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Resonant scattering of intense radiation by a system of atoms in a volume with linear dimensions (small, 
compared to the wavelength of the scattered radiation) is considered. Expressions for the stationary density 
matrix, which are valid for any number N of scattering particles, are obtained for the ,cases of exact resonance 
and of widely spaced components. It is shown that the previously predicted hysteresis does not occur in the 
present system. At exact resonance and in the limit as N-+m the system undergoes a sharp transition (similar 
to a second-order transition) from the region of classical behavior into a region in which quantum properties 
are significant. At short delay times T and when the number of scattering atoms exceeds two, the intensity 
correlation function is a growing function of T ,  i.e., the photon antibunching effect that takes place in 
monatomic fluorescence is now absent. At N > 1 the intensity correlation function contains a new component 
(compared with the case N = 1) at a frequency uZ (0 is the distance between the central and lateral spectral 
components). 

PACS numbers: 32.50. + d 

1. The problem of resonant fluorescence (or resonant 
scattering of light) was among the f i rs t  to be solved by 
using quantum-electrodynamics methods. The advent of 
lasers has again attracted attention to this problem. It 
was shown in many theoretical and experimental studies 
(see the literature in Ref. 1) that sideband components 
appear in the scattering spectrum in the field of intense 
radiation. Singularities were also observed in the sta- 
tistics of the scattered light.2-5 Until recently, how- 
ever, all the theoretical calculations of the resonant 
fluorescence were made under the assumption that each 
atom radiates independently of i ts  surrounding atoms. 
This assumption, while well satisfied in the case of 
very low atom densities and corresponding to a neglect 
of the action exerted by the radiation of one atom on 
that of the others, does not hold, of course, if the 
average distance between the atoms is much less than 
the radiation wavelength. The collective effects pro- 
duced when the last condition is satisfied were investi- 
gated mainly a s  applied to spontaneous decay of excited 
states of atoms (see Refs. 6-9 a s  well a s  the literature 
cited in Ref. 9). 

A number of recent s t u d i e ~ ' ~ - ' ~  have dealt with the 
manifestation of collective effects in resonant scat- 
tering of intense radiation. The basis for the analysis 
of these effect is the equation of motion of the density 
matrix of a system of N two-level atoms contained in a 
volume whose linear dimensions a re  much less  than the 
wavelength of the scattered light: 

d^p/dt=i[~,p]+(~/2) {[J-, p^f+I+[J-p^, J+l). 

Equation (1) differs from the usual equation for the de- 
scription of superradiance in that it contains the term 
i [ ? , j j ] .  Here 

V=v(J++J-) +eJ, (2) 

is  the operator of the interaction of the radiation with 
the atoms (in the interaction representation); v = p. ~ / f i  
is the matrix element of the dipole interaction between 
the-incident radiation of amplitude Eo and frequency w0 
with the resonant transition; c = wo - w i s  the detuning 
from the resonant frequency; y  is the probability of 
spontaneous transitions; f+,j- a r e  the collective transi- 

tion operators and satisfy the commutation relations of 
the angular- momentum operators: 

[Y+, J - l = 2 f z ,  [J,, J,]=*Y,. (3 

It i s  easily seen that Eq. (1) conserves the square of the 
angular momentum 

< J a ) = < J , J , ) + < Y . ' ) r ( Y z ) = j ( j + l ) ,  (4) 

where 2 J = N  is the number of emitted atoms. 

The problem (1) was solved in Refs. 10-12 for the 
case of several atoms (N=2,3). It i s  much more diffi- 
cult to deal with the case of many atoms (N>> 1) be- 
cause of the mathematical complexity of the problem. 
Various solution methods were used- expansion of the 
density operator in terms of coherent spin states, solu- 
tion of the equations for the conditional quasiprobability 
function," solution of the corresponding stochastic 
equations by the averaging method,15 numerical analysis 
for N s  15,15 and the method of factoring the mean 
 value^.'^*^^ However, although a variety of methods was 
resorted to, the problem of cooperative resonant fluo- 
rescence did not find i ts  final solution, and the results 
obtained by various authors a re  contradictory in many 
respects. In particular, the use of the factoring method 
has led the authors of the cited papers'6*'7 to state that 
hysteresis i s  present in resonant fluorescence a t  N a  8. 
On the other hand, from the equations derived for the 
coefficients of the expansion of the density matrix in 
terms of the eigenstates of the operator j,, it i s  easy 
to see  that the determinant of the right- hand side does 
not vanish a t  any value of the parameter v / ~ .  Conse- 
quently, to each value of v / ~  corresponds a unique sta- 
tionary solution. In other words, there is no hysteresis 
in such a system and the use of the factoring method 
within the framework of the model described by (1) is 
invalid. 

To examine the collective effects in resonant fluo- 
rescence we single out in this article two cases for 
which stationary solutions have been obtained for Eq. 
(1) and a r e  valid a t  any number N of emitted atom. The 
first  corresponds to exact resonance (E = 0). The sec- 
ond corresponds to the situation wherein the spectrum 
consists of individual non-overlapping components. We 
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prove the existence at E = 0, in the asymptotic limit N 
-- -, of a critical value of the power of the incident 
radiation, up to which the system exhibits classical 
(coherent) properties, and above which quantum effects 
become significant. We analyze the spectrum and the 
two-time correlation function of the intensity of the 
scattered light. It is shown that a t  small time delays 
and at N > 2 the correlation of the intensities is a de- 
creasing function of the delay, i.e., in this case the 
photon antibunching effect, which takes place in mon- 
atomic fluorescence, is absent. An additional com- 
ponent appears in the intensity fluctuation spectrum at 
N z l .  

2. In the case of zero frequency detuning (E = 0) Eq. 
(1) has an exact stationary solution. But f i rs t  we obtain 
an approximate solution that i s  valid in a sufficiently 
large range of variation of the scattered-light power. 

If we put 
f+=J+-ia, f-=f -+i5, 

then Eq. (1) reduces to the form 

where i = 2v/y, T =  yt/2. From (6), by virtue of i ts  
analogy with the usual equation of spontaneou! decay 
for the spin j, it follows that if the operator J- were to 
have eigenvalues, then the stationary solution of (1) 
would be 

where the state Ii-) would be determined from the re- 
lation 

Since the spectrum of 2: is  limited, the operator has 
no exact eigenvalues. However, putting 

where 
c,+.=A-"I(-6) " [ (2j-n) !In! (2j) !I"', 

2, A-C uzn ( ~ j - n )  !!n! (2j) I ,  
,,=o 

we have 

Thus, the state Ij-) defined by formulas (9) and (10) 
a t  

IFc,l"l (12) 
i s  an almost exact eigenstate of the operator j-, and the 
density matrix (7) is an almost exact stationary solution 
of Eq. (1). At small j the inequality (12) is satisfied at 
small v. At appreciable j the range of values of v at  
which (12) is valid becomes larger. In fact, using in 
this case Stirling's formula for (2j)! we can easily show 
that 

16c, I '< (1/2n) (6e/2j) "(8/2j)'. (13) 

The last  expression remains much less than unity a t  

6e/Zj<l-l/2j. (14) 

From this we find that the region in which the solution 

(7) is valid broadens with increasing j to values of on 
the order of 2j/e. 

It should be noted here again that the expansion of the 
solution (7) in powers of coincides with the exact ex- 
pansion (which can be obtained by perturbation theory) 
up to terms of order 4j. 

By virtue of (11) and of the relation 

(Y+J-)=VCj,), (1 5) 
which follows from (I), i t  follows that when (12) is sat- 
isf ied the following equation holds: 

( j+g-,=(f+)cf-)=e2,  (16) 

i.e., the solution (7) is quasiclassical. Recognizing that 
the integrated intensity of the scattered light is propor- 
tional to (j+j-), and the intensity of the coherent 6-like 
component is proportional to ($+)($-) (see, e.g., Ref. 
I ) ,  we find from (16) that in this approximation the en- 
t i re  scattered radiation is coherent. By virtue of the 
remark made above, the noncoherent component ap- 
pears in the scattered radiation only in the (2j + 1)sf 
order in the intensity of the exciting radiation. 

Thus, with increasing j the "region of coherence" 
with respect to the parameter i increases and reaches 
values of the order of j. At sufficiently large j and a t  
(12) the state I L ) ( i -  1 tends asymptotically to the co- 
herent state 1 Oo, (p,)(O,, where rg, = a/2, cosOo 
= [ 1 - (i/j)2] ' I 2 ;  this state corresponds to the classical 
solution of (1).13 

The mean values ( , . fa) ,  calculated with = I j - ) ( j -  I 
and 6 = I go, qo)(Bo, qo 1, a s  well a s  the values of a 
= I c,i 1 ', shown in Fig. 1 a s  functions of p=v/j, con- 
f i rm fully the foregoing estimates. 

When v exceeds 2j/e, the solution (7) no longer holds. 
As noted above, a t  E = 0 an exact solution of the sta- 
tionary equation (1) i s  possible, and there is no need 
to  resort  for  this purpose t o  the numerous methods al- 
ready used to solve (1). The exact solution i s  obtained 
from the general form of Eq. (1). In fact, acccrding to 
(!), in the stationary regime the operators pJ+- and 
i-6 should commute respectively with the operators 3- 
and ,.f+ , i.e., the following relation should hold: 

f-p=f(J+), (17) 

FIG. 1. Dependences of the quantities Z= (2,) /j_and-a = !c,T l2 
on P = T/ j  at j_= 20. Curve 1 was calculated with P= I J_) (J- I ,  
curve 2 yith p= 1 Oar qo) (BOB qo I, and curve 3 with the exact 
value of P 
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wheref is an arbitrary function. Since the operator ,6 
is Hermitian, we get from (17) 

i-x-l ( J - )  -I(?+) -I. (1 8) 
Since the operators 

a r e  defined only fo r  2perators I? that have e igenva l~es , '~  
while the operators ~ - , j +  have none, an additional con- 
dition must be introduced to be able to use (18). Taking 
this condition to be that the density matrix tend to the 
ground state a s  v- 0, 

and taking into account the relations 

we obtain ultimately 

where 
21 m 

A- s*(j-) -1(j+) - I =  

.n-8 a n "  (1 9 4  

It follows from (19) that a s  v - saturation 6, = i sets 
in. 

From the plots of the mean values 
FIG. 2. The functions Z(P), YW), Z,(P) and Z2(P) at 
j = 0 . 5  (1). 1 (2), 5  (3). 15  (4). 50 (5). The dashed curves 
are the asymptotic values of the functions as j - - .  

od of Ref. 20 by averaging the classical solutions ob- 
tained in Ref. 13. This is in fact how the value of F(P) 
was obtained in Ref. 14. From Fig. 2 and relation (4) 
it follows also that unlike in monatomic resonant fluo- 
rescence the dependence of the integrated intensity 
( j+,j-)  of cooperative resonant fluorescence on the 
power of the exciting radiation is n?t ~onotonic .  Even 
a t  relatively small N the function (J, J-) has a maxi- 
mum a t  P = l .  

shown in Fig. 2 it i s  seen that a t  ~ = z / j  = 1, in the case 
of large j, a rather abrupt transition takes place from 
the region P e l ,  in which the system exhibits coherent 
(classical) properties Y c: P, Z2 = 0, into the region P> 1, 
in which quantum effects a r e  significant: Zz# 0, the 
average induced dipole moment Y is not proportional to 
the amplitude P of the incident radiation. In the limit a s  
j -a, but p=v/j i s  finite, the system undergoes at P 
= 1 a near-second-order transition. The asymptotic 
values of the functions (20) a r e  given in this limit by the 

The spontaneous-emission spectrum is determined by 
the Fourier transform of the two-dimensional mean 
value ( 3 ~ " $ ~ * " ) .  In the basis of the eigenstates of the 
operator 3, we have 

( J  1'' J ( ~ + ' )  

+ -- ) 

relations 
(i-$")" p c i  . 

Z(P)={ P i  ' 
where A, = (j + k)( j  - k + I ) ,  and qj (' is the Green's 
function of Eqs. (1) (B:: 'O' = 6,,6,,). It is impossible to 
solve the time-dependent Eq. (1) by the method de- 
scribed above. However, using perturbation theory, 
we can obtain approximate expressions for the spec- 
trum. Thus, in the (2j + 1)st order in the intensity of 
the exciting radiation, a noncoherent component with a 
Lorentz contour appears in the spectrum and has a 
half-wdith yj. With increasing radiation intensity, 

It must be noted here that the asymptotic values of Y, 2, 
and Z at P - 1 can be obtained with the aid of the meth- 

S. Ya. Kilin 1083 1088 Sov. Phys. JETP 51(6), June 1980 



owing to the interference effect," this component 
ceases to have a Lorentz shape and its  width decreases. 
At sufficiently large the Stark shift of the levels gives 
rise to sideband components with frequencies wo&2V. 
There a r e  also components a t  the frequencies wok 2vk 
(k = 2,3,. . , , N). Their intensity, however, is much 
lower than that of the components wok 2v, on the wings 
of which they in fact appear. In the limit v/j >> 1 the 
spectrum goes over into a single-particle spectrum: 
three Lorentz components w, and wok 2v with half- 
widths iy and (3/4)y and with intensity ratio 2 : 1. The 
only difference l ies  in the intensity of the spectrum, 
which is $ N(N + 2) times larger for  the N-particle 
problem than for the single-particle problem. 

In the case of cooperative resonance fluorescence, 
the intensity correlation functions undergo larger 
changes. These changes will be considered below joint- 
ly with the case of widely spaced components. 

3. We consider the influence of the frequency de- 
tuning E on the cooperative resonant fluorescence, using 
an example in which the spectral components a r e  quite 
widely spaced. A numerical formulation of this condi- 
tion will be presented below. 

It is well known that the field of the scattered radia- 
tion c_an be expressed in terms of the Heisenberg opera- 
tors J:". Carrying out the unitary rotation transforma- 
tion 

A1=exp (-iOf ,) A exp (iOf,) , 
fZf=cos BY,+sin Of.=Q-'9, 

.Ti=-sin Of,+cos Of,, 

where sine = 2v/S1, case,= &/a, n2 = 4v2 + c2, we obtain 
in the interaction representation with respect to V 

where 
,$+O=sin Of,', S+*=(cos O*I)f,'/2 

The expansion (23) is valid also in the Heisenberg 
cepresentation. In this case, however, the operators 
Sa depend on the time, If the Rabi frequency SZ i s  much 
higher than the rate of change of the operators 3" a s  a 
result of relaxation, i.e., 

QBri, (24) 
then each of the operators sa can be regarded a s  a 
source of a field a t  the corresponding frequency. The 
intensity of th_e %component is proportional to the 
mean value ( S+aS-a), and the sp_ectrum is proportional 
to the autocorrelation function ( Sy "'sf " "') . TO find 
these quantities a s  well a s  the correlation function of 
the intensities of the scattered radiation, we must 
solve the time-dependent Eq. (1). In the interaction 
representation in P, and if (24) is satisfied, we can 

The obtained equation is fully equivalent to the equation 
for the relaxation of a spin j in contact with a thermo- 
stat2' (with the exception of the terms proportional to 
sin2@). The role of the Boltzmann factor 5 =e-nw~lkT 
is assumed here by the parameter 

E =  (1-cos O)"(l+cos 0)'. (26) 

We note that the terms proportional to sin28 corre- 
spond to the terms that describe the adiabatic broad- 
ening of the transitions in ordinary relaxation theory.22 
In fact, if we introduce the probability of the t ~ a n s i -  
tions between the eigenstates of the operator J, 

dm+,. , = ~ S , + ~ ( ~ + C O S  0)~14,  m=yhm(l-cos 8)'/4, 

then the total width of the mn transition is 

while A, = (m - n)Zsin2tl/2 and describes the adiabatic 
broadening of the mn transition. 

By virtue of the analogy noted above, the stationary 
solution of (25) is 

p=Q-I exp ( -pf l ) ,  

where eqL = 5, and 

Q = S ~  exp (-pf,') =sh [ (2j+l) pl21lsh ( ~ 1 2 ) .  (28) 

The average powers of the operator J: are  given by the 
relation 

< (f.') n, = (-1) "Q-'d"Qldpn. 

The dependences of the mean values 

on the parameters p= l2v/cj 1 ,  calculated on the basis 
of the obtained expressions, a r e  shown for various j in 
Fig. 3. The maximum of the induced dipole moment X 
is reached a t  12v/c I -  1, in exact agreement with the 
condition p- 1 at  E = 0 a s  a consequence of (24). At the 
same value of 1 ~ V / E  1 ,  the effects connected with satura- 
tion become significant. 

It follows from a comparison of Figs. 2 and 3 that the 
influence of the detuning on the collective emission 
manifests itself strongly a t  small values of v. Thus, 
whereas a t  & = 0 the spectrum contains only the co- 
herent component up to the 23'- th order in the intensity 
of the incident radiation, a t  E f 0 the noncoherent com- 
ponents a t  the frequencies 2w,- w and w manifest 
themselves in second order. In the general case the 
intensities of the three components of the spectrum a r e  
given by the equations 

average in (1) over the system's fast motion, whose lo=fio,'(y/o) sinZ e(  ( f  ,')'>, 
characteristic time is S1-lo Taking (23) and (23a) into 

(304 
= ( 1 + c 0 s 0 ) ~  account we obtain I,=A (oo*Q) L (3 -7 [j(j+I)-((f.')')+<f,')l. (30b) 

1-cos8 --- @ - { i n  f I I I ( )  f - 1 The intensity of the coherent component is dt 2 2 
(25) 18=fim01(y/o)S sinz 8 < f  .')'. (304 

1+cosO 
+[j+'(i, J- ' I )+  (T) ~ ~ f - ~ , ~ ~ + ~ l + I f - ~ ~ , f + ~ l ~ } .  According to these formulas, the intensity of the central 
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FIG. 3. Dependences of 2, X, and 2, on ?= I Z v / & j  I at j =  0.5 
(11, 5 (2). 10 (3), 40 (4). 

component increases with increasing v, reaches a maxi- 
mum at  12v/& ] -1, and then decreases to a value 
E W , ~ ( ~ / W ) ~  ( j  + 1)/3. The intensities of the sideband 
components increase monotonically with increasing v, 
and reach in the saturation regime values A(woi 
x (y/w)? ( j  + 1)/16. As to the spectrum of these com- 
ponents, using relation (21) and perturbation theory, it 
is easy to show that at small 12v/& / (in second order 
in 1 ~ V / E  I )  the sideband components a re  Lorentzian with 
half-widths ?j/2. The central noncoherent component 
that appears in third order is also Lorentzian; i ts  half- 
width i s  yj. As a result of the interference effect they 
become narrower and go over in the saturation limit 
into the ordinary components of the one-particle prob- 
lem. As to the multiple components wokk51, they a r e  
absent in the approximation given by (24). 

We consider now the correlations of the intensities of 
the scattered radiation. According to (23), the expres- 
sion for the intensity correlations consists in the ap- 
proximation considered of five components: central, 
two singly shifted by frequencies k 51 and two with double 
the shift a t  i 252: 
GI"" (z) =(J+J:" I(') P-)=Go (7) + 2Gi (T) c o s ( 9 ~ )  +2G2 (T)cos (~QT) ,  

G, (T) = [(I + cos e)/21a (16 E (j;j;(T)j;(T)f;) + 45(/1(Q;j;(T)jY)jz,) (31) 
+ (j+* jL(r)]i(r)j-,)) + 4E1h ( , " z ' j y f ) ~ ~ ) j z , )  + {]-tji(I)jz(r)j+,)) 
+ E (( j+tj!t)j;c.) 1 - r )  + (j-, jy)jyr) I+*)) + ~ a  \ -  , j r j!r)pr) + j + ,) 

+ ( j + , j ; C . ) j ' ( T ) j  ,), 
- - 7  (31a) 

G,(r) = sinz 8([ (1 -1- cos 0)/2I2<f z'J:(r' J:'~' J-') 

+[(1- cos 8)/2]z<~-'~:'1'j:'r' f2')+(sin 0/2)2[<f,'~~'r'J'+""f-'> 

+<3-'Y:"' f:"' Y,')]), (31b) 

G,(z)=(sin 0/2)'<1-'~:"' f :" f-'>. ( 3 1 ~ )  

The function Gi(r) is expressed in terms of the 

Green's matrix of Eq. (25) in a rather complicated man- 
ner. Without investigating the entire dependence on r, 
we note a number of general aspects. 

Fi rs t  is that the spectrum of the intensity correlations 
of the cooperative fluorescence contains components a t  
the frequencies k 251. As follows from (31c), for mon- 
atomic fluorescence ( j  = i), by virtue of the relation 
(tf+)"' ' = 0, this component is absent. Therefore the 
presence of the 252 component in the spectrum of the 
intensity fluctuations can serve a s  a basis for the ex- 
perimental observation of the cooperative character of 
the scattering of the experimentally observed coopera- 
tive character of the light scattering. This fact has also 
been noted in Ref. 18 for the particular case c = 0, $ - a. 
It must be noted here that the onset of the 251 compo- ' 

nents is the result of correlations of the once-shifted 
components of the spectrum with one another. 
These correlations a r e  described by the functions 
( s + ~ s ~ ( ~ ' s ~ ( ~ ) S - ~ ) ,  a =*. In the case of monatomic 
resonant fluorescence they a r e  equal to zero.5 

Of particular interest is the behavior of the functions 
Gi(r) and ~ " ' ~ ' ( r )  a s  r -0, since the function G ' ~ * ~ '  
vanishes for monatomic fluorescence a t  r= 0 (the photon 
antibunching effect). Using relations (4), (28), and (29) we 
can easily show that G(2.2'(0)#0atj # andalways G,,(O) 
2 0, Gz(0) 3 0, G,(O) s 0. The nonvanishing of ~ ' ~ ~ ~ ' ( 0 )  is 
the result of simultaneous emission of two o r  several 
photons by the system of atoms. At low pump intensi- 
ties (5 <c 1) we have 

Go (0) =4j2(4j2+l) E, G, (0) =-8jPE, 
(32) 

Gz (0) k 4 j  (2j-1) 61. 
It follows from (32) that a t  small 5 ( 12v/& 1 << 1) the con- 
tributions to ~ ' ~ ~ ~ ' ( 0 )  a r e  made by the central and once- 
shifted components. The most substantial in the central 
component is the coherent component, since ( i+Z- )  

16j4f, The normalized correlation function of the in- 
tensities is in this approximation 

g ( ~ )  = G ~ ~ , ~ )  (o)/(j+;-) z= 1-1/,+1/4p, (33) 
whereas at E = O  and v/j << 1 it i s  equal to unity up to 
the scattered-light intensity raised to the 2j power. 
Thus, the presence of frequency detuning leads to loss 
of coherence of the scattered light. 

With increasing intensity of the exciting radiation, the 
functions G, (o)/( J+ J - ) ~  increase monotonically. In the 
limit as 5 - 1 we have 

It follows from (34) that in this limit, a t  large j ,  the 
largest contribution to the total correlation function 
G ' ~ * ~ ' ( O )  of the intensities is made by the central and 
the two twice-shifted components. The normalized cor- 
relation function i s  equal to 

Since ~ ( ~ ' ~ ' ( 7 )  - ( j + i - ) 2  a s  7- m, the quantity g(0) 
characterizes the behavior of the function ~ ' ~ ' ~ ' ( 7 )  in 
the mean. From (33) and it follows that a t  low intensi- 
ties of the exciting radiation G '2*2 ' (~ )  is a function that 
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increases on the average a t  any 7, since g(0) < I .  AS 5 
-1 we haveg(0)<1 a t j = a ,  1, a n d 2 a n d g ( 0 ) > 1  a t j  

2. 

In addition to estimating the behavior of the function 
G"*~'(T) in the mean, it is of interest to consider the 
time dependence of ~ ' " ~ ' ( 7 )  a t  small 7. This can be 
done by representing the formal solution of (1) in the 
form (7) = exp@'.r)~(~), where 2 is the Liouville oper- 
ator of Eq. (1). We then have for the first  hvo coeffi- 
cients of the expansion of G n 9 2 ' ( ~ )  in powers of 7 

k,=dG'2,2' (T) l d ~  I r-O=Sp ( f  +f -9 (f -61 +) ) , 
(36) . . 

~ , = S G ( ~ . ~  ( T ) / ~ T ~  I,,~=SP ( J + J - 9  (9 ( f  - i f + ) )  ) . 
Using the solution (19) of Eq. (1) a t  & =0, i t  is easy to 
prove that in the stationary regime 

(37) 

It follows from the last relations that a t  j > 1 the inten- 
sity-correlation function is a t  small T a (quadratically) 
decreasing function of the time delay, whereas a t  j = 4 
and 1 it increases quadratically and cubically with time, 
respectively. Thus, a t  j > 1 there is no photon anti- 
bunching, At high excitation intensity, the absence of 
this effect is due to the existence of the component a t  
the double-shifted frequency in the intensity correlation 
spectrum. In fact, according to (31) and (34) in this 
case k z = -  2(G, +4Ez). 

4. The main singularities of resonant fluorescence, 
when account is taken of the collective character of the 
emission of light by the system of atoms, reduces to the 
following: 

a) With increasing number of radiation-scattering 
atoms, an increase takes place in the coherence region 
(the region in which the scattered radiation is fully co- 
herent) with respect to v, reaching a t  c = O  values on the 
order of the number of the radiating atoms. In the limit 
as j - m, at  ~ = v / j  = 1 a transition analogous to a sec- 
ond-order phase transition takes place from the co- 
herence region into the region where the quantum prop- 
ert ies a r e  significant. 

b) The emission spectrum at  & =0, up to 2j-th order 
in the intensity of the exciting radiation, consists of a 
&like coherent component. In the (2j + 1)st  order a 
noncoherent component appears already in second order. 
With increasing excitation intensity, the spectrum is 
transformed and goes over in the high-intensity limit 
into the spectrum of monatomic fluorescence, but with 
an integrated intensity (4/3)j(j + 1) times larger, The 
integrated intensity of the cooperative resonant fluo- 
rescence is not a monotonic function of the exciting radi- 
ation: a t  c = O  there is a maximum in the region /I= 1. 

c) The correlation of the intensities of the radiation 
scattered by a system of particles differs quite substan- 
tially from the case of scattering by a single atom. 
Above all, the collective character of the radiation . 

manifests itself in the fact that when the spectrum com- 
ponents a r e  widely spaced (a>> yj)  the spectrum of the 
intensity correlations has a component of frequency 251, 
corresponding to monatomic fluorescence. In the satu- 
ration regime, the intensity of this component prevails 

over the intensity of the, component a t  the frequency 2% 
In addition, a t  zero time delay (T= 0) the intensity cor- 
relation function G "*2'(r) is not equal to zero, and a t  
small 7 and when the number of scattering particles 
larger than two, the function ~ ' ~ ' ~ ' ( 7 )  is a decreasing 
function of the delay. In this case the photon antibunch- 
ing effect, which takes place for monatomic fluores- 
cence, is absent. 

In conclusion, notice should be taken of the mnsider- 
able influence exerted on the spectrum of the resonant 
fluorescence by the direct interaction between the 
atoms. Within the framework of the model considered 
in this article, i t  can be taken into account by intro- 
ducing in (1) a term i [Q, 61, where 

Q- z', [ e ; b ( . f / + J , D )  -2qM(j2+f.P)Vl. 
a** 

It is easy to show that this interaction leads, in par- 
ticular, to an increase of the number of spectral com- 
ponents, and in the saturation regime the spectrum does 
not become monatomic. Thus, a t  j = 1 the resonant- 
fluorescence spectrum a t  j = 1 thus consists in the gen- 
era l  case of seven c ~ m ~ o n e n t s . ' ~  

The author thanks P. A. Apanasevich for helpful dis- 
cussion of the results of the work. 

Note added in proof (29 April 1980). When this arti- 
cle was in press,  the author learned of the paper by 
R. R. e r i  and S. V. Lawande [phys. Lett. 72A, 200 
(1979)], in which the method of coherent states was 
used to obtain for Eq. (1) a solution that coincides with 
solution (19) of the present article. 
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Nonlinear processes in vibrational-translational relaxation 
of a gas o f  strongly excited molecules 
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M. V. Lomonosov State University, Moscow 
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An analysis is made of the characteristics of vibrational relaxation processes in strongly excited molecules. An 
important class of new phenomena occurring under these conditions are the nonlinear (depending on the rate 
of excitation) vibrational relaxation processes. Under strong excitation conditions we can expect the 
appearance of new relaxation channels (including stimulated processes); another manifestation of nonlinearity 
is the dependence of the relaxation kinetics on the rate of excitation. The results are reported of experimental 
and theoretical investigations of nonlinear processes in a vibrational-translational (VT) relaxation in 
molecular gases CD, and SF, excited resonantly by laser radiation. Nonexponential VT relaxation processes 
in strongly excited molecules are characterized by an "instantaneous" relaxation time T, dependent on the 
initial vibrational temperature T,(O) and on the timer from the moment of excitation: T, = r,[T,(O), t]. The 
experimental results on the behavior of T, of pure gases and mixtures have made it possible to determine the 
nonlinear mechanisms. It is shown that the contribution to the observxl effects is due to the anharmonicity of 
the vibrations and also due to an increase in the average translational energy of the gas. In the case of the CD, 
molecule these qualitative considerations are supported by a detailed quantitative calculation. In the case of a 
two-mode model of the vibrations in CD, the results of a calculation of "weakly nonlinear" relaxation kinetics 
agree to within at least 20% with the experimental data. A simple one-mode model may be used for relatively 
rough estimates in the case of polyatomic molecules. The nonlinear effects can be very strong also in the case 
of other intermolecular and intramolecular relaxation processes. 

PACS numbers: 33.80.Kn, 33.10.G~ 

INTRODUCTION 

1. Investigation of the  m e c h a n i s m s  of t r ans fo rma t ion  
of t h e  optical exci ta t ion e n e r g y  by molecu les  and  molec-  
ular complexes  is undoubtedly one  of the  c e n t r a l  p rob-  
lems in the  phys ic s  of r e s o n a n t  in t e rac t ion  of laser ra- 
dia t ion wi th  ma t t e r .  Many impor t an t  r e s u l t s  have  been  
obta ined in  t h e  last decade.  Var ious  new exper imen ta l  
me thods  have  been  p roposed ,  w a y s  of d i s s ipa t ion  of t h e  
v ib ra t iona l  exci ta t ion e n e r g y  in g a s e s  and  l iqu ids  have 
been  s tudied,  r a t e s  of ene rgy  conver s ion  have  been  de- 
t e rmined ,  and  laws governing the  d i s t r ibu t ion  of e n e r g y  
between vibra t ional  m o d e s  in polyatomic  molecu les  have  
been  invest igated (see,  f o r  example ,  t he  r e v i e w s  in  
Refs. 1-5). 

r e s e a r c h  on  v ib ra t iona l  relaxation is r e l a t e d  to t h e  
f eas ib i l i t y  of inves t igat ing the  decay  of s t rong ly  exci ted  
s t a t e s .  Many-photon dissocia t ion,  including isotopical ly  
selective dissocia t ion of many  polyatomic  molecu les  h a s  
b e e n  ach ieved  us ing  lasers emi t t ing  f a r  and  n e a r  in- 
f r a r e d  radiation.O1 I t  is n a t u r a l  to expec t  that  i n  the  
case of s u c h  s t r o n g  exci ta t ion t h e r e  should  b e  nonl inear  
v ib ra t iona l  r e l axa t ion  effects ,  i.e., the  n a t u r e  of relaxa- 
tion p r o c e s s e s  m a y  depend on t h e  rate of excitation. In 
t h e  case of highly exci ted  s y s t e m s  w e  can  expec t  new 
re l axa t ion  p r o c e s s e s  a n d  th i s  is t r u e  of i n t e rmolecu la r  
as w e l l  as in t r amolecu la r  re laxat ion.  On the  o t h e r  
hand, t he  ene rgy  t r a n s f e r  r a t e s  ( cha rac te r i s t i c  relaxa- 
tion t i m e s )  f o r  channe l s  a l r e a d y  known m a y  depend on 
t h e  d e g r e e  of excitation. 

O n e  of the  in t e re s t ing  a s p e c t s  of t h i s  new s t a g e  of 2. T h e s e  p r o b l e m s  a r e  now a t t r a c t i n g  inc reas ing  at-  
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