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An impact theory of spectral-lime broadening is constructed for transitions between degenerate states and 
anisotropic wlliiions. It is &own that the line contour for the subensemble over atoms with a given velocity 
consists of a set of Lorentz components that differ in width and in position. The number of components 
increases with increasing angular momentum of the combining states. The factors that mask the line sphtting 
because of the anisotropy of the collisions, and the results of numerical calculations for Van der W d s  and 
dipole-dipole interactions, are discussed. 

PAC3 numbers: 32.70.Jz, 34.90. + q 

It is customarily assumed that the impact contour of 
the spectral line corresponding to a transition between 
a pair of isolated levels has a Lorentz shape (see, e.g., 
Ref. 1). Actually, however, this conclusion of the the- 
ory presupposes a spherical symmetry of the average 
perturbationaf the atomic oscillator by the buffer par- 
ticles, i.e., the latter should be unpolarized (as i s  
practically always the case), have an isotropic velocity 

which moves with velocity v. In this frame a "wind" of 
buffer particles moving with group velocity -v blows, 
a s  i t  were, around the radiating atom. It is clear that 
the perturbation of the wave-emission process will have 
axial rather than spherical symmetry, and the sym- 
metry axis is collinear with v. For the electronic 
broadening, the conditions (1.1) a r e  obviously satisfied. 
In broadening due to collisions withatoms, molecules, 
and ions, the model of isotropic collisions is adequate 
for the relatively lighter buffer gas, and i ts  applicabil- 

distribution, and in addition, their average velocities ity is doubtful in the case of heavy perturbing particles. . - - - 
should greatly exceed the average velocities G of the 

The simplest manifestation of the "wind effect" can- radiating particles: , . , s is ts  in the fact that the impact width and the line shift 
PS(V~)=PS( lvbl); cb>v. "") turn out to depend on the velocity of the radiating atom. 

In other words, when the broadening cross  section is 
averaged the radiating particles should be assumed im- 
mobile, while the buffer particles should be assumed to 
move isotropically. The conditions (1.1) serve as  a 
formulation of the so  called isotropic-collision (or iso- 
tropic-perturbation) and if they a re  violated, 
the spectral lines have a more complicated structure, 
wNch i~ fact ~ i ! ?  be dealt with in the prcsezt  article. 

To explain the gist of the matter, we change over to a 
coordinate system connected with the radiating atom, 

This dependence, discussed in the paper of Sobel'man 
and one of  US,^ and in many succeeding p a p e r ~ , ~ - ' ~ - i s  
the only consequence of the wind effect in the absence 
of collisiond disorientation. In the opposite case, the 
line for atoms with a given velocity does not have a 
Lorentz shape. 

The change of the line shape as a result of the aniso- 
tropy of the collisions was f i rs t  established by Kazant- 
sev14 and was investigated in greater detail by Vdovin 
and ~ a l i t s k i 1 . l ~  In both papers they considered a tran- 
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sition between levels with total angular momentum 1 
and 0, and the perturbation was due to the resonant di- 
pole-dipole interaction, s o  an appreciable change in 
velocity was also taken into account. For  the simpler 
model of relaxation constants, but also for  the transi- 
tion 1-0, i t  was shown in Refs. 16 and 17 that the line 
contour consists of two Lorentz components. In a re-  
cent paper, Baranova, Zel'dovich, and Yako~leva '~  
predicted for Raman scattering of light polarization 
singularities also due to the anisotropy of the colli- 
sions. We shall note some related phenomena. The 
wind effect manifests itself in the production of the 
"hidden alignment" observed by ~ h 2 k a . l '  The general 
theory of this phenomenon is discussed in  article by 
D'yakonov and Perel'.' The alignment due to collisions 
with an atomic beam and leading to unique singularities 
of the fluorescence polarization was analyzed by Re- 
bane ." 

According to the theory developed below, the aniso- 
tropy of the collisions leads to a splitting of the spectral 
lines, and the number of the components i s  proportional 
to the angular momenta of the combining states. This 
ra ises  naturally the question of why such-a universal 
phenomenon was not observed (and still remains unob- 
served) during the many decades of experimental re-  
search, which led to accumulation of a tremendous em- 
pirical material on the contours of spectral lines and 
which serve as the basis of many conclusions on the 
physics of collisions. This question, which is funda- 
mental for spectroscopy and atomic physics, i s  dis-  
cussed in Sec. 4 after the exposition of the theory of the 
relaxation matrix (Sec. 2) and of the linear broadening 
theory (Sec. 3). 

2. RELAXATION MATRIX 
In the absence of a change of velocity in the collisions, 

the relaxation i s  described by a matrix whose elements 
can be written in the following form (uq representation 
o r  representation of irreducible tensor operators): 

Here Nb,pb(nb, Iv - ul) a r e  the concentration and distri- 
bution of the perturbing particles over the quantum 
numbers n, and the velocities v,=v -u ,  and u is the rel-  
ative velocity. The integral of ?r(. . . ) with respect to 
the impact parameter p determines the c ross  section, 
which we shall assume for the sake of simplicity to be 
calculated in the approximation of straight-line trajec- 
tories (although the lat ter  is not obligatory): 

The perturbing particles are  assumed to be unpolarized 
( p ,  does not depend on the projection v, of the spins, 
b En,, v,; n, a r e  scalar quantum numbers). 

The functions and S* in (2.2) a r e  the elements of the 

scattering matrix referred to the u-system (the 2 axis 
in i t  is directed along u): The Wigner D matrices in 
(2.1) describe the successive transitions from the lab- 
oratory frame into the v and u systems, so  that 8 de- 
notes the angle between u and v. The quantity E(.  . . ) 
does not depend on the orientation of the u-system in 
space; in  addition, p,(n,, Iv -u l )  depends only on 8, but 
not on the azimuthal angle of u. These circumstances 
a r e  the causes of the equality of some of the indices of 
the D matrices and of the zero values of some of their 
arguments. For simplicity we shall leave out the in- 
dices J from E(. . .) and I?(. . . ). 

It is easy to illustrate the role of the wind effect by 
considering (2.1) for two limiting relations between the 
average velocities iJ and 6, of the radiating and buffer 
particles. If 6 << < (the isotropic-perturbation model), 
then the relative velocity practically coincides with v,, 
and we can discard v from I v - u 1 .  Integration of the D 
matrices with respect to P leads then to h,,,, and ex- 
pression (2.1) reduces to 

i.e., the relaxation matrix i s  diagonal in ~g and does 
not depend on q o r  v. 

In the opposite limit 6>> <, the relative velocity u 
practically coincides with v, i.e., 

pb(nb ,  Iv-u 1 ) =pa (4 6(v-u). 

Under these conditions 6 = 0, D;, (0) = and therefore 

Expression (2.4) corresponds to almost immobile per- 
turbing particles, and therefore the argument of the 
c ross  section i s  the velocity v .  In contrast to (2.3), the 
quantities r ( x q  I ulql;v) in (2.4) a r e  not diagonal in xq, 
and depend on q and v; i t  is  furthermore quite clear that 
the wind effect i s  the common cause of the aforemen- 
tioned singularities: the dependence on both q and q, 
as well as on $ i s  concentrated in the D matrices. 

It must be emphasized that the anisotropic properties 
of the relaxation matrix manifest themselves only to the 
extent to which the collisional disorientation i s  signifi- 
cant. Actually, if the latter i s  absent, then it follows 
directly from the expression of the relaxation matrix in 
the J M  representation 

that r(. . . ) a  6,,,6 ,,,, if o m  6MM16M,lli, In this case the 
only manifestation of the wind effect is  the dependence 
of r ( . . . )  o n v .  

For the discussions that follow i t  is convenient to re- 
write (2.1) in a different form, wherein the tensor prop- 
er t ies  of the relaxation matrix are  explicitly separated: 
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We introduce here the notation 

r (IT%, J , J , ~ ~ , ,  L; V )  = ~ ( X X , L ;  U )  

o ( x x l L ;  nb,p, t r )  = [ ( 2 x + 1 )  (2x1+1) I-" 

x C ( - i ) ~ ~ - ~ ( x p x , - p ~ ~ ~ ) a ( x p ~ x , p ;  nb, p, u ) .  (2.9) 
P 

L is the angular momentum of the individual term in the 
expansion of pb(nb, Iv - u l )  in spherical functions. L = 0 
corresponds to the isotropic par t  of the distribution, 
and L > 0 to the anisotropic part. The elements that a re  
not diagonal in x contain only anisotropic t e rms  while 
the diagonal elements contain both isotropic and aniso- 
tropic terms. The normalization in (2.6) is chosen such 
that the isotropic part  ( L  = 0), which is diagonal in  xq 
and does not depend on q, coincides with r(xxO;v) and 
with the value of r (xq I xq; V) averaged over q o r  over c: 

Let us l ist  some general consequences of (2.6). In the 
v-system the relaxation matrix i s  diagonal in q: 

The change of the sign of q and q, leads to the equation 
r(x-q  1 %,-ql ;  v )  = (-l)X-X~+q-qse"(q~-q)*r( xq lx ,qI ;  - v ) ,  (2.12) 

where rp i s  the azimuthal angle of v in the laboratory 
frame. 

In the approximation (2.2) the differences of the ener- 
gies of the states J and J,, J' and Ji, as well as .b and 
h, i s  much smaller than kT; under these conditions i t  
follows from the reciprocity theorem 

~ ( J J ~ ~ ~ I J , J , ~ x , ~ , ;  V )  = ( - I ) ~ - ~ ~ + ~ - ~ ~ ~ ( J , J , ~ ~ , - ~ ~ I J J ~ x - ~ ;  - v ) .  (2.13) 

Combining the properties (2.12) and (2.13) we arrive 
at the relation 

I'(JJ'xqlJ,J,'xlql; ~ ) = e ~ ' ( ~ ~ - q ) ' r ( J , J , ' x , g , I l J ' x q ;  v ) ,  (2.14) 
which simplifies in the v system: 

~ ( J J ' x ~ I ~ , I , ' ~ , ~ ;  V) = r . : ( ~ )  = r ~ x ( v ) 3 r ( ~ , ~ t ~ x , q I ~ ~ x q ;  v). (2.15) 

The scalar coefficients of the expansion (2.6) satisfy 
the following symmetry relations: 

~ ( J J ' x ,  J ,J , 'z , ,  L; U) = ( - i ) x - x l r ( J j , ' x , ,  JJ'X,  L; v ) .  (2.16) 
We note finally that with respect to the reversal  of the 

sign of q, the quantities r , ~ , ~ ( v )  can be resolved into 
symmetrical and antisymmetrical parts corresponding 
to even and odd values of L in (2.11): 

If parity i s  conserved in the interaction of the collid- 

ing particles, then the only nonzero t e rms  in (2.6) and 
(2.11) a r e  those with even values of L, rgl (v)  = 0, and 
the following additional symmetry relation holds: 

The considered matrix r (JJ 'xq 1 ~ , ~ ~ x , q , ;  v) can be 
used to describe several different phenomena. In the 
present article we a r e  interested only in the contour of 
the spectral  line corresponding to a one-photon transi-  
tion between a pair  of isolated levels. In this problem 
we must put J = J,, J' = Ji. The same relaxation matrix 
determines also the line contour in multiphoton pro- 
cesses. 

The relaxation matrix simplifies substantially if one 
of the combining levels i s  not subject to collisional dis- 
orientation," i.e., 

Under these conditions the JM representation is more 
convenient, and we can derive from (2.5) an equation 
similar to (2.6): 

=6ar.u,- (2J+1)Ih CD~~L(^U, 0) (-I)J-M~(lMJ-M,ILN)r(lJL; v ) ,  (2.20) 
LN 

where 

The matrix (2.20) has a remarkable property that is 
very important for practical problems, namely, i t  i s  
diagonal in the v-system 

rM ( v )  = ( 2 1 + 1 ) ' ~ ~ ~  ( - l ) J - M ( J M J - M I L O ) ~ ( L ,  v ) .  (2.22) 
L 

It is easy to  prove properties similar to (2.101, 
(2.12)-(2.14), and (2.17): 

r M ( v )  = r M s ( ~ ) + r u n ( ~ ) ,  r-M ( v )  = r M 8 ( ~ ) - r M O ( u ) .  (2.26) 

The symmetrical and antisymmetrical par ts  a r e  given 
by the even and odd values of L in (2.22); for interac- 
tions that conserve parity, we have rj;(v) = 0. 

The relaxation-matrix properties proved above follow 
from general symmetry considerations and a r e  in no 
way connected with the concrete form of the scattering 
amplitudes. We assume now validity of the "power-law 
model" frequently used in the impact theory of broaden- 
ing: the angular variables and the distance between the 
colliding particles in the interaction potential are  sepa- 
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rable, and the dependence on the distance follows the 
power law r". In this case the argument of the scat-  
tering matrix in (2.2) and (2.21) is the combination 
q = p ~ l ' ( ~ l ) ,  which enables us to determine the depen- 
dence of I'(q L; v) on v. 

Let pb(nb,vb) be of the form 

Then 

where l,+,,,(z) a r e  Bessel functions of the f i rs t  kind and 
of imaginary argument, while for the coefficient 
~ ( u H ~ L ; v ) ,  defined by (2.7), we obtain the expressions - 

~ ( x x , ~ ;  U ) = N ~ C ~ ~ K ( S ,  L, v)2n J ' a ( x x , ~ ;  q ) q  dq, (2.29) 
0 

where 
(2.31) 

@(a, y ; x )  i s  a confluent hypergeometric function." Ac- 
cording to (2.31), the isotropic par t  of the relaxation 
matrix (L = 0) retains a finite value at v = 0. This part  
reflects the role of the wind effect in the absence of 
disorientation, while expression (2.29) a t  L = 0 agrees 
with the previously obtained one." For the anisotropic 
part, on the other hand, the lowest a r e  the expansion 
terms with L = 1 or  2, and a t  small  v/Gb they behave like 
v/cb o r  (v/V,)'. At the same time we have a t  v >> Gb 

K(s ,  L, u) (v/Fb)', (2.32) 
i.e., the asymptotic dependence on v is the same for all 
L .  

From (2.32), just as from the general limiting ex- 
pression (2.41, i t  follows that 

- 
r ; , ( ~ ) = N ~ ~ ~ . 2 n  J'8(xqlxlq;  q ) q  dq. (2.33) 

0 

In view of the monotonic increase (at a rate v) of the 
anisotropic par t  of the relaxation matrix, a s  well as i ts  
ratio to the isotropic part ,  Eq. (2.33) corresponds to 
the strongest manifestation of the wind effect. 

The noted regularities a r e  clearly seen in Fig. 1, 
which shows plots of the functions K ( s ,  L,v)/K(s, 0,O) 
for s = 3 , 6  and L =O,2,4. The figure shows also the 
Maxwellian distributions in Iv I for the radiating parti- 
cles at mass ratios mb/m = 1/4,1 and 4. Comparing the 
Maxwellian curves 7-9 and the plots 1-6, we note that 
the wind effect i s  insignificant a t  m, s m . 

The dependence on the velocity is described by the 
function K ( s ,  L,v) also in the model (2.19): the quantity 
r ( J J L ;  v) defined by (2.21) i s  proportional to K ( s ,  L ,  v), 
i.e., 

FIG. 1 .  Plots of the functions K ( s , L , v ) / K ( s , O , O ) :  s = 3  for 
curves 1 ,  2 ,  3 and s = 6  for curves 4 ,  5, 6. Curves 1 ,  4; 2 ,  5 ;  
and 3 ,  6  correspont to L =  0 ,  2 ,  and 4 .  Dashed curves -Max- 
wellian distribution for Ivl at m , / m =  1 / 4  (curve 7),  1  (8) , and 
4 (9). 

3. CONTOUR OF SPECTRAL LINE 
The general expression for the specific absorbed (or 

emitted) power P(52) can be represented in the form 

where 
Q=~-U,,, G , = ~ E J z ~ ~ A ,  

pm,(xq,v) i s  an element of the density matrix, d i s  the 
reduced matrix element of the dipole moment, wmn i s  
the Bohr frequency for the nz-n transition, and Ea i s  
the spherical component of the electric field intensity of 
the monochromatic wave (frequency w). 

The kinetic equation for p m n  (xq, v) (the relaxation- 
constant model) 

contains in its right-hand side G ,  and a certain matrix 
B(xq I l o )  that depends on the singularities of the pro- 
cesses of excitation and relaxation of the combining 
levels ( y  is the spontaneous half-width). If it i s  as-  
sumed that the rate of excitation of the levels nl and n i s  
isotropic, then a s  a result of the hidden alignment the 
matrix B(nq I lo)  turns out to be nondiagonal. 

We consider below a simpler model, corresponding to 
an equilibrium distribution over the magnetic sublevels 

B ( x q  1 lo)  =6.,6,.NW(v), (3.3) 
where N i s  the concentration of the absorbing particles 
and W(v) i s  their distribution of the velocities, which 
will be assumed to be Maxwellian. This model is  real- 
ized, for example, for transitions from the ground 
state. 

It i s  convenient to solve the kinetic equation (3.2) in 
the v system, where the relaxation matrix is  diagonal in 
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q. In this system of coordinates 

The subsequent transition into the laboratory system 
leads to the relations 

where 9 is the angle between v and the wave vector k, 5 ,  
= IG*112/~,lGq12. 

The f i r s t  two t e rms  in (3.7) do not depend on the po- 
larization, while the third term reverses sign on going 
from the right to the left-hand polarization (5, = I,(- = 0 
and 5+= O,[-= 1; the quantization axis is along k). The 
polarization dependence of I(52) vanishes when (2.18) i s  
satisfied, since R1(52')=R-,(52') in this case. In the ab- 
sence of Doppler broadening, the only nonzero term is 
the isotropic term 

* 
provided, of course, that W(v) depends only on Ivl . 

To determine the spectral structure of the contour we 
note that the elements of the reciprocal matrix (3.5) 
can be  represented in the form of a partial-fraction ex- 
pansion o r  as a linear combination of Lorentzians: 

', 
R,(Qr)= ~ z , ~ [ ~ + I ' ~ ~ - ~ ( Q ' - A ~ P )  I-', (3.9) 

k-I 

where r:+iA; a re  the eigenvalues of the matrix Fa, and 
the coefficients Z; do not depend on the frequency 52'. 
Thus, the anisotropy of the collision causes splitting of 
the spectral line into several  Lorentzian components 
with different widths and positions of the maxima. This 
splitting i s  universal for all processes between isolated 
levels with arbitrary values of the angular momenta J 
and J'. For the transition J = 1 - J' = 0, considered in 
Refs. 14-17, the quantities R,(52') contain one Lorentz- 
ian each, and the spectral lines consist of three o r  two 
components (the latter for even potentials). In the gen- 
e ra l  case of arbitrary values of J and J' the number of 
components Y can be easily obtained by determining the 
rank of the relaxation matrix. The results are  sum- 
marized in the table. With increasing J and J' the num - 

TABLE I. Number of Lorentz components in the line contour 
(J> J'). 

Disorientntion on onu of  the lcvcls (J) 

lntcgur J and J' J+ 1 
Halt.-integer Jand J' 1 1 1 I 

Parity conservation 

0 1 I, ( I 

ber r increases rapidly, approximately like 6J (or 35). 

Parity nonconxrvation 

70 I h, I , 

In the model (2.191, the relaxation matrix is diagonal 
in the J M  representation, and the line contour consists 
of Lorentzians whose parameters are  given directly by 
the elements r,(v)": 

Integer J and J' 
l i n t  J and J 1 J 1 i:; I J?&cl/z 1 } 21'+1 I J+J' 1 w+2J+1 

Here the number of the components is much less  (see 
the table), and is independent of J'. The value of J' de- 
pends only on the weight with which the different Lo- 
rentzians enter in I@). 

At relatively small  values of J, Jt(J,J' =3/2,2) the or-  
de r  of the characteristic levels is higher than the sec- 
ond, and i t  becomes difficult to determine the eigenval- 
ues of the relaxation matrices in  closed form. Interest 
attaches therefore to approximate calculations of the 
elements R,(52'). One can regard, for example, the 
per tu~bat ion to  be the off-diagonal elements of the ma- 
trix P, and then 

Thus, the off-diagonal elements give a correction of 
the order  of [ q n ]  2/q1en. 

We can assume _the perturbation to be the entire an- 
isotropic par t  of P. Taking into account the f i r s t  egua- 
tion of (2.10) and the fact that the isotropic par t  of ra i s  
independent of q, we obtain from (3.7) [with the aid of 
(3.11)] 

In the absence of Doppler broadening the second line in 
(3.12) vanishes and the corrections to the Lorentz con- 
tour a re  given by the ratio [ I ' ( l n L ; ~ ) ] ~ / r , r , ,  i.e., i t  
turns out t o  be of second order of smallness. This cir-  
cumstance, noted already by Kazantsev,14 i s  general for 
all arbitrary transitions. The anisotropic t e rms  in 
(3.12) contain factors r ( l l L ; v ) / r ,  which a r e  of f i rs t  
order  of smallness. However, the average values of the 
factors cos8 and cos28 - 1/3 i s  zero, and this introduces 
an additional smallness in the case of weak Doppler 
broadening. In the opposite limiting case the impact 
broadening i s  of no significance a t  all. Therefore the 
anisotropic terms in (3.7) can play a certain role only 
in the intermediate situation, when the Doppler and im- 
pact broadenings a r e  comparable. However, i t  is  diffi- 
cult to estimate this role from general considerations, 
and we shall return to this question in a discussion of 
the numerical calculations. 

An expression analogous to (3.12) can be obtained also 
for  the model of "disorientation on one level": i t  is 
necessary to expand the Lorentz t e rms  in (3.10) in pow- 
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e r s  of the anisotropic par t  of the relaxation constants 
and ca r ry  out in explicit form summation over M: 

From (3.13) follow obviously the conclusions discussed 
above. 

To end the section, we note two general conclusions. 
It is easy to show that the integrated (with respect to 
frequency) line intensity 

"is not sensitive" to the wind effect, as should be the 
case, since I ,  does not depend at all on any of the sin- 
gularities of the relaxation of the dipole moment. In 
particular, the anisotropic corrections to (3.14) and 
(3.15) alter the shape of the contour, but do not influ- 
ence I,. From relations (3.7) and (3.11) i t  follows that 
the "wing" of the line has a universal form 

Formula (3.14) refines the well known position of the 
impact theory of broadening (see, e.g., Ref. I ) ,  name- 
ly, i t  indicates the exact meaning of the parameter that 
is important for the intensity of the "wing9'-the iso- 
tropic part  of the diagonal element x = x ,  = 1 of the re- 
laxation matrix. 

4. NUMERICAL CALCULATION. DISCUSSION 

As already noted, the multicomponent character of 
the line a s  a result of the anisotropy of the collisions 
is a perfectly universal effect. At the same time the 
literature, to our knowledge, contains no experimental 
proof of i ts  existence. It is therefore natural to analyze 
the factors that can mask the manifestation of the aniso- 
tropy . A s  one such factor we note, f i rs t  of all, phase 
modulation of an atomic oscillator. It i s  clear that with 
increasing phase randomization the relative contribu- 
tion of the disorientation to the line broadening will de- 
crease, i.e., the role of an anisotropy effects should 
decrease. The foregoing pertains to relatively strong 
phase modulation: a small  contribution of this modula- 
tion may turn out to be useful, since it contributes to  an 
increase of the distance between the components of the 
structure. The latter  considerations are  in agreement 
with the results of numerical calculations of the relax- 
ation matrix performed in Ref. 16 for the transition 1-0 
and for van der  Waals interaction. In the optical region 
of the spectrum, the strong phase modulation is  more 
the rule rather than an exception, and here it can anni- 
hilate the influence of the wind effect, except f o r  the 
dependence of the width and shift on the velocity of the 
radiating particle. 

The broadening theory developed in Sec. 3 was con- 
structed within the framework of the model of relaxa- 

tion constants, i.e., no account is taken of ,the change 
of the velocity in the collisions. This change of velocity 
plays, a s  i s  well known, the role of spectral exchange 
between line components, and can result in collapse of 
the structure, analogous to the Dicke o r  
to other types of ~ o l l a p s e . ~  We shall demonstrate it 
using as an example the transition 1-0, describing the 
change of the velocity by the model of strong collisions 
and neglecting the Doppler broadening. 

Under the foregoing conditions, in place of the sys- 
tem (3.2) we have [we assume n = n,= 0 and employ the 
model (3.311 

Equation (4.1) differs from the Kazantsev equation14 ob- 
tained for resonant dipole-dipole interaction only in the 
structure of the integral arrival  term: in (4.1) we have 
discarded its anisotropic part. 

The solution of (4.1) i s  elementary, after which we 
obtain for I(51) in (3.6) 

q 

If we neglect terms of the form (r:, - c1)4/  (rylr:,)2 (of 
fourth order of smallness) and assume that v and r 
r Z, rq1/3 a r e  independent of v (the latter i s  realized in 
F3 interaction), then it follows from (4.2) and (4.3) that 

Expression (4.4) i s  typical for a contour of a line con- 
sisting of two components and collapsing as a result of 
spectral exchange characterized by the frequency v: 
depending on the relation between v and the difference 
I I?:, - r:, I of the relaxation constants, the line contour 
either consists of two components having different 
widths (v << r ) ,  o r  takes the form of a single Lorentzian 

The last relation demonstrates clearly that the change 
of the velocity in collisions can completely mask the 
line splitting due to anisotropy of the collisions. 

Besides the factors noted above, to observe the spec- 
t r a l  manifestations of the wind effect it i s  essential in 
principle that the anisotropy of the collisions manifest 
itself only in the second order  of smallness [see (3.12), 
(3.13), and the discussion that follows]. 

Proceeding to discuss the numerical calculations, it 
should be noted that at the present time the data on the 
possible values of the constants I?(nn,L; v) o r  r ( J JL ;v )  
a r e  quite limited. Namely, the relaxation matrix with 
allowance for the anistropy of the collisions was calcu- 
lated only for the transition 1-0 in the case of dipole- 
d i p ~ l e ' ~ . ' ~  and van de r  waalsl6 interactions. As shown 
above. the results  of Refs. 14-16 can be used also for 
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the transitions 1-1 and 1-2, if i t  i s  assumed that the 
collisions perturb only one of the levels with J = 1 [see 
(2.201, (2.21), and (3.10)]. It is fo r  these cases that 
numerical calculations were performed of the I(SZ) line 
contour. 

The calculations have shown that individual Lorentz- 
ian components differ from one another quite signifi- 
cantly, up to 25% (depending on the mass ratio mdm, 
see  Fig. 2). However, the entire line contour i s  ac- 
counted for with accuracy not worse than 95% by the 
term of the expansion (2.6) o r  (2.20) with L = 0, i.e., by 
the isotropic par t  of the relaxation matrix, and the con- 
tribution of the anisotropic part  is not more than 5%. 
The foregoing i s  illustrated in Fig. 3, which shows plots 
of the functions I ( a )  corresponding to the 1-0 transition 
and to van der Wads  interaction. An increase of the 
ratio of i7/iTb influences the shape, width, and shift of 
the line as a whole, but likewise principally via the iso- 
tropic part. 

The foregoing conclusions can be illustrated using a s  
the example the limiting case G>>i7,, when the aniso- 
tropy effects a re  maximal, and we have from (2.11) and 
(2.33) 

Here ro corresponds to the value r(110; v) a t  v = 0, and 
the coefficients a,, which can be expressed in terms of 
the cross  section with the aid of relations (2.7), (2.11), 
(2.291, and (2.32), specify the ratios of the relaxation 
constants with different q at i7>> 4. For simplicity we 
consider the line shift and the broadening due to the 
spontaneous decay; then 

Thus, in the considered limiting case the contour of 
the component i s  a universal function whose scale on the 
frequency axis i s  given by the quantity A,. We consider 
now the maximum value of the intensity in the summary 
contour, which i s  obtained a t  SZ = 0: 

FIG. 2. Plots of the functions Re R,(Sl) for the transition 1-0, 
q= 0 (curves 1 and 3) and q=  1 (curves 2 and 4), mass ratio 
mb/m = 4. The impact-broadengin parameters were chosen in 
the following manner: a =  b =  1/7, T "(110; v )  = 0 for curves 
1 .2 ;  a =  -5/8, b=1/7, T"(1lO;v) for curves 3 and 4, where 

I I 
-7 L7 Z JZ/r(JJQ;Q) 

- -. 

FIG. 3. Line contour I(51) in the absence of Doppler broaden- 
ing. Solid curves-exact calculation, dashed curves-for the 
isotropic part of the relaxation matrix, Curves A and B have 
the same parameters as curves 1 and 2 (A)  and 3 and 4 (B)  in 
Fig. 2 .  

where A corresponds according to (2.10) to the isotrop- 
ic par t  of the relaxation matrix. The influence of the 
anisotropic par t  on Z(0) is described in  the second term 
in the square brackets of (4.8). In accordance with the 
results  of Refs. 14-16 we have IAO-AlI/A =0.3, i.e., 
the individual components of the line differ in width and 
in maximum intensity by approximately 30%. For the 
contour as a whole, however, the correction for the 
anisotropy amounts to only 2'/0, in accord with the 
statements made above. 

As shown by numerical calculations, a relatively 
small  Doppler broadening (ki7 of the order  of the impact 
width at v = i7) hardly changes the quantitative relations, 
which a r e  illustrated in Figs. 2 and 3, although under 
the given conditions Z(a) contains t e rms  of f i rs t  order 
in the anisotropy [see (3.12) and the discussion that fol- 
lows]. 

Thus, the corrections to the contour of the spectral 
line on account of the anisotropy of the collisions turn 
out to be relatively small. The principal manifestation 
of the wind effect reduces to a dependence of the iso- 
tropic part  of the relaxation matrix on the velocity. Of 
course, the foregoing is based on numerical values of 
l?(xxlL;v), which SO far  a r e  known only in two 
cases.14-l6 It is not excluded that for other types of in- 
teractions of colliding particles the ratios /Ao -Al //A, 
in (4.8) will be significantly larger. 

The general conclusion formulated above i s  closely 
connected with the assumption that the ensemble of ra-  
diating atoms is isotropic. Otherwise an effective sep- 
aration should take place of some of the R,(SZ), and the 
corrections for the anisotropy of the collisions become 
of the f i rs t  order of smallness. This i s  the situation, 
for example, in experiments with beams," and in non- 
linear saturation s p e c t r o ~ c o p y . ~ ~  

In conclusion, we point out a number of problems for 
the analysis of which the relaxation-matrix theory de- 
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veloped above can be useful. Besides the already noted 
question of the contour of nonlinear resonance, this 
pertains to the problem of the shape of lines connected 
with nonresonant multiphoton processes. It is known, 
in particular, that Raman scattering of light by molecu- 
l a r  hydrogen is  accompanied by an anomalously small  
phase modulation." This circumstance, as emphasized 
above, i s  favorable for manifestation of the collision 
anisotropy. The "hidden alignment" due to the wind ef- 
fect is described by the relaxation matrix (2.1) with J 
= J f =  J ,  =J;. A matrix of general form enters in the 
collapse problem in i ts  usual f ~ r m u l a t i o n , ~  i.e., in the 
analysis of polarization exchange between transitions 
with close Bohr frequencies. 

"1n the optical region of the spectrum one uses frequently also 
a stronger assumption, according to which one of the levels 
is  not perturbed at all, see, e.g., Ref. 1. 

2 ' ~ o  simplify the notation, we have left out from (3.10)-(3.13) 
the quantity 7 ,  .which can be assumed to be included in the 
isotropic part of the relaxation matrix. 

3 ' ~ e  a re  grateful to S. P. Petrova for performing the computer 
calculations. 
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