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We calculate the dispersion coefficient and investigate the stability to decays of the phonon modes of the 
Bose spectrum in the superfluid A ,  B, and 2 0  phases of a model system of the ~ e '  type. All the modes 
in the B phase are stable, and in the A and 2D phases the stability depends on the angle between the 
momentum of the collective excitation and the selected direction. 
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1. lNTRODUCTlON solved by calculating the correct ions to the linear dis- 
persion law. The calculation shows the stability of al l  

We have investigated, in a model Fermi  system of the the phonon branches in the B phase. 
He3 type, the stability of collective Bose excitations of 
the phonon type" to decays of one excitation into severa l  
others. The Bose spectrum of He3 was calculated in a 
number of s t ~ d i e s . ' ' ~  Acoustic and spin waves were  
shown to exist in the B phase, and acoustic and orbital 
waves in the A and 2 0  phases. 

The stability of the Bose spectrum can be considered 
with respect  to various processes:  to pair  decay into 
initial fermions (see Ref. 5 for  orbital waves), and to 
decay of a collective Bose excitation o r  severa l  Bose 
excitations of the s ame  type o r  into severa l  Bose excita- 
tions of different types corresponding to different 
energy-spectrum dispersion laws. 

In the isotropic B phase, the decay of the phonon into 
individual fermions is forbidden, s ince the excitation 
energy i s  much lower than the binding energy 2A of the 
Cooper pair. The decay of a n  excitation into two o r  
severa l  excitations of the s ame  type i s  kinematically 
forbidden if & ~ / d k *  c O ,  and the E(k) curve bends down- 
ward away from the tangent uk (Fig. 1). This i s  equiv- 
alent to a positive dispersion coefficient y in the dis- 
persion law E(k) =uk(l  - #) (at smal l  k). Therefore 
the question of the stability of phonon excitations i s  

In the anisotropic phases (A, 20)  the energy gap of the 
Fermi  spectrum depends on the direction of the mo- 
mentum and vanishes in the selected direction. Decay 
of the phonon into individual fermions is  therefore en- 
ergywise possible here. On the other hand, the ques- 
tion of the stability to decay into Bose excitations, just 
as in the B phase, reduces to finding the corrections to 
the linear dispersion law. A calculation shows that the 
excitation i s  s tab le  if i ts  momentum lies within certain 
cones described around a preferred direction, and i s  
unstable in the opposite case. 

2. THE ~e~ MODEL AND THE HYDRODYNAMIC 
ACTION FUNCTIONAL 

We consider the model sys tem of the He3 type pro- 
posed by Alonso and ~ o p o v . ~  The collective Bose ex- 
citations in the sys tem a r e  described by a functional of 
the hydrodynamic action S,, obtained after  functional in- 
tegration over the Fermi  fields. The functional takes 
the form 
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FIG. 1. 

Here c,,(p) is  the Fourier transform of the tensor field 
cfa(x, 7) with vector index i and with isotopic index a ,  
and fi is  the operator: 

2 - I  (io-f +pHor) tip,,, 
@ = ( - (pV) -"(n.l-n21) cia+ (p,+p,)o., Z-l(-iu+j+piYos)bp.. 

(2.2) 

where 5 =c,(k - k,), n, =k,/k,, H i s  the magnetic 
field, p i s  the magnetic moment of the quasiparticle, 
a,(a = 1,2,3) a r e  Pauli matrices, Z is  a normalization 
constant, P-' = T, and w = (2n + 1)aT i s  the Fermi f re-  
quency. The negative constant g in (2.1) i s  proportional 
to the scattering amplitude of two fermions near the 
Fermi sphere under the assumption that the amplitude 
i s  equal to g(kl - kt, k3 - k4), where kt and k, a r e  the 
momenta of the incident fermions, and kg and k4 a r e  the 
momenta of the outgoing fermions. The method of ob- 
taining the functional Sh i s  described in greater detail 
in Ref. 4. 

At the present stage it is  important to us  that this 
functional contains the entire information on the physi- 
cal properties of the model system. 

In the region T, - T" T,, we expand the functional 
In det in (2.1) in powers of the deviation cia(#) from the 
condensate value c :y(p), which is different for different 
phases. We apply the shift cia(p) - c,(i'(p) +cia(#) and 
separate from Sh the quadratic form 

1 
ccef (p)c,b(p)A,jea(~) +3x(cla(~)cjb(-~)f d ~ I ~ + ( P ) ~ ~ ~ + ( - P ) ) B ~ * ( P ) .  

P P 

(2.3) 
It is  this form which determines, in first  approxima- 
tion, the Bose spectrum obtained from the equation 

det Q=O. (2.4) 

Here Q is a matrix of quadratic form, determined by 
the coefficient tensors Aifab, Bffab in (2.3). These quan- 
tities a re  proportional to the integrals of the products 
of the Green's functions of the fermions. Most effec- 
tive in the calculation of these integrals is  the Feynman 
procedure customarily used in relativistic quantum 
theory. In the present case the procedure i s  based on 
the identity 

1 
I 

da - 
(2.5) 

It is easy to evaluate by this procedure the integrals 
with respect to the variables w and 5 ,  and then with 
respect to the angle variables and the parameter (Y. 

Expanding the obtained expressions up to terms 
-w4, k4,  and w2k2 inclusive and solving next Eq. (2.4), 
we obtain the sought corrections to the linear disper- 

sion law in the B phase. For the A and 2 0  phases the 
coefficients of w2 and k2 have in general a logarithmic 
dependence of P2 = w2 + & k t .  For  these phases, 
therefore, the corrections to the linear dispersion law 
can be obtained accurately by calculating only the terms 
- w 2  1np2 and k2 1np2. We obtain below the phonon 
branches of the Bose spectrum in the limit a s  T - 0, 
with the corrections to the linear dispersion law sepa- 
rately for each of the B, A, and 2 0  phases. 

3. THE B PHASE 

The condensate function c$'(p) in the B phase i s  given 
by4 

c::' (p)= (pV)'hcGpoG~a (3.1) 

where c is  obtained from the equation 

Making the shift cia(P) -cl:'(p) +c,,(p), we separate in 
Sh a quadratic form in the new variables 

where 

Inverting G -I,  we get 

where 

It follows from (3.4) and (3.6) that 

PS-PI-P 

Here t r  denotes the trace over the matrix indices. 

Considering small P, we make the substitution n3 - - n if p, +P,=P and n, - n, if p3 - Pi =p. Making also 
the substitution P, - - p, in the sums over P3 - Pi =P and 
taking the trace, we obtain the quadratic part of Sh in 
the form 

118 Sov. Phys. JETP 51(1), Jan. 1980 P. N. Brusov and V. N. Popov 118 



where 

F ( p )  =ia-g,  G(p)=  Z ( W ~ + E ~ + A ~ ) - ' .  

Equation (3.8) has the same form a s  (2.3). Following 
the substitutions 

cia(p) = ~ I . ( P ) + ~ V ~ ( P ) ,  c f  (P) =u,(p)- ivb(p)  (3.9) 

expression (3.8) breaks up into two independent forms, 
one of which depends on uia and the other on via: 

In (3.10), the term that corresponds to p = O  i s  equal to4 

the u-form has three zero eigenvectors corresponding to 
the variables a,, - uZi, u2, - u,,, u,, - u,,, while the v 
form has a single zero vector corresponding to the 
variable vli +v,, +us,. It is  precisely these which a r e  
the ~~phonod '  variables, and the corresponding spectral 
branches start  out from zero. 

We consider now the difference A,,@) - Aij(0). Ap- 
plying to the denominators of the Green's functions 
G(P,) and G(P2) in (3.8) the Feynman procedure, we ob- 
tain 

Considering the limit a s  T - 0, we change in (3.12) to 
integration near the Fermi sphere in accordance with 
the rule 

(pV)-' z - ckr~2s ) - ' cF-1  J d o ,  el dOl, 
P, 

where SdS2, is  the integral over the angle variables. 
We replace furthermore in (3.12) 5,- -5, and make 
the shifts w i  - wi + (1 - a)w and o,- -w, + ow, s o  that 
w ,  +w2 =o, and the substitutions 5 ,  - 5,  + (1 - a)c,n,k 
and 5,- -5, + acpnik, SO that 5, + 5, =c,n,k. We then 
obtain for (3.12) the expression 

4ZZk,' ' 
- - J da  j d o ,  del dQln,inlj 

( 2 n ) ' ~ r  I, 

where q2 = w2 + &(n,k),. Integrating with respect to the 
variable ri = wi + 5; , we obtain 

Expanding the integrand in powers of the small pa- 
rameter (~ (1-  ( Y ) ~ ~ A - ~  and integrating with respect to a ,  
we arrive a t  the formula 

qz ~ , , ( p )  -AU(O) j d ~ ,  (%- -&) nl.n.j. (3.15) 

Similar calculations yield for Bijab(P) - B,,,,(O) 

ZLkpz q2 qh 
B.,& ( p )  -81,. (0) = ,-j dQ. (z - x) (6.b-2nl*l~dnl.nl.. (3.16) 

The integrals with respect to the angle variable in 
(3.15) and (3.16) can be easily calculated. Using (3.11), 
(3.15), and (3.16), we write down the explicit expres- 
sion for (3.10) in the form 

2 
- $z { (t f) wi#ia* T ( ~ m a ~ b b + ~ l a ~ a l )  

14 
P 

a2 o4 1 0' 
+w. .q .  [b. (- - -) +'i(k'~i,+2kik,) (--; -rn) 

3 3A2 20A4 15 3A 
cF' - -(lc'6,,+4kzk,kJ) * wi.wjb6.b - - - 

700A' 1 [ (6z &) 
~ r '  1 cd  + -(k'1S,~+2k.k,) 7 -- --(k46ij+4kzk'kj)] (3.17) 
15 (bAz ) lO50A4 

2 a2 a' 2ka C ,  a2cp' ) + caaba,,+a.~abj+a,ab., [E ( - =+ =) + 105 (- += 
caLk' 4 +--I + ~ ( 6 1 ~ k ~ k b + ~ . & ' . k ~ + 6 ~ 1 k b k ~ + 6 b j k ~ k , + 6 ~ , k ~ k i + S 1 , , k ~ k ~ )  

47254' 
c ' 02cpZ cF'kZ 8cp6 

x (- 4 + + -) + - kakbk,kj] .  
2A- A 4725A 

It i s  understood here that we first  must substitute w,, 
=ui, and take the upper sign in place of the symbols 
i and r, and then substitute wia=via and take the lower 
sign. 

Expression (3.17) determines the phonon branches of 
the spectrum of the system. Since the B phase is spa- 
tially isotropic and has no preferred direction, it suf- 
fices to consider excitations propagating in any direc- 
tion, say along the third axis. The quadratic form of 
the variables w, in (3.17) breaks up after the substitu- 
tions ki = k2 = 0 and k, = k into a sum of four variables, 
of which the first  depends on wi2 and w , ~ ,  the second on 
w,, and w,,, the third on w,, and w,,, and the fourth on 
W,,, W22, and W33. 

For w,, =via the phonon branch is determined by the 
form of the variables v,,, v,,, and v,,. This form i s  
proportional to the expression 

Here 

where x = w/h, y = c,k/A. 

The third-order determinant of the form (3.18) is  
equal to (a - c)  x (b (a + c) - 2d2). Since the difference 
a - c does not vanish a s  w -0 and k - 0, we obtain 
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Substitution in (3.21) leads to the equation 

x~+'/,y2+L/12x4+2/21~yZ+1/lLOyL=0. 

Its solution after returning to the variables w and k and 
making the substitution iw - E yields the acoustic 
branch of the spectrum 

It i s  stable with respect to decay of excitation into two 
or  several excitations of the same type. It i s  inter- 
esting that the dispersion coefficient y = 2c~' /45h '  
turns out to be two times a s  large a s  for the Fermi-gas 
model with pointlike scalar in te ra~ t ion .~  

We consider now the form of the variables u,, which 
decay a t  k, =k, = 0 into four independent forms. Of im- 
portance to us  a r e  the forms of the variables (u,,, u,,) 
and (ui3, u,,), which a r e  proportional to the expressions 

~/11(1112+~2,)z+(u,22+u212) 113/goz2+'9/e3"yz-7/310x'-J1/3'10~zy/ y4 I , 
-2cl2ll:( ['/;j~Z+1/815y?-1/?(21~L-z/ ,I,S x2y2-1/'721yLl,  

(3.23) 
z/,~(~,l+uII)2+u132(13/gcx2+1/;2~~-T/JOO~i-2S/JLLoxZy2-~/i~y~) 

+ ~ ~ ~ ( ' ~ / ~ ~ x ~ + ' ~ / ~ , ( . ~ ~ - ' / . ? ~ > x ~ - ~ ~ /  ,OLO xZy2-Li/JiBoy')  
- 2 1 ~ ~ ~ : : ~ ~  ('/,5x~4'/,U~y2-'/:~Lx4-2/121x2y2-1/0,1y). 

The form of the variables (uZ3, u,,) is  obtained from the 
second form in (3.23) by making the substitution 
(u,,,~,,) - (u,,, u,,). Equating to zero the determinants 
of the forms (3.23), we obtain the branch of the longi- 
tudinal spin waves (the variables u,, and u,,) 

and the doubly degenerate branch of transverse spin 
waves (the variables ui3, u3, and u,,, u3,) 

Both branches, a s  well a s  the acoustic branch (3.22) a r e  
stable. 

4. THE A PHASE 

The A phase is anisotropic and has a preferred direc- 
tion along the common orbital angular momentum of 
the Cooper pair. The gap is given by 

A=A, sin 0 ,  Ao=2cZ. (4.1) 

The quantity c enters in the condensate wave function 
c:): 

and satisfies the equation 

1 22' sin' 0 -+-C 
g BY ~ , P + P + I ~ ~ z '   sin'^= O. 

Performing a shift by an amount c::' in the functional S, 
and separating the quadratic form with respect to the 
new variables c,,, we get 

where G(p) = 2(w2 + [' +A: sin26)-'. The plus or  minus 
sign in (4.4) means that it i s  necessary to take the plus 
sign when multiplying by c;,c;, and the minus sign 
when multiplying by ci,cj,.- 

The form (4.4) is a sum of three independent forms 
that differ in the value of the isotopic index a and go 
over into one another when the variables a r e  inter- 
changed. Therefore the spectrum in the A phase turns 
out to be triply degenerate and it suffices to consider 
one of the three forms (e.g., with a = 1). 

We take the form with a = 1 and separate in it the 
terms corresponding to P = 0: 

~t i s  clear therefore that one can choose a s  the phonon 
variables 

The Bose spectrum is determined by a form that 
depends on the phonon variables. It is possible to make 
in it the substitutions Aij(P) - Afj(P) - A,,(O) and Btj(P) - B,,(P) - B,,(O), since At,(O) and Bij(0) a r e  equal to 
zero for  the phonon variables. Calculation of Aij(p) 
- Afj(0) and B,,(P) - Bf,(0) is  analogous to that carried 
out above fo r  the B phase. Using the Feynman pro- 
cedure and integrating with respect to w, and [* (as 
T - 0), we obtain 

+ a ( * - a ) q 2  
ho' sin' 0 , + a ( l - a )  q' 1 ' 

Z2kp2 ' 
(4.7) 

Bci* ( p )  -B,* (0) = --y- 5 d a  5 dQ,n,.n,i 
4 n  C P  

a ( 1 - a ) q z  
X exp ( * 2icp1) A,P s i n 2 0 , + a ( l - a ) q 2  ' 

. -- 

Here q2 = w2 + c;(nlk)', B f ,  is the coefficient of c; c; 
and Blj is  the coefficient of c,c,. 

If we expand under the integral signs in (4.7) in 
powers of a(1-  (u)q2/h; sin26,, a t  small w and k,  and 
confine ourselves to the first  term of the expansion, 
then we obtain in the calculation of A,,(P) - A,,(O) a 
logarithmically diverging integral proportional to 
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The cause of the divergence i s  that near the poles of 
the Fermi sphere (O= 0, I) the parameter q 2 a ( l  - u)/  
A: sin2e,, i s  no longer small and we cannot expand in its 
terms. What i s  needed here i s  an accurate calculation 
of the first  integral of (4.7) at i = j  =3, the results of 
which is 

k,TZ A 1 2 
A,. ( p )  -A.,(o) - -[2p2 ln -f - p2 + - c A ' - 2 ~ . ~ k :  . 

p2 3 3 I 
(4.9) 

at small p2 = w2 +&kt .  

This difficulty does not a r i se  in the calculation of the 
remaining elements Aij(P) - Aij(0), a s  well a s  B,,(P) 
- B ,,(O). However, it is  precisely the appearance of 
logarithms which makes it possible to calculate the 
corrections to the linear dispersion law in the chosen 
approximation, where we confine ourselves to the 
phonon variables. For comparison we recall that in 
the B phase the calculation of the dispersion coefficient 
called for allowance for the coupling between the photon 
and non-phonon modes. 

As a result we arr ive  a t  the following matrix of the 
phonon variables: 

(PI + cFZ (k; l -  ~;n, ' I S  C ~ ~ ~ I ~ Z ,  cF2klk3 
'Ir cFtk~kB, a ( p )  + '11s cFZ (ka2 - klz), cp2kpkj 

cp2k1ka cPzk$c,, 3a2+ cFPkz 

(4.10) 
where 

The equation det Q = 0 can be written in the form 

where k:, = 12: and k: = k: + ki. The equation gives three 
branches of the spectrum: one with E~ = c;k2/3 and two 
with E2 fi: ~ g k ? ,  . From (4.12) we can obtain the correc- 
tions to the linear dispersion law and determine the 
region of stability of the Bose spectrum. The result of 
the solution of (4.12) i s  

51 cos' 6-40 c0s2 0+5 
L ( k ) = c  k 1 - ( 72 ros2 8(cosa 0 - ' / , ) ln (4A2/ f1 (e~  k ) )  1, 

where 

The obtained equations show that the stability of the 
spectrum in the A phase depends on the angle 0 between 
the excitation momentum and the preferred direction. 
The first  (acoustic) mode is stable inside the cones 
cos2fl > 1/3, and the second inside the cones cos2 e>3/11, 
(Fig. 2). The third mode is stable in the regions 

FIG. 2 .  

Outside the instability regions, the energy of the ex- 
citation becomes complex because of the imaginary 
parts of the logarithms in (4.13). Physically this is 
connected with the impossibility of the decay of the ex- 
citation into constituent fermions whose momenta a r e  
close to the preferred direction. 

Equations (4.13) for the orbital waves E2(k) and E3(k) 
can be compared with the results of Ref. 5, where the 
following dispersion laws were obtained for them: 

A 

where 6, = cosi3, k, =sine, 6 =A, ,  and v ,  = c,. Although 
the excitation stability investigated in Ref. 5 was with 
respect to decay into fermions, we can use  (4.15) and 
(4.16) to estimate the stability with respect to the 
decays of orbital excitations into two or  several excita- 
tions of the same type (with respect to the sign of a 2 ~ /  
ak2). 

If we neglect in (4.15) the Fermi-liquid correction F;, 
we obtain an equation that differs from a(p) - cgk?/ 
12 = 0 only in the addition to the logarithm [ 1/6 in (4.11) 
and 1/5 in (4.15)]. The stability region a t  F; turns out 
to be the same (cos28r 3/11) as for the E2(k) branch in 
the model system considered here. 

For the branch (4.16), the stability takes place inside 
the cones cos28> (25- (385)'12)/24 =0.22, and the situa- 
tion here is greatly different from that of E,(k), where 
we have two stability regions. 

Thus, one of the modes of the orbital waves, obtained 
here by a method based on functional integration, co- 
incides with the one obtained in Ref. 5 by the kinetic- 
equation method. As to the second orbital mode, the 
corrections to the linear spectrum E = c p , ,  in Ref. 5 
and in our paper a r e  substantially different and lead to 
different stability regions. The possible reason i s  that 
in our case the mode E,(k) is coupled with the acoustic 
mode Ei(k), whereas no such coupling i s  considered in 
Ref. 5. 

5. THE 20 PHASE 

The planar 20 phase i s  stable in a zero magnetic field. 
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However, as shown in Ref. 4, when the external mag- 
netic field is increased in the considered model to H 
= H,, the B phase goes over into the 2 0  phase. Alonso 
and popov4 obtained an explicit formula for  the critical 
magnetic field in the Ginzburg-Landau region 

and advanced arguments favoring the possibility of a 
transition of real ~e~ from the B to the 2 0  phase in a 
magnetic field. 

We investigate here the Bose spectrum of the 20 phase 
a s  T-- 0 and show that the phonon excitations a r e  deter- 
mined by the same equation (4.12) and a r e  given by the 
same formulas (4.13) as  in the A phase, and differ only 
in the degeneracy multiplicity (2 in the 2 0  phase and 3 
in the A phase). 

The preferred direction in the 2 0  phase is the direc- 
tion of the external magnetic field. The condensate wae 
wave function is of the form 

where c satisfies an equation that coincides with (4.3) 
for the A phase. The form of the gap A = A, sin0 also 
coincides with the one existing in the A phase. 

Following a shift cia-- c::' +c,, and separation of the 
quadratic form with respect to the new variables, we 
obtain the expression 

Here tr, denotes the trace of a second-order matrix, 
and the functions A, B, C, and D a r e  given by 

Examination of those terms of (5.3) which correspond 
to P = 0 shows that the phonon variables of the system 
a re  

We set in (5.3) all the nonphonon variables equal to 
zero, making the substitution 

Subtracting from the coefficient tensors their values at 
p = 0 and calculating the trace tr,, we obtain in place of 
(5.3) 

It is understood that the substitutions (5.6) have been 
made in (5.7). 

The expression AlA2 + BIB, - A,A-, - BIB-, can be 
represented in the form of a sum of two terms, one of 
which depends on 5, +pH and the other on 5 ,  - pH.  
Then, after replacing the integration variable 5, - 5, 
- pH in the first term and 5, - 5, + p H  in the second 
term, we arrive at expressions that do not depend on 
H. We can therefore replace 

z'(AIAz+BIBa-AIA-l-B~B-l) -+ (tor+fl) (loz+6s) G,Gz-(o:+tla)Gt: 
Gl=Z (o?+f:+Ap' sin' 0) -I. 

We similarly have 
Z2(C-,Cz-D-,Dz-C-,C,+ D-,Dl) +AoZ(n,"-nz2) (GIG2-GIZ), 
Z2(C-,C,-D-,D,-C-,C,+D-,Dl) -A,Z(n,'-n,Z) (GIG2-GIz), 

Zz(C-,D,+D-,C,-2C-,Dl) +2A,Znlnz(GlG,-G?), 
Zz(C-,D,+D-,C,-2C-,Dl) +2Aoznln2(G,Gg-G?). 

We can now rewrite (5.7) in the form 

We have obtained the sum of two forms, one of which 
depends only on u and the only on v, while the v form is 
obtained from the u form by the substitutions u-  v, 
us, + - V3,, and 1 . 4 ~ ~  - us,. This shows that the spectrum 
is doubly degenerate. 

Comparing the v form in (5.8) with the form of the 
variables c,, in the A phase (4.4), we see that they co- 
incide if we replace w = 1/2(u1, +v,,) in (4.4) by v 
= 1/2(vi1 +vZ2), u by v3,, and v =v3, by v,,. 

Thus, in the considered approximation (neglecting the 
coupling between the phonon and zero-phonon modes), 
the phonon modes of the spectrum in the A and 2 0  
phases coincide and differ only in the degeneracy multi- 
plicity (3 in the A phase and 2 in the 2 0  phase). This 
neglect does not influence the stability of the spectrum. 
We note that no such agreement obtains for the zero- 
phonon modes, which depend on H in the 2 0  phase. 

"We call a Bose excitation a phonon (an excitation of the 
phonon type) if its spectrum starts out from zero, so that 
limE(k)=O as k-0. 
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The presence of inertia effects gives rise to the appearance of a new high-frequency electrohydrodynamic 
instability in nematic liquid crystals. The fundamental difference between this new instability and those 
previously known is considered theoretically. A qualitatively new behavior of the threshold characteristics 
of the instability is obtained analytically and numerically as a function of the field frequency, of the 
anisotropic parameters of the medium, and of the thickness of the liquid-crystal layer. 

PACS numbers: 61.30.Cz, 61.30.Gd, 47.65. + a 

INTRODUCTION 

I t  is known that t h e r e  a r e  two r e g i m e s  of electrohy- 
drodynamic (EHD) instability of nematic  liquid c r y s t a l s  
(NLC), namely the low-frequency conduction reg ime 
and the high-frequency dielectr ic  regime.' In  the con- 
duction regime,  which is real ized a t  f requencies  w of 
the external  e lec t r ic  field E lower than the rec iproca l  
7;' of the space-charge relaxation t ime,  the orientation 
of the d i rec tor  n and the  flow velocity v of the NLC 
hardly change with t ime,  and the volume e lec t r ic  charge 
Q osci l la tes  almost  i n  phase with the e l e c t r i c  field E ( t ) .  
In  the dielectr ic  r e g i m e  a t  w >>T;' the situation is re -  
versed:  the space  charge  osci l la tes  weakly about a c e r -  
tain mean value, and the orientation and velocity v a r y  
with the  frequency of the ex te rna l  field. T h e s e  reg imes  
differ substantially in  the frequency dependence of the  
threshold character is t ics- the voltage Uc(w) and the 
wave numbers  of the produced modulated s t ruc ture  
kc(w). At w << 7,' we have Uc(w) =cons t  and kc(w) -nd-', 
where d is the  thickness  of the NLC layer ;  a t  w>>T;' 
we have Uc(w) -dwlh and k,(w) - w1I2. We emphasize 
that  in the dielectr ic  reg ime the instability threshold 
depends strongly on the thickness  d, while the wave 
number is independent of t h e  la t ter .  

T h e s e  EHD instability r e g i m e s  of NLC a r e  described 
by the system of l inear  equations of nematodynamics,' 
i n  which one usually neglects the iner t ia l  t e r m s  con- 
nected with the derivat ive dv/dt in the Navier-Stokes 
equations. In fact,  th i s  t e r m  is s m a l l  a t  sufficiently low 
field frequency w and layer  thickness  d.a T h e  iner t i a l  
effects were  taken into account by us  approximately in  
an e a r l i e r  paper.2 A solution branch w a s  obtained, cor-  
responding t o  oscillations of the space -charge density, 
of the flow velocity, and of the  d i rec tor  orientation. 

In  the p resen t  paper  we descr ibe  analytically and nu- 
merical ly  a new EHD instability regime,  which a r i s e s  
a t  w >>T;' a s  a resul t  of the  p resence  of iner t ia l  effects. 
T h e  fundamental difference between th i s  reg ime and 
those mentioned e a r l i e r  is that in  the p resen t  c a s e  the 
space  charge  osci l la tes  a lmos t  in  counterphase with the 
e l e c t r i c  field, whereas  the orientation of the d i rec tor  
and the flow velocity vary  litt le about t h e i r  mean values. 
A physical consequence of these  solutions i s  a qualita- 
tively new behavior of the threshold charac te r i s t i cs  as 
functions of the field frequency, of the mate r ia l  param- 
e t e r s ,  and of the  thickness  of the  NLC layer .  

ANALYTIC SOLUTION 

We wr i te  down the complete sys tem of equations of 
nematodynanics. We introduce a coordinate sys tem 
(x ,  y ,  z )  with the x  ax is  directed along the pre fe r red  or i-  
entation of the molecules in  the initial s ta te  in the sub- 
s t r a t e  plane, the z ax is  perpendicular  to  the substrate ,  
and the y ax is  along the  direct ion of the domain s t ruc-  
ture .  Assuming that  the deviations of the d i rec tor  and 
the motion of the liquid occur  in  the xz plane, we obtain 
in  the l inear  approximation the following sys tem of 
equations? 

dv I 
---f + - u.+x@+6E ( t )  Q-0, 

7. 

where J ,  = a n , / a ~ ,  Q is the  space charge,  = k,/k, is the 
ra t io  of the wave vec tors  of the  deformation along the z 
and x  axes  (here,  as in Ref. 2 ,  the boundary conditions 
a r e  taken into account approximately, and i t  is assumed 
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