
paramagnetic ions is a characteristic feature of all 
van Vleck paramagnets. It must be borne in mind, how- 
ever, that an estimate of the interaction energy on the 
basis of the measured (or calculated) values of a,, and 
a,, in the case of ions with large ionic radii (such as 
pr3+) may be too low, since it does not take into account 
the additional enhancement of the interaction by the 
kinetic exchange of the 4f electrons. 
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A new method is proposed for parametric excitation of spin waves by noise pumping. The principal 
characteristics of the subthreshold regime are determined with the aid of Wyld's diagram technique and 
the above-threshold state is examined. The ineffectiveness of the ''phase mechanism" of the above- 
threshold limitation is demonstrated and the role of various dissipative mechanisms is analyzed. 

PACS numbers: 75.30.D~ 

Besides ferromagnetic resonance, it i s  possible to 
excite parametrically spin waves in ferrodielectric 
crystals by applying an external alternating magnetic 
field parallel to the static magnetization of the crystal. 
The absorption of the energy in this pumping method i s  
due to production of pairs of spin waves (SW) with op- 
posite wave vectors and with a frequency close to half 
the pump frequency.' Measurements of the resonance 
threshold and investigations of the properties of the 
subthreshold state of the spin system i s  by now the sub- 
ject of an extensive literature (see, e.g., Refs. 2-5). 

Parametric excitation of waves is close to the known 
effect of parametric excitation of an oscillator, ex- 
plained way back by ~ a ~ l e i g h . '  This effect i s  the basis 
of the action of ordinary swings: if the length of the 
mathematical pendulum is  periodically varied at the 
frequency equal to double the natural frequency of the 
pendulum, then an exponential buildup of oscillations 
sets in when the external action exceeds a certain 

threshold intensity.') It i s  not quite obvious that pa- 
rametric excitation of an oscillator can be produced 
also by a random (noise) variations of its parameters 
with time (see, e.g., Ref. 7). 

We analyze in this paper the features of parametric 
excitation of spin waves by noise pumping in the sub- 
threshold and in the (nonlinear) above-threshold regime. 

1. NOISE PUMPING 

Let h ( t )  be the alternating magnetic pump field. TO 
describe its properties i t  i s  convenient to consider the 
autocorrelation f unc tion2) 

and its frequency spectrum 
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The difference between random (noise) pumping and 
(quasi) periodic pumping manifests itself in the form 
of the spectrum of the autocorrelation f~nc t i on .~  Noise 
pumping has a continuous spectrum g(w), whereas the 
spectrum of (quasi) periodic pumping i s  discrete and 
consists of individual lines. 

An important particular case is noise pumping with a 
Lorentz spectrum 

1 I' 
g ( 0 )  = - 

21 (o-up)-+I'- (3) 

The maximum of the spectrum occurs in this case at 
the frequency w,, the half-width of the maximum is  
given by r ,  and the parameter I characterizes the inte- 
gral intensity of the noise: 

In addition to the pair autocorrelation function we can 
define correlators of higher order. For example, 

I * 
g ( ~ , ,  T ~ ,  T, )= lim- j h ( t ) h ( t + r , ) h ( t + ~ Z ) h ( t + ~ a ) d t .  

r,, T (5) 

We assume the random function h ( t )  to be Gaussian, 
i.e., that all the even correlators of higher order break 
up into partial correlators g ( ~ ) ,  while correlators of 
odd order a r e  identically equal to zero. According to 
the central limit theorem for random processes,' a 
Gaussian noise can be obtained a s  a limit of an in- 
creasingly frequency sequence of random pulses of 
ever decreasing intensity. For a Gaussian noise it suf- 
fices to know the form of the pair correlation function 
g (7) or (equivalently) its frequency spectrum g (w). 

In view of the instability of oscillators, there i s  no 
absolute monochromatic pump-each real source has 
a spectrum in the form of a line with small but finite 
width r. The reciprocal r-' characterizes the temporal 
instability of the oscillation. However, if the relation 
y >>I' i s  satisfied, then the characteristic time of vari- 
ation of the pump parameters, is much longer than 
the relaxation time of the spin system, the state of the 
latter manages to adjust itself to the instantaneous val- 
ues of the pump parameters, and one can use the re- 
sults obtained for a purely monochromatic external 
action. 

In this paper we consider a different limiting case, 
when the pump parameters fluctuate at a frequency 
much higher than the SW relaxation frequency, i.e., 
when I' >> y. We analyze also the situation that arises 
in pumping by a superposition of noise (which satisfies 
the condition r >> y and a coherent monochromatic 
pump). In this case the spectrum g(w) takes the form 

where h, is the intensity of the alternating magnetic 
field of the coherent pump &(t) =h,cosw,t), while 
gr(w) is the continuous spectrum of the noise com- 
ponent and reaches a maximum at the frequency of the 
coherent pump. 

In both considered cases it is assumed that the width 
I' of the noise-pump spectrum is small compared with 

the frequency w, at which the maximum of the spectrum 
is located. 

2. INTERACTION OF LONGITUDINAL PUMP WITH 
THE SW SYSTEM IN A CRYSTAL 

Since the deviation of the magnetization at one site 
remains exceedingly small ( A M / M  S10-5) even at the 
largest experimentally obtainable excess above the 
threshold, it i s  natural to use the Holstein-Primakoff 
transformation. After diagonalization, the harmonic 
part of the Hamiltonian takes the usual form 

We consider throughout the classical limit of large av- 
erage occupation numbers, so that we can regard a; 
and ak a s  complex canonical amplitudes of the SW. 

The interaction with the longitudinal pump is given by 
the ~arni l tonian~) 

The coupling coefficient Vk takes in this case the form 

VB = - sin2 Or exp (2icpr). 
2 ~ r  (9) 

where Ok and cpk a re  the polar and azimuthal angles of 
the wave vector k in a spherical coordinate system 
whose axis z is directed along the vector of the static 
magnetization M, of the crystal; w,=4ngM0. 

In addition to the cited terms (7) and (8) the Hamil- 
tonian contains terms that describe the nonlinear inter- 
action between the SW, and also between the SW and the 
phonon system. Recognizing that the SW produced in 
longitudinal pumping a r e  concentrated in a narrow layer 
near the resonant surface wk= w,/2, it is convenient to 
separate the subsystem of parametrically excited spin 
waves (PEW) with wave vectors in the resonant layer, 
and relegate all the remaining spin waves to the 
"thermostat." The energy from the external pump en- 
ters  the PESW system and i s  then dissipated in the 
thermostat. It i s  important to note that although locally, 
in the resonant layer, the PESW density nk can exceed 
by tens of thousands of times the equilibrium thermal 
density, the total number of P E W  remains smaller, 
even at helium temperatures, than the total number of 
thermal SW in the crystal. To prevent overall heating, 
special efforts a r e  made in the experiments-the crys- 
tals a r e  placed in a reservoir with liquid helium, and a 
pulse procedure is used. It is therefore natural to as- 
sume that the thermostat is in thermal equilibrium at 
the ambient temperature. 

Below the threshold and at sufficiently small excesses 
above the threshold, the main contribution to the P E W  
damping i s  made by processes in which a single PESW 
takes part. Since the total number of PESW is in this 
case much smaller than the number of SW and of the 
phonons in the thermostat, the probability of PESW 
scattering by a thermostat particle greatly exceeds the 
analogous probability for scattering by another PESW. 

To describe the interaction of the PESWwith the 
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thermostat, we use the method of Langevin equations- 
we introduce the damping and the Gaussian random 
force in the equation of motion: 

The method of Langevin equations is presently exten- 
sively used in quantum radiophysics p r 0 b l e m s . 8 ~ ~ ~  The 
conditions for the applicability of this method to  the 
problem of parametric excitation of SW with the aid of 
monochromatic pumping were discussed in Ref. 11 (see 
also the review4). Because of the proposed narrowness 
of the noise-pump spectrum (I' <<ap), the results of Ref. 
11 apply also to  our case. 

In a detailed derivation, the Langevin equation (10) 
appears after partially averaging the amplitudes a k i n  
the "interaction representation" (ak- akexp(iwkt 1) over 
time intervals At that a r e  large compared with the 
characteristic "interaction time" 7h,- wi' of the con- 
sidered system, but small compared with typical SW 
relaxation and with the reciprocal width of the noise- 
pump spectrum. 

Since the main contribution to the PESW damping i s  
made by processes in which only one PESW takes part, 
and the remaining waves belong the the thermostat that 
is in thermal equilibrium, the damping w k  i s  given by 
the same expression a s  in the absence of the pump. It 
is necessary to  retain in the Hamiltonian H only the 
resonant terms that lead in Eq. (10) to terms with fre- 
quency close to  that of the waves excited by the pump. 

The Gaussian delta-correlated random force fk(t  ) 
realizes the noise action of the thermostat (in the kine- 
tic equation for the average occupation numbers it cor- 
responds to the "arrival term"). The function fk ( t )  
has the correlators: 

where 6k,Rt is the Kronecker symbol and n i =  kBT/Ew, 
is the average thermal intensity of the SW with wave 
vector k a t  a temperature T. Averaging over the en- 
semble of the random forces in (11) and in the subse- 
quent calculations reduces physically to  taking the time 
average over the interval y-l, r-l>>At >>rh,. We note 
that owing to the approximations used in i ts  derivation, 
Eq. (10) can be used only to determine quantities that 
vary slowly in time compared with the "interaction 
time" T ~ .  

Parametric excitation of SW is possible also in anti- 
ferromagnets of the easy-plane type. In this case the 
SW of the lower branch of the spectrum a r e  excited. 
The interaction with the pump is described by the Ham- 
iltonian (8). The expression for the coupling coefficient 
Vk is given for this case in Ref. 12. 

3. INVESTIGATION OF THE SUBTHRESHOLD 
REGIME AND DETERMINATION OF THE NOISE- 
PUMP THRESHOLD 

In the subthreshold regime there is no need to take 
into account the nonlinear interaction between the 
PESW, s o  that Eq. (10) takes the form 

It is convenient to use the equivalent integral equation 
for the Fourier components 

-- 

which follows directly from Eq. (12): 
+- 

For brevity we have introduced here the notation 

We shall sometimes use also the abbreviated form 
a= (k, 0). 

The Fourier components h(w) and f ,  of the random 
Gaussian functions h(t)  and fk( t )  should be formally re- 
garded a s  random Gaussian functions of the frequency 
(see Ref. 7), and their correlators a r e  

( f q > = ( f , f q r ) = O ,  (f f s'>='(kTZ-'nk06k, k r 6 ( o - o ' ) ,  
4 4 (16) 

and analogously 

( h ( o )  )=o, (h(o)h'(o')>=g(o)8(o-o1). (17) 

Since h(t ) is a real  function, its Fourier component 
satisfies the relation h(w) =h*(-w). The random func- 
tions f k ( t )  and h ( t )  a r e  statistically independent. 

The main principal interest attaches to the calcula- 
tion of the average wave intensities nk= (a;(t) ak(t )) (we 
recall that we have in mind averaging over a time in- 
terval At >>r-l>>wil). In addition, since i s  a cer- 
tain c(assica1 random process, we can take i ts  spec- 
t ra l  density n,, defined in analogy with the spectral 
density g(w) [see (I)], o r  equivalently by the relation 

To find these quantities we have used Wyld's diagram 
technique,'= which was initially developed for hydro- 
problems involving SW interactions (see, e.g., Ref. 14). 

We note first  that the integral equation (14) can be 
solved by successive iterations, choosing as the first  
approximation a:) =G: f ,, which is then substituted in the 
integral term, and finding the first  correction 

- 
~ J " = - ~ G , P v ~  I h ( o + o l ) ~ O ;  .,f-k..r dor ,  (19) 

-- 
substituting then this correction again in the integral 
term, and finding the second correction, etc. The re-  
sultant solution for a, is a ser ies  in powers of h(w), 
which can be conveniently represented in graphic form: 

4 4 I f r t  
n I --..., - A-+L...+&...~+A ...+ ... , (20) 

using the symbols 

- = c i ,  - = ~f 
...... > = f , ,  * ..... = f v ,  (21) 
---* = hp), 4--- = h *(u). 

The white and black circles stand for the vertices -iVk 
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and iV$, respectively. The first diagram in (20) cor- 
responds to the term a:', the second to a:') [see 
(19)], and the next ones to higher iterations. 

To calculate the quantities of interest to us we need 
also the values of the correlators Gk, defined by 

Gq==(aqfqfp.'>l(fqfq.') (22) 

and called Green's functions. We assign to the func- 
tions nu and G, the graphic elements 

If we now take the formal solution for a, in the form of 
the iteration series (20) and substitute it in the defin- 
ition (22) of the Green's function, after averaging over 
the random pump h(w) and the thermostat noise f,,  we 
obtain for G, a solution in the form of an infinite series: 

The dashed line corresponds to g(o).  There i s  no dia- 
gram with an odd number of vertices, since the corre- 
sponding terms yield zero after averaging. 

Summing in the usual form the weakly coupled dia- 
grams, we obtain Dyson's integral equation for G, : 

in which the self-energy part C, i s  given by the series 

If we substitute the formal solution for a, and a,*, in 
the definition (18) of nu and average, we get the formal 
solution for nu : 

,-- -. 
-=+...- +&...SSrc ++&a+...- 

(27) 
+-... A+& ...A+... , 

where the dots stand for the quantity qk=(yk/r)  n:. The 
series (27) likewise admits of summation of weakly 
coupled diagrams, leading to an integral equation of 
Wyld's type 

in which the "self-noise" part is given by the infinite 
series 

We use now the small parameter y/I? which i s  at our 
disposal (see Sec. 1). By direct calculation we can es- 
tablish that any diagram in the series (26) or (29), con- 
taining an intersection of dashed lines, is less than the 
diagram of the same order without intersections by a 
factor ( ~ / l ? ) ~ - ' ,  where m i s  the number of the corre- 
sponding intersections. Taking this into account, we 
can discard all the diagrams that contain intersections, 
and sum the remaining diagrams. For Z, and @, this 
yields 

o r  in analytic form 

Equations (25) and (28), with account taken of expres- 
sions (31) and (32), form a system of integral equations 
for nu and G,. Using once more the presence of the 
small parameter y / r ,  these equations can be easily 
solved and we get ultimately 

G,-'=-i(o-or)+yk-~( Vrlzg(o+ or), (33) 

By integrating (34) with respect to the frequency w we 
obtain also the average intensity of the SW: 

Thus, in the presence of noise pump, the SW becomes 
heated, and this heating is a most strongly pronounced 
near the resonant surface 2wk=wp, since the function 
g(w), by assumption, reaches its maximum at the fre- 
quency o =up.  On the resonant surface the heating i s  
most intense at points where the ratio I Vk 1 2/Yk i s  max- 
imal. The threshold of the parametric resonance is de- 
termined by the same value of the maximum of the 
spectral pump intensity g(wp) ,  at which the average in- 
tensity of the SW becomes infinite at least at  one point 
on the resonant surface. According to (35), this yields 
g (up) = g o ,  where 

and the minimum is sought on the resonant surface. 

It is useful to write down an expression for the 
threshold in the case of a noise pump with a Lorentz 
spectrum. The critical intensity I, at a fixed half- 
width I? i s  then given by the expression 

Comparing (35) and (33), we note that in contrast to 
the case of a monochromatic pump, in this case the re- 
normalized damping of the PESW v, = yk - r 1 Vk 1 'g(2wk), 
which enters in the Green's function G,, does not van- 
ish at the threshold at those k-space points where the 
average intensity of the waves is infinite, but remains 
finite and equal to vk= +Yk at the threshold. 

In the derivation of (35) 'we have neglected the non- 
linear interaction between the PESW and the nonlinear- 
damping effects. It i s  clear, however, that in the im- 
mediate vicinity of the threshold and particularly above 
the threshold [where (35) yields formally negative val- 
ues of nk for certain k] we must take the nonlinear ef- 
fects into account. 

4. INEFFECTIVENESS OF THE PHASE MECHANISM 

We consider first the role of the "phase me~hanism,"~ 
which leads frequently to an above-threshold limitation 
in the case of monochromatic pumping. It comes into 
being because the quadrupole nonlinear interaction be- 
tween the PESW, with account taken of the existing an- 
omalous correlation of the PESW (a,= (aka,)), the 
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amplitude of this wave becomes renormalized under 
monochromatic pumping and "freezes" at the threshold 
level, i.e., the PESW system "pushes out" the coherent 
pump from the sample. The anomalous correlators do 
not vanish in this case because the external coherent 
pump predetermines the predominant value of the time 
phase 9 k  of the P E W  pairs, defined a s  qk =cpk +cp-k, 
where ak=pfi2exp(icPk). 

A noise pump does not have a defined constant and is 
by itself incapable of establishing an anomalous corre- 
lation. Bearing in mind the possibility of a nonequili- 
brium phase transition, it is necessary, however to ex- 
ercise caution in the analysis of the above-threshold 
state in the case of noise pumping, since spontaneous 
breaking of the symmetry and the onset of anomalous 
correlation can occur above the threshold. We shall 
therefore proceed in the spirit of the theory of Bogo- 
lyubov's "quasi-averages,"15 namely, we consider the 
above-threshold regime for the superposition of noise 
and weak coherent pumping ho(t), so that the coherent 
component will play the role of a sort of "external 
field" that breaks the symmetry. If a phase transition 
occurs under noise pumping, this should manifest itself 
in the fact that the anomalous correlators remain in the 
limit a s  ho-0. 

To analyze the "phase mechanism" we use the re- 
duced Hamiltonian4 

S 
Hi.,=h { ~ l a ~ l ~ l a k ~ l ~  + - a i a - i a t t a - ~ *  

2 
(38) 

k.kV 

where the summation i s  confined to vectors k from the 
resonant layer. 

In view of the presence of a coherent component in the 
pump, we must now introduce, besides the Green's 
functions G, and the correlators n, introduced in Sec. 
3, also the anomalous Green's function 

and the anomalous correlator 

They correspond to new graphic elements: 

The vertices T and S will be denoted respectively by 

Proceeding in analogy with Sec. 3 and summing the 
weakly coupled diagrams, we obtain now a system of 
four integral equations 

Here qk=n-lYk ne, q= (k, w) .  

The first  diagrams for Z,, P,, a,, and B, a r e  given 
below. 

We note that P, gives the renormal value of the co- 
herent pump. The diagrams left out a r e  small in the 
parameter y / r  and can be neglected. The series for 
B, begins with diagrams of the order of y / r ,  and 
therefore in the same approximation we must put B, = 0. 

The integral equations (43) can then be solved in two 
important limiting cases: a )  weak coherent component 
(ho<< h,, where h, = y / [  V I  ) and b) small noise distur- 
bance (with intensity I<<I,, where I, = yI'/2( Vl 2). We 
analyze initially the first case. 

a )  Addition of the weak coherent component lowers 
somewhat the noise-pump intensity threshold: 

I:=Ic{i-2 (ho/hc)'}. 

The total PESW intensity 

above the threshold I=I,f i s  given by the expression 

It becomes infinite a s  I - I,. The anomalous PESW 
correlators ok take the form 

Thus, in the limit as  ho-0 the anomalous correlators 
vanish.4) Since we have IF -  I, as  ho-0 it is seen from 
(45) that the "phase mechanism" does not impose an 
above-threshold limitation in the case of noise pump- 
ing. 

b) Another situation of practical interest i s  one when 
a weak noise component i s  superimposed on an intense 
coherent pump. Our analysis has shown that in this 
situation the coherent-pump threshold is lowered com- 
pared with the value h, for fully monochromatic pump- 
ing: 

where I, i s  given by (37). The total intensity N of the 
PESW above the threshold is then 

5. DISSIPATIVE MECHANISMS 

The dissipative mechanisms of the above-threshold 
limitation a r e  connected with the "renormalization" of 
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the PESW damping. If the damping yk increases with 
increasing number N of the PEW, the above-threshold 
limitation is  due to the f a d  that a value N =No is  estab- 
lished at which the given intensity of the external pump 
is the threshold value for the corresponding damping 
~k(N0). 

When the damping yk is  a linear function of N [i.e., 
yk(N) = ye + qN, with q >0], the stationary value of No 
established above the threshold is given by 

The strongest mechanisms of nonlinear positive 
damping are  due to three-wave processes with partici- 
pation of PESW. It turns out, however, that owing to 
the stringent requirements imposed by the conservation 
laws for these processes, the mechanisms are  allowed 
for not all the experimental conditions. 

1. M e r e  of two PESW (the Suhl mechani~m'~). In 
a ferromagnet (FM) this process is  allowed at gH, 
< (w, /2), where Ho is  the value of the static magnetic 
field. For antiferromagnets of the easy plane type 
(AFM), the amplitude of this process is  zero. 

2. Decay of PESW into two SW (the Le Gall mechan- 
ism"). Nonlinear positive damping i s  produced in this 
case bemuse of the heating of the small SW system to 
which the energy flux is directed from the PESW (the 
"bottleneck" situation). For FM the process is allowed 
a t  gH,< $ (w, /2), and for AFM the amplitude of the pro- 
cess is  equal to zero. 

3. Coalescence of two PESW into a phonon. The pro- 
cess is allowed only in the presence of an intersection 
of the spectrum of the phonons and the SW, under the 
condition that half the pump frequency be less than the 
frequency w* a t  which this crossing takes place, i.e., 
w, /2< w*. 

4. Decay of a PESW into an SW and a phonon. The 
process is allowed if the group velocity v=l  awk/akl of 
the PESW exceeds the speed of sound s. For ferro- 
magnets the condition v>s can be satisfied only for 
PESW wave vectors k much larger than the typical val- 
ue lkl- lo5 cm-' attained in experiment. For AFM the 
process is  forbidden (if the SW and phonon spectra have 
a crossing point). 

When three-wave processes a re  allowed by the con- 
servation laws, they give a strong nonlinear damping 
(q/ (S  I - 1) and dominate in the case of monochromatic 
pumping over the "phase" mechanism of the above- 
threshold limitation. 

We see, however, that there is  an interval of static 
magnetic field H ,  and of the average pump frequency 
w, in which the foregoing three-wave processes a re  for- 
bidden. In the case of monochromatic pumping in this 
interval the above-threshold limitation is due to the 
"phase" mechanism. In noise pumping, the "phase" 
mechanism is not effective and the above-threshold lim- 
itation in the indicated interval should be due to the 
much weaker mechanism of positive nonlinear damping 
due to the four-wave process of coalescence of two 
PESW to produce two secondary SW. We have calcu- 

lated the coefficient of positive nonlinear damping q for 
these processes: 

where * is the average amplitude of the four-magnon 
interaction and N, is given by the integral 

in which the integration i s  carried out over the k-space 
region defined by the condition wo< wk < w, - w0 
(w, = ~ ( k  = 0)); $2 is the volume of the crystal and k, is 
the wave vector of the PESW. 

It is  useful to compare the efficiencies of the above- 
threshold limitation due to the "phase" mechanism and 
to the considered four-wave process. Assume that we 
have exceeded by a factor of 2 (in power) the threshold 
of parametric resonance under monochromatic and 
noise pumping, i.e., we choose the values of h, and I 
such that 

Then, recognizing that in the dissipative mechanism 
the number of PESW above the threshold is  given by 
(49), while in the "phase" mechanism in the mono- 
chromatic pumping the following relation i s  valid 

we see that at the chosen values of h, and I the ratio of 
the corresponding values of N(h,) and N(I) is  

which can range, depending on the experimental con- 
ditions, from tenths of one percent to several percent 
(q/ls 1 -  lo-1-lo-2). 

Thus, in the absence of the Suhl and Le Gall three- 
wave processes, the only limitation mechanism given 
by the four-wave processes is  very weak, and the total 
number of PE SW increases rapid1 y with increasing ex- 
cess above threshold. 

The absorbed power in the above-threshold regime 
under noise pumping is  given by 

and at large excesses above the threshold it increases 
like the square of the pump power. 

6. CONCLUSION 

In ferromagnets and antiferromagnets of the easy 
plane type it is possible to excite parametrically SW 
with the aid of noise microwave pumping. The thresh- 
old of the parametric resonance is  given by Eqs. (36) 
and (37) and is attainable with presently available noise 
generators. In contrast to the case of monochromatic 
pumping, the "phase" mechanism of above-threshold 
limitation turns out to be ineffective in this case: the 
PESW is unable to "push out" of the crystal the in- 
coherent noise pump. The limitation on the growth of 
the number of PESW above threshold is due exclusively 
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to the dissipative mechanisms. In the absence of three- 
wave Suhl and Le Gall processes the above-threshold 
limitation is the result of the much weaker four-wave 
mechanism. Experiments on noise pumping can be use- 
ful for the study of various dissipative mechanisms and 
for distinguishing between "phase" and dissipative ef - 
fects. 

The authors a r e  deeply grateful to A. S. Borovik- 
Romanov and I. M. Lifshitz for interest in the work 
and to A. G. Gurevich and M. I. Kaganov for helpful 
discussions. 

Note added in proof (20 October 1979). An additional 
positive nonlinear damping mechanism is due to the 
fact that the expansion for Z, contains diagrams that 
contain one vertex of four-wave interaction S and two 
vertices Vk of external noise pumping. Estimates 
show, however, that just a s  in the case of positive non- 
linear damping due to coalescence of two PESW with 
production of two SW, the corresponding nonlinear 
damping coefficient q turns out to be quite small 
(q - -yI?-'IS 1, q/ IS I<< I), so that the conclusions of Sec. 
5 remain in force. The authors thank V. S. L'vov for a 
helpful remark. 

')When waves are  parametrically excited above threshold an 
exponential growth takes place of the two oscillators (waves) 
coupled via the pump. 

')We assume throughout the paper that the mean value of the 
Pump 

is equal to zero. 
3'Taking the condition r<< up into account, we can leave out 

nonresonant terms of the form h(t)aCa k, which in this case, 

just as  in monochromatic pumping, lead to negligibly small 
corrections to the results. 

4"I'his result is valid also below threshold. 
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