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The resistance of the boundary between crystallites to direct current flowing in a direction normal to the 
boundary plane is investigated theoretically. The scattering of the electrons by the boundary between two 
crystallites is described phenomenologically with the aid of the concepts of diffusivity and specularity, 
modified as applied to the description of scattering by an internal boundary in a metal. The effect of 
disorientation of the crysallites is due to the allowance for the anisotropy of the dispersion law. The 
resistance of a diffusely scattering boundary i s ~ ~ 0 . 3 1 / u o  (I is the mean free path and uo is the electric 
conductivity of the bullk metal). The resistance of a speculrly reflecting and refracting boundary, in the 
actual case of small disorientation angles 6, is proportional to (l/u,,) S21n(lm. The fraction of the 
grain boundaries in the residual resistance of a polycrystal is of the order of l / d  (d is the grain 
dimension). 

PACS numbers: 72.15.Eb, 72.15.Qm 

The crystallite separation boundaries (grain bound: 
aries) in polycrystals, a s  well a s  the block (subgrain) 
boundaries, offer resistance to electric current prim- 
arily because various kinds of defects, primarily dis- 
locations, are  concentrated on them. In addition, be- 
cause of the disorientation of the individual crystallites, 
an electron moving through such a boundary changes 
i ts  direction, as a result of which a resistance effect 
can arise again. A reliable calculation of the resis- 
tance of grain boundaries, a t  the microscopic level, is 
difficult because of the great variety of microscopic 
models of the boundaries. It is therefore quite ad- 
vantageous to investigate the resistance phenomeno- 
logically with account taken of the disorientation of 
neighboring crystals, by modifying the prevailing con- 
cepts concerning diffuse and specular scattering of 
electrons from a boundary between a metal and vac- 
uum. 

1. FUNDAMENTAL EQUATIONS AND 
CALCULATION FORMULAS 

Maxwell's equations for a conductor carrying a sta- 
tionary current take the form 

rot E=O, div j=O. (1) 

These equations must be written for the left-hand and 
right-hand crystals and, in addition, supplemented by 
the standard boundary conditions, namely continuity 
of the z component of the current density and of the x 
and y components of the electric field. The homogen- 
eity of the physical conditions along the xy plane leads 
to the requirement 

. (1'- .12) 
1. -1. =const. (2) 

The indices 1 and 2 label quantities pertaining to the 
left and right crystallites, respectively. The f i rs t  
equation of (1) and the boundary conditions for i t  a r e  
satisfied if we assume only the z component of the field 

To this end we investigate the flow of direct current 
through a metallic bicrystal consisting of two single to be different from zero: 

crystals of one and the same metal, and disoriented E"'= (0, 0, El (z)), El2)=-(0, 0, Et(z)). (3) 

arbitrarily relative to each other. We assume that the 
single crystals a r e  joined along some plane (xy, see 
Fig. 1) which is arbitrarily oriented relative to the 
crystallographic axes of both crystals. Since we a re  
studying the resistance of a boundary between crystal- 
lites, we can disregard for simplicity the influence of 
the external boundaries of the sample, i. e., assume 
that the bicrystal occupies all of space. The temper- 
ature is assumed to be zero, since principal interest 
attaches to the residual resistance of the boundary. 

The system (1) must be supplemented by a material 
equation that describes the connection between the cur- 
rent and the field. In the simplest case this connection 
is local: 

i : v l - o : ; ) ~ : v ) ,  ~ - ( 1 , 2 ) .  14) 

However, if we confine ourselves to the local connec- 
tion between the current and the field, then the resis- 

It is technically convenient to assume the given quan- 
tity to be the component of the current density normal 
to the boundary, i. e. ,  the z-component jo .  The quan- 
tity j ,  i s  assumed to be independent of the time and of 
the coordinates. The sought quantity is the distribution 
of the electric field intensity E(x, y, z) . Knowledge 
of this distribution makes i t  possible to calculate the 
resistance of the bicrystal and, in particular, to sep- 
arate the resistance of the boundary. Incidentally, 
when solving the problem we can find the tangential 
(relative to the boundary) components of the current 
density. FIG. 1. 
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tance of the boundary vanishes automatically, and the 
calculation of the resistance of a bicrystal becomes a 
trivial problem of calculating the resistance of series- 
connected conductors, each of known resistance. We 
must therefore write down the nonlocal connection be- 
tween the current and the field, which can be obtained 
by solving the kinetic equation for the electron distrib- 
ution function f(p, z) . The distribution function is lin- 
earized in the usual manner: 

Here e is the electron charge, fo  is the equilibrium 
Fermi distribution function, and $(p, z) is the sought 
function which we call for brevity the nonequilibrium 
increment. It is small to the extent that the electric 
field is small. The dependence of the electron energy 
E on the quasimomentum p is the best chosen as simple 
as possible, to simplify the calculations, but a t  the 
same time i t  must reflect the anisotropy of the metal. 
These requirements a r e  satisfied by the quadratic 
anisotropic dispersion law: 

1 
e (P) - 2;;; T'G~P~PA. (6) 

It is convenient to choose the average effective mass m 
in such a way that the determinant of the dimensionless 
matrix Ilyi,[l becomes equal to unity. The effective- 
mass anisotropy, described by the tensor y,,, plays 
in this case the principal role, inasmuch a s  in the iso- 
tropic model the difference between the grains van- 
ishes. 

At zero temperature, the derivative yfo/yc is a 6 
function; consequently, in the formulas that follow, the 
quasimomenta p a re  such that their ends lie on Fermi 
surfaces E F =  E(P) in the form of ellipsoids with differ- 
ent orieatations in each crystallite relative to the lab- 
oratory frame connected with the boundary. The equa- 
tions of the Fermi ellipsoids a re  

1 - r"' 1 
2m ' L  pip*=er, =r::) pIpI-eP. (7) 

The connection between the tensors j"' and ;"' is 
given by 

~ , ! ~ ' = a r ~ T ~ ; l ' ,  (8) 

and the rotation matrix a; is defined in the general case 
by three parameters (for example, by Euler angles). 

If we describe the scattering of the electrons in the 
interior of each crystallite in the 7 approximation (we 
assume r 1  = r2  = r ) ,  then the kinetic equations a re  writ- 
ten in the known form 

1') a*'v'(z,p) + L I p ~ ~ ) ( Z , P ) S u ~ ~ ) E ~ ~ )  ( Z ) ,  ,,=1,2. 
a 2  

(9) 
T 

Here v = ac/ap is the electron velocity. The electric 
field in each of the crystallites has obviously homo- 
geneous components E:' = E,, which a re  obtained by 
dividing the current density jo by the components oJ',' 
of the electric conductivity of each of the media: 

~.- jdo, (~") .  (10) 

The quantities 0:' are  determined by the known meth- 
od, if it is noted that a t  large distances (compared with 

the mean f ree  path) from the boundary the solutions of 
the kinetic equations (9) take the form 

With the aid of (11) we obtain 

We have introduced here the following notation: p, 
= (2mcF)ln = muF is the Fermi  momentum and I = uF7 
is the electron mean f ree  path. 

To separate the homogeneous components, the field 
distribution must be represented in the form 

E.'"' ( 2 )  = E ,  ( z )  =E,-d$,(z)ldz,  v=1,2. (13) 

The sought quantities a re  now the potentials cp,(z), 
which vanish a t  infinity. l' Their appearance is due to 
collisions between the electrons and the boundary. 
The resistance of the boundary (per unit area) is ex- 
pressed in terms of the jump of the additional potential 
q,. The corresponding equation for the total resis-  
tance g,,, of the bicrystal is obtained by calculating the 
Joule losses: 

S~,.,=L,~O~~"+LJO.':'+ [cpz(O) -TI ( 0 )  Ilj,. (14) 

The f i rs t  two terms a re  the resistances of the crystal- 
lites taken separately (L1  and L2 are  their dimensions 
in the zdirection) and a r e  of no interest at present. 
The third term is in fact that boundary resistance due 
to the discontinuity of the potential q, on the boundary: 

W=icp,(O) -pl (O)I/j,. (15) 

Of course, the presence of the discontinuity 40, is 
due to the zero thickness of the boundary. The phy- 
sically small parameter is the ratio of the thickness 
of the boundary to the mean free path, and we consider 
in the problem the zeroth approximation in terms of 
this parameter. The discontinuity, naturally, is pro- 
portional to jo and therefore the resistance is deter- 
mined only by the structure of the boundary and by the 
character of the scattering of electrons from it. 

If we regard (for the time being) the potentials qV(z) 
as specified functions of the coordinate, then the gen- 
era l  solutions of the first-order differential equations 
(9) can be easily found. The general solution contains 
one arbitrary constant A for each fixed p. Consequent- 
ly, to describe the solution for arbitrary p it is neces- 
sary  to introduce the arbitrary function Ah) .  The 
boundary condition a t  infinity (11) separates the elec- 
trons in each of the crystallites into two groups: those 
moving away from the boundary and those moving 
towards the boundary. Each group is described by i ts  
own distribution function, with the function A@) de- 
termined by the boundary condition a t  infinity and by the 
condition on the crystallite boundary, respectively, 
for the electrons moving towards and away from the 
boundary. We have a t  z < 0 
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and at  z > 0  

We have introduced in these equations the notation 
v , ( p ) a J ~ k ) ( ~ ) ( ,  i.e., the quantities vl and vz a re  non- 
negative. 

Knowledge of the distribution functions enables us to 
find the current density at an arbitrary point of the 
sample. At zero temperature, the coefficient of $(p, z) 
in (5) contains a 6 function in energy. Therefore in- 
tegration over momentum space, which is needed to 
calculate the current, reduces to integration over the 
Fermi surface, and the latter reduces to integration 
over the projection C of the Fermi surface on the plane 
xy (we a re  calculating in fact only the z component of 
the current density). If we denote by $*(p, z )  the 
increments corresponding to the electrons with posi- 
tive and negative z-components of the velocities, then 
we have 

The quasimomentum component p, is assumed here to 
be expressed here in terms of P,, p,, and &,, inasmuch 
as the end of the vector p is situated on the Fermi sur- 
face. Using (16) and (17), we get 

- - 

- z e x p  - z  , Z>O. ( )  .I,  (19) 

Since the z component of the current density is a con- 
stant Go) independent of z, i t  follows that for  given 

,Al@) and Az(p) Eqs. (18) and (19) constitute jointly a 
system of integral equations with respect to the poten- 
tials pl(z) a t  cpz(z). Solution of this system makes i t  
possible, in particular, to find the discontinuity ~ ~ ( 0 ) -  
cp,(O) of the potential on the crystallite separation 
boundary and with it, in accordance with (15), the re- 
sistance of the boundary. 

The condition that the z component of the current 
density be homogeneous leads to the well known (see, 
e .  g. , Ref. 1) electroneutrality condition 

Sdp[f (p,z)-fo(e) 1-0. (20) 

To verify this, i tsuffices to integrate both halves of 
(9) with respect to the momenta. The same result is 
obtained if both halves of (18) and (19) a re  differen- 
tiated with respect to z .  The system obtained by dif- 
ferentiating (18) and (l9), i. e.  , written down using 
directly the electro-neutrality condition, is technically 
more convenient to solve than the initial system. We 
write down this system in the form 

t 1 -- J@P( ) 
I z-e' l 

u l z  - z e x  ( - ) ] = 0; Z<O. (21) 

The method of solving the system (21) and (22) is 
determined by the concrete form of the dispersion law 
and by the functions Al(p) andAp(p). As was already 
noted, the dispersion law is chosen in the form (6). 
As to the functions Al(p) and A2(p), to determine them 
i t  is necessary to make some assumption concerning 
the character of the scattering of the electrons by the 
boundary. We consider separately two limiting cases: 
diffuse and specular scattering. 

2. RESISTANCE OF GRAIN BOUNDARY IN  
DIFFUSE SCATTERING 

Scattering is said to be diffuse when the electron has 
equal probability of being scattered in all directions. 
In other words, the distribution function of the elec- 
trons that move away from the surface does not depend 
on the direction of the momentum after the scattering: 

The use of Eqs. (16) allows us to conclude that in this 
case the functions Al(p) and A2(p) turn into constants: 

A1(p)  =A,, Az(P)  -A2. (25) 
The physical meaning of these constants is that they 
determine the renormalization of the chemical po- 
tential of the electrons that move away from the sur- 
f ace : 

The values of the constants Ai and A? a r e  obtained by 
using Eqs. (18) and (19) with z = 0. 

Since At and A2 a re  constants, the system (21) and 
(22) breaks up into two independent equations. These 
equations can be written in rather simple form, using 
the following circumstances. At the chosen quadratic 
dispersion law, the dependence of the z component of 
the velocity on the x and y components of the momen- 
tum is written in the form 

where (y:",)-' is the element of the matrix inverse to 
)I,,)) .  The regions El and Ez a re  the interiors of el- 
lipses whose equations a re  obtained by equating to zero 
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the radicands in (27). Integration of the functions con- 
tained in (21) and (22) over these regions is elementary 
and leads to the appearance of the integral exponentials 

I 

8, (s) = J dz xn-' exp (-SIX). (28) 
0 

If we go over in (22) to the dimensionless coordinate 
and to the dimensionless potential xz(s): - - 

s=zllYy::', xz(s) = (jol) -L~o(p2(z) Yy::', 

then we obtain from (22) for the function x 2 ( ~ )  an equa- 
tion that contains no parameters: 

A similar equation is obtained (after a suitable transi- 
tion to dimensionless variables) also for x l(s), with 
x l(s) = -X 2(-s). As a net result, taking (15) into ac- 
count, the resistance of the boundary turns out to be 

As seen from (30), in diffuse scattering the resis-  
tance does not depend on the electron mean free path 
in the interior of the metal (since uo is proportional to 
I) and depends relatively weakly on the orientation of 
the crystallites (to the extent that the quantities 7::' 
change). In the absence of disorientation of the grains, 
the resistance does not vanish, since the scattering in- 
troduced in this model " by brute force" still remains. 
In order of magnitude, the resistance of the boundary 
coincides with the resistance of a layer of metal of 
thickness I .  Therefore the relative contribution of the 
diffusely scattering boundaries to the total resistance 
of the metal is of the order of Z/d (dis  the dimension 
of the grain in the polycrystal) . This contribution con- 
stitutes a unique size effect connected with the internal 
boundaries in polycrystalline samples. 

As to the constant x 2(0), general considerations con- 
nected with i t s  determination from the solution of Eq. 
(29), which contains no parameters, shows that this 
constant should be of the order of unity. At the same 
time i t  is possible to obtain an exact integral repre- 
sentation of this constant. Basic to its determination 
is the directly verifiable fact that the solution of (29) 
is of the form 

x2(s) =s+a+f (s), (31) 

where a is an arbitrary constant and f(s) is the solution 
of the homogeneous Milne equation, which is well known 
in the literature: 

f(x)-+ f~~(l~--yl)f(u)du-~. (32) 
0 

Wiener and Hopf (see, e. g., Ref. 2) have shown that 
the solution of Milne's equation can be written in the 
form 

f ( 4  -C(z+b+g(4 ), (33) 
where C is an arbitrary constant b is a determined 
constant, and the function g(x) decreases exponentially 
a t  infinity. 

85 Sov. Phys. JETP 51 (1 1, Jan. 1980 

By choosing the constants C and a i t  is possible to 
make the function x2(s) decrease a t  infinity. Thus, the 
determination of x ,(O) reduces to a determination of such 
a solution of Milne's equation, in which the leading term 
of the asymptotic form at infinity is -x. Then ~ ~ ( 0 )  
= -g(O) . To find g(0) we must solve the Milne equation 
by the Weiner-Hopf method. The standard factoriza- 
tion procedure leads ultimately to the result 

The constant ~ ~ ( 0 )  thus turns out to be different from 
zero and positive, as i t  should, since resistance is 
positive. 

The physical cause of the boundary resistance is the 
stopping of the electrons by the boundary, and, as a 
consequence, of the appearance of an electric double 
layer on the boundary. When current flows from left 
to right in the right-hand crystal, an excess negative 
charge is produced with a density that varies in pro- 
portion to 1/ 1 z 1 . Speaking more accurately, by dif- 
ferentiating the potential twice with respect to z we ob- 
tain for the excess charge density Ap the expression 
(at Iz 1/1<< 1) 

ApCv) (z) --jo/8n~~ooy::)z. (35) 

Accordingly, the field increases logarithmically as lz I 
-0. It must be borne in mind, of course, that the in- 
equality lz I >> a must be satisfied, where a i s  the in- 
teratomic distance. At lz I/l>>l the excess density is 
exponentially small, and a t  1 zl - 1 i t  is of the order of 
Ap-p,(a/l)2(vD/v,), where pa is the "atomic density," 
pa - e/a3, vD = jo/en is the drift velocity of the carr iers .  
At I z I- a the charge density increases to a value of the 
order of pa(a/Z)(~D/~F). Despite the smallness (in the 
parameter a/Z) of the charge density, i t  is precisely the 
appearance of the double layer which causes the jump- 
like increase of the pot en ti alp^ near the boundary, i. e., 
the appearance of the resistance (a plot of the potential 
q,(z) is shown in Fig. 2). We note in conclusion that 
diffusion scattering of the electrons is apparently al- 
ways realized in the case of boundaries with large dis- 
orientation angles, since the resultant roughnesses a re  
comparable in scale with the de Broglie wavelength of 
the electron. 

3. GRAIN-BOUNDARY RESISTANCE IN 
SPECULAR SCATTERING 

The general method of determining the boundary re- 
sistance is based in this case, a s  before, on a solution 
of the system (21), (22). However, to find the func- 

FIG. 2. 
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tions A1(p) and Az(p) i t  is necessary to understand in 
detail what is meant by specular scattering of an elec- 
tron by a grain boundary. The approach to the solution 
of this question is developed in the paper by Kaganov 
and Fiks. 

The "specularity" of the process of the collision of the 
electron with the boundary means that the energy and the 
the x and y components of the momentum a r e  conserved 
in the course of this collision. The use of this fact 
makes it possible, given the momentum of the electron 
incident on the boundary, to obtain the momenta of the 
reflected and refracted electrons. The corresponding 
construction is shown in Fig. 1. The fact that only 
three rather than four waves coexist on the boundary 
is a consequence of the radiation principle, namely in 
the refracted wave the z component of the group vel- 
ocity should be directed away from the boundary. 

To find the wave functions and the flux densities in 
the reflected and refracted waves we must solve the 
Schradinger equation in the f i r s t  and second media, 
subject to the boundary conditions that the wave func- 
tion and the probability flux density be continuous on 
the boundary. The usual procedure can then be used 
to calculate the reflection and transmission coefficients 
Rand  T: 

The quantities vi and v2 are  the group velocities in the 
incident and refracted waves, respectively. They are  
calculated from the given p,, p,, and p,  (which a re  the 
same for both media because of the specularity) with 
the aid of the relations (27). If the point (PI., pY) is lo- 
cated outside the region Co in which the ellipses C1 and 
Cz are  superimposed (see Fig. 3), then the reflection 
coefficient R becomes equal to unity and the transmis- 
sion coefficient T becomes equal to zero. This means 
that the total internal reflection takes place for these 
electrons. Formally, one of the velocities becomes 
pure imaginary in this case. 

It follows from (23) that the difference between the 
velocities v1 and vz is due to the difference between the 
components of the dimensionless tensor of the recip- 
rocal effective mass y,,, i.e., to the disorientation of 
the contiguous grains. In the absence of disorientation, 
and also in the presence of a twin boundary and a sym- 
metric tilt boundary we have vl and v2 and R =0, T =0, 
i. e., complete passage takes place and the resistance 
should vanish. 

Using the solution of the quantum-mechanical problem 
of the elementary act of collision of the electron with 

the boundary, we can write down the boundary conditions 
for the considered kinetic problem. These conditions 
must be formulated in a manner to satisfy the law of 
conservation of the number of particles passing through 
the boundary. Simple considerations connected with a 
calculation of the total probability of the compound event 
leads to the following boundary conditions for the in- 
crements to the distribution function: 

$2+(O, pz') =R$z-(O, pz) +T$i+(O, pi), 

P,') =R61+(0,  pi) +Tqz-(O, pz). 
(37) 

Indeed, the transition of the electrons into the state p; 
can take place either from the state pz in the same 
crystallite by reflection with probability R, o r  from the 
state pl is another crystallite by refraction with prob- 
ability T. This reasoning proves the validity of the 
f i rs t  boundary condition (37). Similar reasoning just- 
ifies the second condition (37). In the actual application 
of the conditions (37), i t  is important that the incident 
and reflected electrons have equal z components of the 
velocity. 

Substituting (16) in (37), we obtain the functions Al(p) 
and A&) : 

A~ (p) =T ((pz(0) -(pl ( 0 )  ) -RvzzEI+Tu~TE~+ (3 8) 

Substitution of expressions (38) in formulas (18) and 
(19) shows, in particular, that the z component of the 
current density is continuous on going through the 
boundary: 

which confirms once more the correctness of the 
boundary conditions (37). 

Knowledge of the functions Az(p) and A l(p) makes it 
possible to write down the system (21) and (22) as ap- 
plied to the case of specular scattering: 

FIG. 3. 
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In contrast to the case of diffuse scattering, the sys- 
tem (40) and (41) does not break up into two indepen- 
dent equations. In addition, the structure of the equa- 
tions of this system is much more complicated because 
of the presence of the coefficients Rand T, which a re  
analytic in v1 and vz. As a result of these circum- 
stances, in the general case, a t  an arbitrary disor- 
ientation of the crystallites, i t  is impossible to find the 
solutions of (40) and (41) in closed form, and hence to 
find the resistance of the boundary. However this need 
not be done, since principal interest attaches to small 
disorientation of the grains. In fact, a t  large disor- 
ientation angles 6, the scattering, as already men- 
tioned, becomes diffuse and the reasoning of the pre- 
ceding section applies to this case. At small 6 we ob- 
tain the resistance, bypassing the solution of (40) and 
(41), with the aid of the following considerations. 

If there is no disorientation (6 = 0), then the crystal- 
lites a re  identical, vi = v2, El = E2, R =0, T =  1, the 
region C1 coincides with C2, the system becomes hom- 
ogeneous and is satisfied by potentials % and cpz that 
vanish identically. The resistance of the boundary is 
in this case, of course, zero. It is perfectly natural 
to assume that a t  small 6 the potentials cp, and cp2 a r e  
small to the extent that the right-hand sides of the sys- 
tem of equations (40) and (41) h e  small. Therefore 
a t  6 <<I in all the terms containing cp we can put vi 
= v2, R = 0, and T = 1, and we can assume that the 
region Z1 coincides with the region C2. 

Following this simplification, the integrals over the 
regions El, in the terms that contain cp can be easily 
calculated and lead to the appearance, just as in the dif- 
fuse case, of integral exponentials. The system is then 
written in the following form: 

where s = z/lyii2 is the dimensionless coordinate in- 
troduced previously; in the left-hand sides of (42) and 
(43) the cp, a re  written for the sake of simplicity a s  

functions of the dimensionless coordinate s .  Tech- 
nically i t  is convenient to assume that the terms that 
contain the discontinuity of the potential belong to the 
right-hand sides of the equations, since the discon- 
tinuity itself is a constant subject to determination. 
The convenience lies in the fact that in this method of 
analysis the homogeneous system corresponding to 
expressions (42) and (43) is self-adjoint. 

It can be directly verified that this homogeneous sys- 
tem has two solutions: cpl = cp2 = const and cpl = s, 
c p 2  = s. The presence of a solution identically equal to 
a constant is physically obvious, since the potential is 
defined accurate to an arbitrary constant. This solu- 
tion of the homogeneous system holds true both in the 
diffuse case and for the non-simplified system (401, 
(41). As to the second solution, i t  is valid specifically 
only for small disorientation angles in specular re- 
flections. 

For the existence of the solution of our homogeneous 
system i t  is necessary to satisfy the condition that the 
right-hand side be orthogonal to the solution of the cor- 
responding homogeneous system (we take into account 
in this statement the fact that the system (42), (43) is 
self-adjoint). It can be verified that the orthogonality 
of the right-hand side to the f i rs t  solution (i.e., to a 
constant) is automatic and takes place not only in the 
case of small 6, but also for arbitrary 6. On the other 
hand, orthogonality of the right-hand side to the sec- 
ond solution is a relation from which we obtain the 
sought discontinuity of the potential (accurate to small 
quantities of higher order in 6) : 

( q 2 ( o )  -cp,(o) ) a , ( s )  

- LJJ dp. dp. [ E , ( ~ + R )  - E I I  2 r-zivr s ds-0. (44) 
4nps2 I, UI " I  I 

If we now integrate with respect to s, express the 
electric fields El and E2 in terms of jo and uo in accord 
with (lo), and divide Eq. (44) by jo, then we obtain the 
following expression for the resistance: 

v*' + l l d ~ = d ~ . [ ( f + R )  ;;;;- ( I - R )  =]I. (45) 
XI IS 7(: 

Here and below we shall assume y::' = yi:' = y,, where- 
ever this assumption does not affect the final results.. 
We calculate the resistance of the tilt and twist bound- 
aries, assuming for simplicity that the Fermi surface 
is an ellipsoid of revolution. 

A. A tilt boundary is characterized by the fact that 
the principal axes ptl' and pi2' of the equal-energy el- 
lipsoids a re  differently oriented relative to the plane 
of the boundary (see Fig. 3a, the p, axis is directed 
along the normal to the plane of the boundary). The 
matrix (ly,,((for the f i rs t  and second ellipsoids takes 
the form 
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0 0 

1 9;) 11 = 0 y-'Z cosa 6, + y sin2 6, (?I* - y) sin e, cos 6, 
0 ( r ' l s -  y)sin 6, cos Bv y-'/*sin2 6,  f y cosa 6, r - ) (46) 

Here y = y 3 ~  is an element of the matrix Ilyikll in terms 
of the principal axes of the ellipsoid (detlIy,,ll= 1). We 
assume for the sake of argument that y < 1 and that the 
projection of the second ellipsoid on the plane of the 
boundary lies inside the projection of the f i rs t  ellip- 
soidonthe sameplane, i.e., Z 2 c C 1  (see Fig. 3b) In 
this case the dependence of the z component of the 
velocity on the z and y components of the momentum 
takes according to (27) and (46) the form v,, 
=Ydf;))112v Fllv, where 

u,=[i-n.'- (1-a)n,']", ~ ,=[ l -n ,2 -n , ' ] '~ .  (47) 

Here n,= (y114p,)/pF, n, = [f114(y~~')'12py]/pF, and a is 
a dimensionless parameter that characterizes the de- 
gree of orientation of the crystallites and is small to 
the extent that the disorientation angle 6 191 - 92 1 is 
small: 

I I r-'i*-r 
a= (6 sin 26,+6' cos 26,) - . 

r:;) r ::' 
Expression (45) for YI', accurate to quantities of 

higher order of smallness in a ,  takes the form 

where r0 = Z1n Z2 = C2. The calculations yield the re- 
sistance of the tilt boundary: 

B. In the case of a twist boundary, the principal axes 
PI'' and ~ 1 ~ '  of the equal-energy ellipsoids a re  located 
in the boundary plane symmetrically relative to the p,  
direction, and the p, axis is chosen as before along the 
normal to the plane of the boundary (see Fig. 312). The 
matrix Ilyikll for the f i rs t  and second ellipsoids is of 
the form 

b b y 0 s  + y 5 sin (- l)v+l(y-l"- 

6 6 6 
2 2 2 

(- l)\+l(-,r~ - y) sin - cos - y sin' - + y-'l* COP - 
2 

0 0 Y 

Here y =yl l  is the element of the matrix Ily,,ll in terms 
of the principal axes of the equal-energy ellipsoid (y 
< 1). The projections of the f i rs t  and second ellipsoids 
onto the plane of the boundary (z  = 0) a re  oriented sym- 
metrical relative to the p, direction. The dependence 
of the z components of the velocity on the x and y com- 
ponents of the momentum takes according to (27) and 
(51) in the form v,= (y~3/2)vpl~,,, where 

Here n,=pJy:{2pF, ny = P ~ / Y ~ ~ / ~ P ~ ,  and ar is the small 
parameter of disorientation of the ellipsoids: 

where 6 = 19,- 8 2  1 . Expression (45) for  9? takes the 
form 

where Z ,, = Ci fl Zz. The calculations yield the ex- 
pression 

g - - drz, dn, (22,-u;) '+0(aa)  - - - Jj 
31 

a% a+O ( a a ) .  (5 5) 
2noorr.C , 400)'r,, 

Just as in the case of diffuse scattering, the resis- 
tance of the grain boundary does not depend on the 
mean free path I of the electrons in the interior of the 
metal. However, the dependence of the resistance 9? 
on the disorientation of the crystallites, characterized 
by the angle 6, is quite substantial and leads to van- 
ishing of the resistance effect a t  small 6 ( c  #1n(1/6)). 
From (48) and (50) i t  is seen that in the case of a tilt 
boundary, a t  certain special orientations of one of the 
crystallites (9 = 0 o r  9 =n/2), the resistance 8 de- 
creases compared with the value of in the case of 
nonspecial orientations by a factor fj2. We note also 
that the results for the resistance (50) and (55) a re  
valid, according to (48) and (53) although for large- 
angle grain boundaries under the condition that the 
shape of the Fermi surface differs little from a sphere, 
i.e., 1 yll  - y3, I << 1. The electric field near the cry- 
stallite boundary, in contrast to the diffuse case, re- 
mains finite. The case of specular scattering of the 
electrons by the boundary between single crystals is 
characterized also by the appearance of a new spatial 
scale 1+ = a1I21 of the variation of the potential. Just as 
in the diffuse case, the physical cause of the resistance 
of the boundary is the appearance of a double layer, 
whose "thickness"is determined by the orientational 
parameters of the bicrystal. At angles 6 - 1 the "spec- 
ular" resistance is of the same order as the diffuse 
resistance, i. e. ,  the resistance of the polycrystal 
takes in this case the form 

p = ~ ~ ( l + f i z / d ) ,  

where po is the resistivity of the single crystal and the 
parameter p - 1 depends on the distribution of the grain 
orientations. 

The determination of the character of the dependence 
of the resistance on the crystallite disorientation angle 
[RE ti2 1n(1/6)] allows us to state that if we introduce 
the diffuseness coefficient in the grain-boundary prob- 
lem, then this coefficient turns out to be proportional 
to 'ln(l/ ) at small crystallite disorientation angles 
s2 ln(1/6). 

')TO avoid possible misunderstandings, we note that the total 
potential Q "(2) i s  constructed in accordance with (13) using the 
formula @,,(z) = -Evz+ P,,(z) - cp,,(O), so that it i s  continuous on 
the boundary. 
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A mechanism whereby an ionic conductor goes into the superionic state is proposed. The disordering of 
the cation sublattices, which consists of a shift of a cation from a site to one of the interstices of the 
same unit cell, if the number of the interstices is large, leads to an increase of the dielectric constant E of 
the crystal, since dipoles consisting of interstitial and site cations are produced in the system in this case. 
On the other hand, the shift of cations from sites to interstices with increasing E consumes less energy, 
because of the larger polarization of the medium by the dipole. As a result, with increasing T, a first- 
order phase transition from a state with low E (ordered cation sublattice) into a state with high E 

(disordered cation sublattice) can occur. At large E,  conditions become easier also for the production of 
carriers, i.e., of excess cations in other unit cells and of the vacancies that remain after their departure, 
since the Coulomb interaction between them becomes weaker. The jump of E leads therefore to a jump in 
the conductivity. 

PACS numbers: 66.30.Dn, 77.20. + y 

It is customary to single out from among the solid 
electrolytes the group of superionic conductors, which 
have relatively high ionic conductivity (a> 10-=&2-l cm-') 
above a certain temperature.' As a rule, the transi- 
tion to the high-conductivity state proceeeds jumpwise, 
with the resistance changing by several orders of mag- 
nitude. This jump differs substantially from the in- 
sulator-metal phase transition in electronic conductors 
in that the resistance in the high-conductivity phase, 
just as in the low-conductivity phase, depends exponent- 
ially on the temperature, but the activation energy in 
the former is much lower than in the latter. A transi- 
tion into the superionic state is accompanied simul- 
taneously by partial disordering of the lattice, wherein 
the translational symmetry is lost in the arrangement 
of the cations that carry  the current, but is preserved 
for the low-mobility anions (it is customary to speak 
of melting of the cation sublattice and preservation of 
the anion sublattice). 

A characteristic feature of materials that can become 
superionic is the complexity of their crystallographic 
structure. The latter manifests itself, in particular, 
in the large number of equivalent unit-cell interstices 
to which a cation can go from i t s  normal stable posi- 
tion. It must therefore be emphasized that, despite 
the prevailing opinion, the very melting of the cation 
sublattice still does not automatically lead to high con- 
ductivity. In fact, the charge transfer consists of a 
transition of cations from some unit cells to others, 
i. e . ,  i ts  necessary condition is the presence of "polar 
statesw-unit cells with either excess o r  deficit of ca- 

tions. Yet the loss of translational symmetry of the 
cations can take place also without the cations going 
from cell to cell-simply by the cation going into one of 
the interstices within the same unit cell. This kind of 
"melting" is similar in essence to the "order-disorder" 
phase transition in ferroelectrics which, as is well 
known, is usually not accompanied by high conductiv- 
ity. The reason is that in typical ferroelectrics the 
energy needed to produce the excess cations and their 
vacancies is high. It can be lower in solid electrolytes, 
but certainly exceeds the energy needed by the cation 
to leave a si te and go to an interstice in the same unit 
cell. 

At the same time, the physics of the melting of the 
cation sublattice in solid electrolytes is not clear (it 
differs from the disorder in ferroelectrics in that in 
the latter the cations become redistributed among 
equivalent positions within the unit cell, whereas in 
solid electrolytes the moves a re  from sites to inter- 
stices). In the previously advanced theories213 it  is 
postulated that attraction exists between the cations in 
the interstices, so  that when the number of cations in- 
creases formation of more remote defects of this type 
is facilitated and a first-order phase transition into a 
state with a molten cation sublattice becomes possible. 
The physical nature of the attraction, and whether i t  
exists at all, remains unclear. It is therefore desir- 
able to construct a theory of superionic conductors 
without using yet-unfounded hypotheses. The present 
paper is an attempt to construct such a theory. We 
emphasize that the mechanism proposed below for the 
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