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Energy and angular distributions of particles reflected in 
glancing incidence of a beam of ions on the surface of a 
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An analytic solution is obtained of the problem of a reflection of a wide beam of charged particles incident at 
a glancing angle on the surface of a material. The angular and energy distributions are found for a wide range 
(from atomic to relativistic) of ion velocities. The theoretical results are in good agreement with experiments. 

PACS numbers: 79.20.N~ 

1. INTRODUCTION o r d e r  of magnitude. 

3. The f o r m  of the energy spec t rum i s  invariant un- 
Reflection of part ic les  f r o m  the sur faces  of mate r ia l s  d e r  the transposition lo = 5 .  

plays an important  r o l e  in the problems of radiation 
stabilitv of sur faces  and radiation shielding. Moreover ,  4. The relat ive intensity of the reflected part ic les  de- - 

reflection of par t ic les  f r o m  sur faces  is the b a s i s  of var-  c r e a s e s  on reduction in the nuclear  charge  2, of the tar-  
ious methods f o r  investigating sur face  layers .  In par-  get a toms.  
t icular ,  sputtering of a sur face  by a glancing ion beam 
is used to determine the chemical  composition of sur -  
face layers .  

In the l a s t  two decades the problem of reflection of 
part ic les  f r o m  the sur faces  has been investigated inten- 
sively both experimentally'-'2 and t h e ~ r e t i c a l l ~ . ' ~ - ~ ~  The  ; ' 
resu l t s  of experimental  investigations on the backscat- \ -_ 
tering of ions by solid t a rge t s  were  summar ized  by ". 

\ 
I / 

Mashkova and ~ o c h a n o v , ~  who formulated the following 
charac te r i s t i c  fea tures  established experimentally. 

1 .  At low glancing angles the energy spec t rum of FIG. 1. Target surface coincides with the xy plane and the z 

reflected part ic les  is very  narrow. axis is  directed into the target. The primary beam of ions of 
kinetic energy To is  incident a t  an angle to  to the surface. The 

2. When the sca t te r ing  angle 9 = l is doubled (Fig. angular and energy distributions of the reflected particles a r e  
I ) ,  the half-width of the energy spec t rum changes by an characterized by the angles 5, cp and by the energy T. 

Sov. Phys. JETP 52(2), Aug. 1980 0038-5646/80/080225-06$02.40 @ 1981 American Institute of Physics 225 
225 



5. The energy spectrum is bell-shaped and i t s  half- 
width increases on increase in Z2.  

6. Reduction in the initial energy and scattering angle 
9 produces similar  changes in the energy spectra. 

7. A maximum of the intensity of the reflected parti- 
cles,  integrated over the azimuth cp and over the energy 
of the reflected particles, occurs at  the angle S=So, 
whereas in the plane of incidence (cp =0) the maximum 
corresponds to 5 = 0.85L0. 

Some of these properties have been accounted for the- 
o r e t i ~ a l l ~ . ~ ~ - ~ ~  An important contribution to the theory 
of backscattering of charged particles from the surfaces 
of materials was made by O.B. Firsov. He used an or- 
iginal approach13'16 to this problem and, in particular, 
he obtained the angular distribution of the reflected par- 
ticles averaged over the azimuth without allowance for 
the energy losses. However, the absence of a simple 
analytic solution of the problem allowing for the decel- 
eration of particles in the reflecting medium has made a 
complete analysis of the experimental results  a fairly 
difficult task. For example, no studies have yet been 
made of such important processes a s  the dependence of 
the most probable energy and half-width of the energy 
spectrum of the reflected particles on the characteris- 
tics of the  target, glancing angle, and initial ion ener- 
gy. Moreover, the problem of the total backscattering 
coefficient, i.e., of the probability of emergence of a 
particle from a target, has not yet been solved. 

Our aim is  to obtain the complete distribution of the 
reflected particles over the angles and energies and to 
compare the theoretical distributions with the experi- 
mental results. 

2. SOLUTION OF THE TRANSPORT EQUATION 

Let us assume that a wide monoenergetic beam of ions 
with an initial energy To is  incident on a flat homogen- 
eous target at  a glancing angle to << 1. To be specific, 
we shall assume that the velocity vector of the incident 
particles lies in the xz plane (the z axis i s  directed into 
the target normally to the surface, see  Fig. I ) .  We 
shall also assume that the effective angles of the scat- 
tering of ions by the target atoms @,,, a r e  small  com- 
pared with the characteristic angles of the problem 
whose values a r e  clearly of the order of 5,: 

In this case a particle may emerge from the target only 
after  experiencing a large number of collisions with the 
target atoms, each of such collisions reflecting i t  
through a small  angle. This circumstance makes i t  pos- 
sible to write down the elastic part of the collision in- 
tegral of the transport equation in the diffusion approxi- 
mation using the angular variables 5 and cp (Ref. 13). If, 
moreover, the mean-square value of the scattering an- 
gle over the whole range Ro  is  small: 

(0  ' ( T " )  )R,<cl (2) 

(here, (@J(T,)) is the mean-square of the scattering an- 
gle per  unit path), the problem can be considered in the 
small-angle approximation. We shall confine ourselves 
to the range of initial energies To satisfying the condi- 

where A is the atomic weight of the scattering particles. 
At these energies the process of deceleration of parti- 
cles in a medium can be described by the model of con- 
tinuous slowing down. 

We shall use  N(z , 5,cp, T) for the density of the parti- 
cle flux a t  a depth z , when these particles a r e  moving in 
the direction (L, cp) and their energy i s  T. The transport 
equation for  the function N ( z ,  5, cp, T) subject to allow- 
ance for the energy losses i s  

Here, &-(T) is the average energy loss per unit path. 
When the condition (2) i s  obeyed, the quantity N ( z ,  5, cp,  
T) decreases rapidly on increase in the angles 5 and cp. 
This allows us to assume, in the adopted approxima- 
tion, that the angular variables b ,  cp vary from -03 to 
+a and that the particles moving into the target a r e  
characterized by angles 5 > 0. 

Equation (4) should be supplemented by the boundary 
condition 

where No is the density of the flux in the incident beam 
and the reflection function S(5, cp, T) governs the angular 
and energy distributions of the reflected particles. 
Consequently, the boundary condition (5) contains an un- 
known function S(5, cp, T) ,  which should be determined in 
the process of solving the problem. 

Since the energy T in the scattered beam may exceed 
the energy of the incident ions, the following condition 
should also be satisfied: 

-7 (z. ;, T. T) =O for T,T~. (6) 

It i s  difficult to solve Eq. (4) subject to the boundary 
condition (5) in the general case of an arbitrary depend- 
ence of the mean-square angle of the particle scattering 
(per unit path) on the energy T. However, this difficulty 
can be avoided if i t  is assumed that the spectrum of the 
reflected particles has a sharp  maximum near a certain 
energy T - To. Therefore, we shall adopt the approxi- 
mation 

In the model of continuous slowing down there is a sin- 
gle-valued relationship between the energy of a particle 
T and the path traveled L(T): 

where R(T) is the residual range of particles of energy 
T. For convenience in further calculations, we shall 
introduce dimensionless variables 

and a new dimensionless function N(5, $, X, s), which is 
related to the function N ( z ,  5, cp, T)  by 
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so  that 

N ( z ,  t, cp, T ) = N ( E ,  9, X ,  S)JE,ZROE(T) .  (11) 
A new unit of depth L~((O~(T,,)))-' has a simple physical 
meaning. In fact, a t  a depth z there a r e  only particles 
which have traversed a path L-z/!& in the target; the 
effective transverse displacement from the initial tra- 
jec tory reaches 

As soon a s  this displacement becomes of the order of 
the depth z ,  the particles begin to emerge from the tar- 
get. This is exactly what occurs in a layer of thickness 
s;/(e:>. 

In terms of these new variables, Eq. (4) and the con- 
ditions (5) and (6) become 

N(E,  $, X, s) =O for s<O. (14) 

In the approximation (7), Eq. (12) contains just one 
dimensionless parameter 

The parameter u again has a simple physical meaning: 
it is of the same order a s  the rat io of the mean-square 
value of the scattering angle over the whole path to the 
square of the glancing angle. The greater the value of 
u, the greater the proportion of particles reflected from 
the surface and the narrower the energy spectrum of the 
reflected particles. 

It i s  convenient to solve Eq. (12) by applying the La- 
place transformation to the variable s. We multiply 
Eqs. (12) and (1 3) by exp{-ikX - ps} and integrate with 
respect to x between -.o and +m and also with respect 
to s between 0 and +m. Then, the function 

is subject to 

The condition (14) is satisfied automatically because of 
the nature of the Laplace transformation. Solving Eq. 
(1 7) by the separation of variables, we obtain the fol- 
lowing expression for N(5, $, k , ~ )  

where A(x) i s  the Airy function 

and the unknown function C(X) can be determined from 
the boundary conditions (1 8). The functions A (x$ -x2/X2) 
satisfy the normalization condition 

We shall  substitute 5 = 0, in Eq. (1 9); then multiplying 
the right- and left-parts of Eq. (19) by $A(X,$- w2/k;), 
X, < 0 and intcgrating with respect to J ,  between -m and 
+- subject to Eqs. (18) and (21), we obtain 

Multiplying both parts of Eq. (22) by XIA(Xl$- X'/X?),$ 
< 0 and integrating with respect to A, between -m and 0, 
we obtain the final integral equation for the reflection 
function S($, k,p): 

where for convenience we have made the substitutions 
$- -$ and $, - -I++. In the resultant equation, K,(x) de- 
notes the Macdonald function. It follows from Eq. (23) 
that the kernel and the right-hand side of the integral 
equation a r e  described by functions p " ~ ~ ( p ) ,  where p2 
=x2 + Y 2  -- 2xy cosy. This suggests the following way of 
solving Eq. (23). Using the Gegenbauer addition theor- 
em:22 

where 

[Z,(x) a r e  modified Bessel functions], we expand the 
kernel and the right-hand side of Eq. (23) a s  a series.  
We seek the unknown function S($, k,p) in the form of a 
ser ies  

where the coefficients A, and the function indices a, 
have to be  determined. Substituting the expansions (24) 
and (26) in Eq. (23) and bearing in mind that 

we find that 

Consequently, the function S ( $ ,  k,p) i s  of the form 

Applying the inverse Fourier  transformation to the 
variable k and the inverse Laplace transformation to the 
variable p,  we find that Eq. (29) readily yields the re- 
flection function S($, X ,  s ) :  

In Eq. (30), Erf(x) is the probability integral. The know- 
ledge of the explicit form of the function s($,  k,p) makes 
it possible to find the function C(X) in Eq. (19) and thus 
solve the transport equation. 

227 Sov. Phys. JETP 52(2), Aug. 1980 Rernizovich et a/. 227 



The density of the particle flux a t  a depth 5 traveling 
in the direction ($, X) after traversing a d i s t a n ~ e  s is 
given by 

We can easily show that the above solution of Eq. (12) 
satisfies the boundary conditions (13). 

3. ANGULAR AND ENERGY DISTRIBUTIONS OF 
REFLECTED PARTICLES 

We shall now concentrate on the angular and energy 
distributions of the particles emerging from a target. 
It is convenient to describe this distribution by the dif- 
ferential backscattering coefficient W($, X, u) (u =T/T, 
is the dimensionless energy variable). 

The quantity W(J,, X ,  u) represents the ratio of the 
number of particles reflected in a given direction from 
a unit surface a rea  per unit time to the number of par- 
ticles incident on the same unit a rea  per unit time. 
Since the number of particles emerging from a unit area  
of the target per unit time in the direction (J , ,x )  is 
N o w ( $ ,  X, u), the differential backscattering coefficient 
is 

W ( $ ,  x,  u)=lpS($, x, u ) .  

From Eqs. (30) and (32), we obtain 

The total backscattering coefficient 

represents the fraction of the particles reflected from 
the target, whereas 1 - w is the probability that a par- 
ticle remains trapped in the target. 

Integration of Eq. (33) over the azimuthal angle x gives 
the energy and polar distribution of the scattered par- 
ticles irrespective of the azimuth: 

If we now integrate Eq. (34) with respect to the energy u 
between zero  and unity, we clearly obtain the distribu- 
tion of the emerging particles with respect to the polar 
angle J ,  irrespective of the energy u and of the azimuthal 
angle X: 

~ i r s o v ' ~  found the polar distribution of the reflected 
particles in the case when the deceleration can be ig- 
nored. It is interesting to see  how this special case is 
obtained from Eq. (35). The deceleration of particles in 
a medium becomes of little importance when the mean- 
square value of the scattering angle is much greater, 

over the whole path, than the square of the glancing an- 
gle, because in this case the particles emerge from the 
target before a significant loss in their velocity. Thus, 
the almost elastic reflection of particles corresponds to 
large values of the parameter o>> 1. Going in Eq. (35) 
to the limit o- -, we obtain 

which i s  exactly identical with the results  given in Ref. 
13. The complete angular distribution in the elastic 
scattering case can easily be obtained from Eq. (33): 

As expected, the distribution (3 7) is normalized to 
unity: - m 

S d ~  Jw~I :  ( $ , ~ ) d $ = i .  (39) 
-* 0 

The mean square of the azimuthal angle in the elastic 
reflection case is given by the expression 

The energy distribution o f  the scattered particles ir- 
respective of the direction of emergence from the tar- 
get can be  obtained by averaging Eq. (33) over the an- 
gles: 

F ( r )  = ex, {-d4} [ r ' 1 a ~ - 8 , a  (+) + 
,, =i) 

Here, D,(x) is a parabolic cylindrical function. The 
function on the right-hand side of Eq. (41) decreases ex- 
ponentially on increase in the argument r. This means 
that a particle may emerge from a target only when the 
mean-square value of the angle of deflection from the 
initial direction over a path s exceeds the square of the 
incidence angle, i.e., ~ ( 0 : )  2 5: o r  r < 1. In the case of 
small values it tends to zero  proportionally to r5I4 .  For 
r =r,= 1.7, the function F ( r )  reaches a maximum. 

4. COMPARISON OF THE THEORY WITH 
EXPERIMENT 

In comparing the theoretical expressions for  the dif- 
ferential reflection coefficient obtained in the preceding 
section with the available experimental results we have 
to know the actual form of the dependence i (u)  and also 
the value of the parameter o. The fullest experimental 
study has been made of the reflection of heavy charged 
particles with an initial energy of several  tens of kilo- 
electron volts per nucleon o r  less. In this case the vel- 
ocity of the incident particles is usually less than the 
atomic velocity and the stopping power of the medium 
can be described by the Lindhard formula 
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FIG. 2.  Energy spectra of protons reflected by a nickel target 
(To  =20 keV) at  various angles 5 :  1 )  5 = (1 /3) to;  2) 5 =C0. The 
dashed curves are the experimental results from Ref. 11. The 
continuous curves are calculated using Eq. (33) of the present 
paper. 

F ( u )  =:!T,rr".lR 

s ( u )  =l-u '. 

If particles bombarding a target a r e  ions of charge 2, 
and mass M , ,  the mean-square value of the scattering 
angle per unit path i s  described by23124 

where a. is the Bohr radius; e i s  the electron charge; 
Z,, M,, and no a re ,  respectively, the nuclear charge, 
the atomic mass,  and the density of atoms in the target. 
The range R o  for these particles i s  given by7 

Here, 5,  i s  a certain constant of the order of unity found 
experimentally, and 

Tel'kovskii et  ~ 1 . ' ~ ' ~ ~  determined the energy spectra 
of protons of initial energy T o  =2G keV scattered by a 
nickel target (2 ,  =28). The glancing angle was go =15". 
Moreover, measurements were made of the stopping 
power of nickel and of the mean-square value of the 
scattering angle per unit path, corresponding to the ex- 
perimental conditions in Ref. 24. It was found that [, 
= 1.5 and the value of ( 8 3  was in good agreement with 
Eq. (45 ) .  i n  this case the parameter a was 4.1. It 
should be stressed that although (O:(T,))R~- 1, the theo- 
ry developed above is  applicable in the case of particles 
emerging with an energy T close to the initial energy. 
In fact, such particles travel a distance L << R o  before 
emerging from the target and the quantity (8;)L st i l l  re-  
mains less  than unity, s o  that the small-angle approxi- 
mation holds. Figure 2 shows the energy spectra of the 
backscattered protons in the plane of incidence of the 
primary beam (X = 0 )  and those calculated from Eq. ( 3 3 ) ,  
and the spectra obtained in Ref. 11.  For convenience of 
comparison the spectra a r e  normalized, a s  in Ref. 11,  
to a unit intensity a t  the maximum. 

It follows from Fig. 2 that the theory i s  in satisfactory 
agreement with the experimental results. The greatest 

FIG.  3. Energy spectrum of protons (To  = 275 keV) reflected 
by an amorphous WO3 target. The points are the experimental 
results from Ref. 8. The continuous curve is calculated from 
Eq. (33).  The glancing angle is t O = l . 7 "  and the reflection 
angle is 5 = 2.7". 

discrepancy between the experimental and theoretical 
curves occurs in the "tails" of the distribution where the 
contribution of the singly scattered particles to the spec- 
trum becomes important. 

The small-angle approximation holds much better for 
particles whose initial velocity i s  greater than atomic. 
In the experiments of Marwick et a ~ . ~  the energy spectra 
were obtained for protons reflected by a very thick 
amorphous tungsten oxide (WO,) film evaporated on a 
metal substrate. The initial proton energy was 275 keV 
( L o  = 1 . 7 " ) .  In this range of energies the stopping power 
of the target for these protons was practically con- 
stan t8, 25.26 . i.e., 

The mean-square value of the scattering angle per unit 
path can be described by 

where L, i s  the Coulomb logarithm; Y, i s  the classical 
electron radius; and the energy T is in units of nl,c2. 
Employing the published data on the range of protons in 
various media,25 we can calculate R o  for tungsten oxide. 
Having found (8:(~, , ) )  from Eq. ( 4 9 ) ,  we obtain the value 
of 0: 

Figure 3  shows a theoretical curve describing the ener- 
gy distribution of the protons reflected in the plane of 
incidence of the primary beam (X =O). The calculations 
were carried out using Eq. ( 3 )  and the relationships 
( 4 8 ) ,  ( 4 9 ) ,  and (50 ) .  For  convenience of comparison 
with the experimental data of Ref. 8 ,  the scale i s  log- 
arithmic along the ordinate. As expected, the greatest 
discrepancy between the theory and experiment i s  ob- 
served far from the maximum of the energy distribu- 
tion. This i s  primarily due to neglect of the dependence 
of the mean-square value of the scattering angle per 
unit path on the particle energy. Nevertheless, the the- 
oretical curve a s  a whole describes well the behavior of 
the spectrum. 

The above comparison with the experimental results 
confirms that the proposed theory of the reflection of 
particles incident a t  a glancing angle on the surface of a 
target is in good agreement with the experimental data. 
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Hydrodynamic stability of compression of spherical laser 
targets 
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Hydrodynamic stability in compression of targets by laser radiation is investigated with account taken of 
convection, thermal conductivity, compressibility, and the spontaneous magnetic field. It is shown that the 
growth rate exhibits nonlinear saturation with decreasing perturbation wavelength. The conditions necessary 
for nearly symmetrical compression are determined, as is also the effect of the instability on the final state of 
the target. 

PACS numbers: 52.50.Jm 

T h e  hydrodynamic ins tabi l i ty  p roduced  in low-en- 
t r o p y  c o m p r e s s i o n  of s p h e r i c a l  targets b y  laser r a d i a -  
tion i s  the  main obs tac l e  to t h e  attainment of t h e  u l t r a -  
high matter d e n s i t i e s  p red ic t ed  by  one-dimensional  
sphe r i ca l ly  s y m m e t r i c a l   calculation^,'^^ I t  is known 
that  t h e  ins tabi l i ty  is in t h e  main of t h e  Rayle igh-Taylor  
type: which h a s  b e e n  thoroughly  inves t iga t ed  in  hydro -  
dynamics ,  p a r t i c u l a r l y  when appl ied  to i n c o m p r e s s i b l e  
fluid flow. A s  a r e s u l t  of ins tabi l i ty ,  t h e  growth of 
the  ampl i tude  of the  small p e r t u r b a t i o n s  due  to v a r i a -  
tions of t h e  in tens i ty  of t h e  laser radia t ion,  to d e v i a -  

tions of t h e  target-material dens i ty  f r o m  homogenei ty ,  
and  to d i s to r t ion  of t h e  t a r g e t  s h a p e ,  can l e a d  to tur- 
bul iza t ion of the  f low prior to the  end  of t h e  c o m p r e s s i o n  
process. New f a c t o r s  in the  s tudy  of ins tabi l i ty  of a 
compressing plasma s p h e r e  are t h e  electronic t h e r m a l  
conductivity (T,, T, - 1 keV), compress ib i l i t y ,  h igh  ra- 
d i a l  g r a d i e n t s  of t h e  temperature and of t h e  veloci ty ,  
and generation of magnetic f i e l d s  of cons ide rab le  
s t r e n g t h  (-1 MG) against the  background  of t h e  f a s t  
motion of t h e  plasma t o w a r d s  t h e  s y m m e t r y  center. 
T h e  s tudy of t h e  n a t u r e  and  of t h e  me thods  of s tabi l iz ing 
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