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New type of high-frequency instability in nematic liquid

crystals
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The presence of inertia effects gives rise to the appearance of a new high-frequency electrohydrodynamic
instability in nematic liquid crystals. The fundamental difference between this new instability and those
previously known is considered theoretically. A qualitatively new behavior of the threshold characteristics
of the instability is obtained analytically and numerically as a function of the field frequency, of the
anisotropic parameters of the medium, and of the thickness of the liquid-crystal layer.

PACS numbers: 61.30.Cz, 61.30.Gd, 47.65. + a

INTRODUCTION

It is known that there are two regimes of electrohy-
drodynamic (EHD) instability of nematic liquid crystals
(NLC), namely the low-frequency conduction regime
and the high-frequency dielectric regime.' In the con-
duction regime, which is realized at frequencies w of
the external electric field E lower than the reciprocal
7.! of the space-charge relaxation time, the orientation
of the director n and the flow velocity v of the NLC
hardly change with time, and the volume electric charge
Q oscillates almost in phase with the electric field E(¢).
In the dielectric regime at w >7! the situation is re-
versed: the space charge oscillates weakly about a cer-
tain mean value, and the orientation and velocity vary
with the frequency of the external field. These regimes
differ substantially in the frequency dependence of the
threshold characteristics—the voltage U (w) and the
wave numbers of the produced modulated structure
k. (w). At w < 7! we have U (w)=const and & (w)~nd™!,
where d is the thickness of the NLC layer; at w>7;*
we have U (w)~dw"? and kc(w)*-w’/”. We emphasize
that in the dielectric regime the instability threshold
depends strongly on the thickness d, while the wave
number is independent of the latter.

These EHD instability regimes of NLC are described
by the system of linear equations of nematodynamics,!
in which one usually neglects the inertial terms con-
nected with the derivative dv/dt in the Navier-Stokes
equations. In fact, this term is small at sufficiently low
field frequency w and layer thickness d.> The inertial
effects were taken into account by us approximately in
an earlier paper.? A solution branch was obtained, cor-
responding to oscillations of the space-charge density,
of the flow velocity, and of the director orientation.
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In the present paper we describe analytically and nu-
merically a new EHD instability regime, which arises
at w>7.! as a result of the presence of inertial effects.
The fundamental difference between this regime and
those mentioned earlier is that in the present case the
space charge oscillates almost in counterphase with the
electric field, whereas the orientation of the director
and the flow velocity vary little about their mean values.
A physical consequence of these solutions is a qualita-
tively new behavior of the threshold characteristics as
functions of the field frequency, of the material param-
eters, and of the thickness of the NLC layer.

ANALYTIC SOLUTION

We write down the complete system of equations of
nematodynamics. We introduce a coordinate system
(x, v, z) with the x axis directed along the preferred ori-
entation of the molecules in the initial state in the sub-
strate plane, the z axis perpendicular to the substrate,
and the y axis along the direction of the domain struc-
ture. Assuming that the deviations of the director and
the motion of the liquid occur in the xz plane, we obtain
in the linear approximation the following system of
equations?:

dv,
ds

+ :— v+ xp+OE (t) Q=0,

i) + Typ+Qu, + —1-E(t)0=0, (1)
ds M

@ 1
e + . Q+ZE (1) =0,

where )=9n,/3x, Q is the space charge, g=Fk,/k, is the
ratio of the wave vectors of the deformation along the z
and x axes (here, as in Ref. 2, the boundary conditions
are taken into account approximately, and it is assumed
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Here ¢, ¢, and 0,0, are respectively the dielectric
constants and the conductivity, measured in directions
parallel and perpendicular to the director, w is the fre-
quency of the external sinusoidal field E(¢) =E, sin(w?),
s=wt is the relative time, K, are the elasticity coef-
ficients, a, are the Leslie viscosity coefficients, and p
is the density of the liquid crystal. The system (1) dif-
fers from that of the earlier paper? in that an inertial
term dv,/ds connected with the change of velocity with
time has been added.

The quantities 7,,I' =7,%, 7, in Egs. (1) can be approx-
imately replaced, without qualitatively changing any es-
sential property of the considered system, by the ex-
pressions

1 v (kl2+k2)? i {1 4an

R L —~—k'+k, ~
T p ok’ To ( ) T @F ®

where ¥,K,0, € are the mean values of the material pa-
rameters; we can also put £,=0 and use the inequality
oK <72,

At high frequencies (1>7.%,7;!), Eqgs. (1) have a sol-
ution branch characterized by the fact that the function
¥(t) and v,(¢) are almost stationary, and the function
Q(¢#) varies in counterphase with change of the field E(t):

v,=v,t4,sin 2wt+B, cos 2wt+ ...,
Y=o +A4, sin 20t+B, cos 20t+ ...,

Q=A,sin wt+B, cos wt+A;sin 3wt+B;cos 3wtt. . ., (4)
|Bi|>|4,], [|v[>(|B.], |4.]),
[%o]> (|Bol, |4:e]),  [Bs]|>(|Bs], [4s]).

It can be shown that the condition for the existence of
a solution (4), i.e., the smallest of the next terms of the
expansion in the Hamiltonian is the following inequality:

o >>7,. (5)
The coefficients of the expansion (4) are connected with
one another by the relations

A~ (0y—0.) Eoo B~ (oy—0L)E, o b — k21000 ,

T, ® Cw

B, Te Te
A, ~ , By~—v, Ay~ Yo,
Ty Ty ToTy

By~max {A¢/1., A/t.}<4,,
. . B
A:"' . Bly B:"’ i max{ v
ToTo ToTo Ty

When the condition (5) is satisfied, the threshold char-
acteristics are obtained from the condition that the am-
plitudes B, 1%, ¢,, not be trivial. This condition states
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(0y—0.) Ed’tot,
d'o T,

~1. (6)

Substitution of expressions (3) in (6) and minimization
of the function E3(k2) yield the threshold values

A
_’“’Ig_] L Q)

—E.d~ )
U © [ (0,—0y) d

At K ~10"%,£~10,5~10*, w ~10%, (0, — 0,) ~G cgs esu we
obtain the threshold value U,~20V.

Expressions (7) show that the new regime of the high-
frequency EHD instability should have a voltage thres-
hold. The spatial period of the produced structure is
comparable with the thickness of the layer and does not
depend on the frequency, whereas the threshold voltage
is proportional to the frequency. The threshold U,
should decrease with increasing average value of the
electric conductivity and with decreasing dielectric con-
stant, and should also increase sharply with decreasing
anisotropy of the electric conductivity.

Since this effect exists only at high frequencies,
where dielectric relaxation and a corresponding depen-
dence of the electric conductivity can take place, the
real U (w) dependence can deviate noticably from lin-
earity. For example, taking into account the dispersion
of the dielectric constant

g (0=0)—¢o
1+o’ts’
where 7, is the Debye relaxation time, we obtain the

known expression for the electric-conductivity compon-
ent

g(o)=¢at

(ey(0=0)—e.) ®*T»

Oy (0)=o0y (0=0)+ Ttoit

It follows therefore that in the intermediate frequency
region
[ 0y (@=0)
(e

(0=0)—¢.)1n ] <e<wn

the product 6(o,—¢,) in (7) depends strongly on the fre-
quency w, increasing with increasing w, and by the
same token weakens strongly the frequency dependence
of the threshold voltage. In particular, it is possible in
principle that the threshold U, decreases with increas-
ing frequency w.

NUMERICAL SOLUTION

For a numerical solution of the system (1) we can pro-
propose the following algorithm, which is a generaliz-
ation of the method proposed in Ref. 2 for the case of
three variables: v,=y,,,, @ =y;. Assuming Y
=(y,, ¥2,¥3), We integrate numerically Eq. (1) from s=0
to s =27 at three initial values of the vector Y:

Y,in=(£,00), Yi=(0,0), Yi"=(00,e),
where € = const #0 [the vector Y,(s) ranges from the val-

value Y, at s=0 to the value Y; at s=27]. In this case
the general solution of the system (1) is

3

Z c.Y;

i=1

and does not depend on the choice of €. The condition
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FIG. 1. Changes of the volume charge @, of the velocity v,,
and of the curvature ¥y during one period of action of the vol-
tage U=dE = U, sinwt, 0<s=wi<2r, The maximum value of
the function Q(s) is set equal to unity. The usual® material
parameters of MBBA were used for the mimerical calculation:
£,=0, £,=5.25, g;=4+10"% @-lem~!, 0,/0,=1.1, w=20-10°
sec™!, The thickness of the liquid crystal is d=200 pm.

that the solution be periodic then reduces to the condi-
tion that the constant c;, at which the solution obtained
by us takes on the same values at the start and at the
end of the period of variation of E(¢), (at s=0 and at s
=27) be nontrivial. This condition can be written in the
form

det {Yfiny,in ylin_yin yfin_yin _q (8)

The threshold value of the electric field intensity E
and the wave vector of the deformation are determined
by the minimum of the E(k,) dependence:

E.=E(k.)=min E(k), k.=>O0.

A numerical solution of the problem (1), (2) has con-
firmed the qualitative theoretical calculation considered
above. The changes of the quantities v, and @ during
one period of the external voltage are shown in Fig. 1.
Assuming that the amplitude of the charge oscillations
to be equal to unity, we find that @ varies in time in ac-
cordance with a nearly harmonic law @ « sin(wt+¢),
where ¢ is the initial phase. The velocity v, fluctuates
about a certain equilibrium position v, ~0.17-107% cm/
sec, the curvature y remains constant at § ~~10 (the
angle of inclination of the director does not vary with

UV
a0

60

L

20

—
L L 1 )
=02 -0;i 0 041 02
23

7.2 14 6,/
FIG. 2. a) Dependence of the threshold voltage U, on the ani-
sotropy of the conductivity o,/0, at €,=€,=5.25. b) Dependence
of the threshold voltage U, and of the wave number k&, of the in-
stability on the dielectric anisotropy €,(€,=5.25) at 0/0,=1.5.
The remaining parameters used for the calculation are the
same as for Fig. 1.
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FIG. 3. Frequency dependences of the threshold voltage U, (w)
at £,=0, £,=5.25, and 0,/0,=1.5. The electric conductivity o,
takes on the following values: 10-% (curve 1), 107 (2), 4-10-8
(3), 10"% (4) @-'cm~!. The remaining parameters used for the
calculations are the same as for Fig. 1.

time).

Figure 2 shows the dependences of the threshold volt-
age on the anisotropy of the electric conductivity and of
the dielectric constant. It is seen from Fig. 2a that the
mechanism at which the given type of EHD instability
sets in is determined essentially by the anisotropy o,
-0,, with U,~= as o,/0,~1. The anisotropy ¢, does
not play a significant role in the considered phenomen-
on, although it does influence the wave number of the
orientational perturbation k. (Fig. 2b).

Figure 3 shows the numerical U, (w) dependence,
which is linear if no account is taken of the dispersion
of the dielectric constant and of the electric conductiv-
ity, as would correspond to Eq. (7). As seen from Fig.
3, the slopes of the straight lines depend strongly on
o, and U (w)= const at large values of the electric con-
ductivity 0,>10"° Q™! cm™. The numerical calculation
has also confirmed that the threshold voltage does not
depend on the thickness of the NLC layer (within the
range of variation of 4 from 22 to 200 ym).

Thus, the results show that the high-frequency EHD
instability of NLC can be characterized in principle by
a low value of the threshold U, and by a spatial period
of the modulated structure n/k, of the order of the layer
d, if the electric conductivity of the NLC is high enough.
The presence of the dispersions g,(w) and 0,(w) greatly
weakens the frequency dependence of U (w). At the
same time, at such high frequencies the anisotropy of
the electric conductivity plays as before a decisive role,
thereby radically distinguishing this type of instability
of the NLC from all the previously known ones.

We emphasize that in the considered case (planar
boundary conditions) the orientation of the director and
the flow velocity undergo perturbations in the xz plane,
which is perpendicular to the domain direction (the y
axis). In the case of oblique orientation on the boundar-
ies of the NLC layer the corresponding perturbations
can occur in the xy plane (the components v, and »,).>
Similar perturbations, as a secondary phenomenon, are
possible also in the planar situation if the primary per-
turbations v, and », are large enough.?

The described EHD instability has some similarity
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with the one observed experimentally by Trufanov,
Blinov, and Barnik.* The threshold characteristics U,
and k, are close to those calculated above in order of
magnitude and in their frequency dependence. The
threshold of U, sharply increases in experiment as o,/
0, -1 and with decreasing 0,. According to Ref. 4 the
observed domains are oriented along the y axis, but the
inclinations of the director and the perturbation of the
velocity were registered in the xy plane. The latter
circumstance suggests two possibilities: the presence
of oblique orientation on the-layer boundaries, or non-
linear deviations of the velocity and of the orientation
above the threshold U,.

In conclusion, the authors are deeply grateful to L. M.

Blinov for his experimental results prior to publication
and for a helpful discussion of the present results.
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We study the spectrum and the damping of longitudinal plasma waves in a degenerate electron plasma at
the collisionless absorption threshold, @ = kvy. We find the electron distribution function and show that
the modulation of the electron velocity by the wave field leads to a dynamic smearing of the threshold,
to the vanishing of the electron susceptibility singularities, and to a radical change in the spectrum in the
neighborhood of the threshold. If the dynamic smearing of the threshold exceeds the temperature and
impurity smearing, the plasmon spectrum is bounded in  and k with k_,, given by (50). In the strongly
nonlinear regime when the oscillation period of the trapped particles is larger than the electron collision
time one can observe in a one-component degenerate plasma an acoustic plasmon with a phase velocity
below vy. The observed changes in the spectrum in the threshold region when we go from the linear to
the nonlinear regime are also typical of other kinds of waves that propagate in a degenerate electron gas

and in a Fermi liquid.

PACS numbers: 71.45.Gm, 52.35.Mw

I. INTRODUCTION

In a degenerate solid state plasma one can observe a
number of strikingly expressed threshold effects. First-
ly, the damping of the quasiparticles which interact with
the electrons changes abruptly at the collisionless ab-
sorption threshold. Secondly, in the excitation spectrum
either there occurs a Kohn-type singularity, or the
spectrum rearranges itself more radically, i.e., there
appear new excitation branches. A typical example of
the excitations which exist near the collisionless absorp-
tion threshold are the dopplerons which have recently
been observed in many metals (see, e.g., Refs. 1,2).
Thirdly, the collisionless absorption threshold deter-
mine the phenomena of the anomalous field penetration
into a metal. The effects listed here are connected with
the singularities of the real and imaginary parts of the
susceptibility of the degenerate electron gas, while the
nature of the singularities is determined by the geom-
etry of the Fermi surface.

The spectrum and the damping of a wave in the thresh-
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old region can change appreciably when the propagating
wave has a large amplitude and changes the trajectories
of resonant particles. It is well known that in this case
the collisionless damping decreases if the period of the
oscillations of the trapped particles wo" is less than the
electron collision time, i.e., a= (wo-r)“ «1, Apartfrom
this, the modulation of the velocity of the resonance
particles by the wave field must lead to a dynamic
smearing of the threshold by an amount of the order of
magnitude of the velocity in the oscillations of the
trapped particles ¥ = (¢,/m)!/?, where ¢, is the wave
amplitude and m the particle mass. The singularity of
the real part of the susceptibility at the collisionless
absorption threshold must. thus be weakened. As a re-
sult the wave spectrum in the threshold region can
change radically. The wave spectrum and the damping
at the threshold change, clearly, only when the dynamic
smearing is larger than the smearing due to the tem-
perature and impurities, i.e., if the inequality

7>kTlps,  T>1/k1
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