliary 
wave). In this case we have for the ordinary wave 
k; = w0/16c, and for the auxiliary one k: = o,/l& and 
L,  -L,. On the other hand if y = 0.89, then x = 0.9 and 
x, = 20, s o  that k; = 10'3w,/c, k: = 0.2w0/c. Consequently, 
with increasing distance from resonance, the mean free 
path of the additional polariton is greatly shortened and 
L,/L,=200 in our case (i.e., a t  y =0.89). 

The presented estimates of the SP propagation lengths 
indicate that, just as in the case of volume polariton, 
the observation of the auxiliary wave calls for  great 
efforts and can be realized only by choosing suitable 
substrates and films. 

In the case of metal surfaces, thin dielectric films 
decrease the SP free path only insignificantly, even in 
the region of the resonance in the film (see Ref. 13). 
It appears that it is precisely under such conditions that 
one should search also for  auxiliary surface waves. 

Before we proceed to discuss the problem of the aux- 
iliary boundary conditions (ABC), we make one remark 
concerning the damping of surface waves in the case of 
metallic transition layers (metallic films). In the region 
of very small thicknesses, metallic films a r e  usually 
not solid but have an island-like structure. Then, 
besides with the wave damping due to the non-hermi- 
ticity of the dielectric tensor, the Landau damping 
mechanism can become significant in some cases. 

As shown by Lozovik and Nishanov,14 for metallic 
drops of radius R the Landau damping leads to a 
broadening 

s o  that at R - 10 A the value of r is of the order of an 
electron volt. This means apparently that in experi- 
ments4 perforcmed at  very small silver-coating thick- 
nesses (d =2 A and d =6 A) no gap was observed in the 
SP spectra because under these conditions the films 
were not solid but consisted of islands with characte- 
ristic dimensions of the order of the coating thickness. 
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It has already been emphasized' that to observe the 
optical effects due to the additional surface wave one 
can use SP excitation by diffraction of light (say from 
a laser) by a wedge. This excitation method was re- 
cently (see Ref. 15) realized for  the IR band using a 
metallic wedge. Development of experiments of the 
type described in Ref. 15 will possibly permit also the 
study of effects due to interference between auxiliary 
and ordinary surface waves having the same frequency. 

To find the field amplitudes with account taken of the 
auxiliary surface wave, the ordinary boundary con- 
ditions a re  no longer sufficient, and the ABC problem 
arises just as in three-dimensional crystal optics. 

The form of the ABC should, generally speaking, de- 
pend on the type of the film and on the character of 
those dipole oscillations in i t  that lead to resonance 
with the SP. We confine ourselves therefore from now 
on to a discussion of the ABC for the case considered 
in Ref. 2 in the derivation of the dispersion relation (3). 

We note first  that the correction to the boundary con- 
dition (2) is necessitated by the polarization of the film 
along a direction perpendicular to the film. Therefore 
to find the ABC in the case when the film i s  dielectric 
it can be assumed that the dipole moment of the transi- 
tion is directed in the film along the z axis. Since the 
variation of the field over the film thickness, in the 
approximation linear in d / ~ ,  is disregarded, the film 
can be taken to be two-dimensional. If such a two- 
dimensional system (two-dimensional crystal) is bounded 
along the x axis and if we disregard the deformations 
of the edge molecules then, just as in the three-dimen- 
sional case (see Ref. 161, the boundary conditions at 
x = 0 can be taken for the polarization to be 

P, (x=o) =o, (17) 

where P is the film polarization per unit area. 

Satisfaction of condition (17) means that at x =  0 the 
film can not lead to a discontinuity of E, of the form 
(21, inasmuch a s  at x = 0 we have 

d 

EI(II) -Ei(I) =-ik, JE. (2, x=O)dz, (18) 
0 

where En(z, x = 0) is the normal component of E in the 
film, and since a t  x = 0 we have in the film P, = 0 
[see (I?)], we arrive at the conclusion that En(z,x 
= 0) = D,(z, x = 01, and consequently 

d d I E,, (z, x=O) dz = ID, (2, x=O) dz = dD. (I, x=o) - dE. (1, x=o). 
0 0 

Thus, at x = O  no term of order p = d / t  resonant a t  
t = O  appears in the right-hand side of (18). Since the 
nonresonant terms were omitted when (2) was derived 
from (I), it must be assumed that a t  x = 0 

E, (11, x-0) -E, (I, x=O) -0. (19) 

Comparing now (19) and (2) we conclude that the con- 
dition (17) for the polarization in the film leads to the 
sought ABC in the form 

Since E(1) = D(II), relation (20) can be replaced by the 
equivalent condition 

D. (11, X=O) =o. (20a) 

We can obtain in similar fashion the ABC E,(I,x = 0) 
= 0 for dielectric films in the region of resonance of 
E(w). If, however, this resonance i s  due to a two- o r  
three-dimensional Wannier-Mott exciton, then i t  may 
be important to introduce a dead layer of thickness 
I - r ,  where r ,  is the Bohr radius of the exciton, in 
analogy with procedure used in the theory of ABC 
for volume waves" (see also Ref. 9). 

The question of the form of the ABC for metallic 
films calls for a separate study. 

The author thanks E. P. Ivanova for the numerical 
calculations of the dispersion curves, and V. L. Ginz- 
burg and Yu. E. Lozovik for helpful discussions. 

" ~ a ~ e r s  of this kind can be produced also artificially, for ex- 
ample by depositing very thin films on various substrates. 

2)The damping was not taken into account in the determination 
of A. Therefore relations (10) are  valid if A is large com- 
pared with the width of the polariton spectral line. 

3 ) ~ s t i m a t e s  show that an analogous situation i s  realized in 
most cases also for dielectric films and dielectric substrates. 
(e. g. , LiF films on sapphire). - 
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