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Magnetoacoustic size effects in a thin metallic layer are studied theoretically by the kinetic equation 
technique, employing the integral boundary condition. The parameters of the condition, i.e., the total 
probability and the relative width of the scattering indicatrix, describe in greater detail the interaction 
between the electrons and the metal suface than does the Fuchs specularity coefficient that was employed 
previously [Sov. Phys. JETP. 34,407 (1972)). The dependence of the damping decrement of short wavelength 
sound r on the value of the weak magnetic field turns out to be significantly different for the various models 
of the scattering indicatrix. Sondheimer-type oscillations of r are investigated in strong fields for both open 
and closed Fermi surfaces. The case of multichannel surface scattering of the charge carriers is analyzed. An 
experimental observation of the predicted effects allow us to establish the values of the parameters of the 
boundary condition and also the local characteristic of the Fermi surface. 

PACS numbers: 43.35.Cg, 43.35.Rw, 72.55. + s 

1. Magnetoacoustic phenomena in bulk samples  a r e  s o r t  t o  the Fuchs condition (1). But even in this  c a s e ,  
widely used for  the study of the electron energy spec-  the specular i ty  parameter  tu rns  out to be a functional 
t r a  of metals.  There  is no l e s s  interest  in  s i z e  e f fec t s ,  of the  distribution f(p+), i.e., i t  descr ibes  not only the 
which appear  in  the propagation of the ultrasound in sur face  of the given sample ,  but a l s o  the conditions of 
conductors that  a r e  thin i n  comparison with the f r e e  t h e  experiment (for example. it depends on the ul t ra-  
path lengths of the charge c a r r i e r s  1: they tu rn  out to  sonic frequency. 
be very sensitive not only to the form of the dispersion 

What has  been sa id  is especially important for  mag- law of the conduction e lec t rons ,  but a l s o  t o  the char -  
netoacoustic phenomena, in which the electron dis tr i -  

a c t e r  of their  interaction with the  sur face  of the conduc- 
bution i s  a rapidly changing function of the quasimo- to r .  
mentum, and in the p resen t  work we sha l l  use a bound- 

In the description of quasiclassical  s i z e  effects.  the a r y  condition in t h e  fo rm proposed by ~ a l ' k o v s k ~ ~ % n d  
boundary condition for  the electron distribution function by Okulov and U s t ~ n o v ~  i: 
is  very important.  In a significant portion of theoret i -  
cal r e s e a r c h e s ,  it is used in the fo rm proposed by I ( P - ) = ~ @ I . ( P + ) = ~ . ( P + ) + P  S d p ,  w ( p - . p + ' )  [ l . ( p , ) - t . ( p + ' )  I 
Fuchsl: v n  ( P + ' )  (4 

where the "parameter  of specularity" q is the probabil- 
ity of specular  reflections, f o r  which the quasimomen- 
t a  of the electron before and a f te r  i t s  collision with the 
boundaries of the metal  a r e  connected by the relat ions 

where n is the outward normal  to  the sur face  of the 
sample. In the  specular i ty  parameter  approximation, 
the  possibility was shown of observat ion in thin conduc- 
t o r s  of a number of new magnetoacoustic effects ,  con- 
taining information on the local charac te r i s t i cs  of the 
F e r m i  surface.' 

However, the applicability of this approximation i s ,  
generally speaking, limited. It  i s  c l e a r  that in the gen- 
e r a l  c a s e ,  the distributions of the incident and reflected 
part ic les  should be connected by the integral  relat ion 

and only the very  distinct fo rm of i ts  kernel  (a s h a r p  
maximum of W@+ , p:) a t  p+= p: and a smooth variat ion i n  
the remaining region of integration) p e r m i t s  us to  r e -  

Here  P is the integral  probability of e lectron scat ter ing 
upon reflection f rom the  boundary, P :< 1 ,  while 
?o(p,, p:) i s  the sca t te r ing  indicatrix normalized to 
unity: 

At P = 1, the condition (4) is a completely integral one; 
the case  P = O  corresponds to purely specular  reflection 
of the part ic les .  

It will be shown below that the oscillation magno- 
acoustic s i z e  effects tu rn  out t o  be s table  relat ive to 
t h e  f o r m  of the boundary condition (the periods of os -  
cillation and the very fact of the i r  existence a r e  not 
c r i t i ca l  to the f o r m  of the scat ter ing indicatrix) and 
can  be used a s  a method of detailed study of the elec-  
t r o n  energy spectrum. Here  the form of the osci l la-  
t ions ,  and the especially smooth dependence of the 
ul t rasonic absorption on the value of the magnetic 
field a r e  different fo r  different models of the sca t te r -  
ing indicatrix, which makes it  possible to  analyze the 
charac te r  of the interaction of the charge c a r r i e r s  with 
the  boundaries of the sample  by means of the experi-  
mental data. 
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2. We consider the electron absorption of a longitud- electron in the sound field on individual portions of 
inal sound wave i ts  t rajectory,  separated by collisions with the bound- 

u= (u, exp {ikx-iot) ; 0; 0).  

propagating along the normal to the layer of metal 
0 c x s d .  The thickness of the layer i s  assumed to be 
smal l  in comparison with the volume f rec  path length 
of the charge ca r r i e r s  2,  but much grea ter  than the 
sound wavelength 

k - ' t d t l .  

This condition corresponds to modern experimental 
possibilities and allows us  to neglect distortions of the 
sound field near the boundaries of the sample. In a 
magnetic field H = (0; 0; H )  parallel to the layer,  the 
Boltzmann equation for the nonequilibrium distribution 
function of the conduction electrons 

has  the form 

Here and below, t i s  the t ime of motion of the electron 
along the Larmor  orbit,  A,, is the deviation of the de- 
formation potential from i ts  mean value on the Fermi  
surface,  v i s  the frequency of intravolume scattering of 
the charge car r ie rs .  After the next collision of the 
electron with the boundary of the layer (at the instant 
A,) the solution of Eq. (7) has the form 

f 

x+(h., t )  =A,&<+ J dtfA(t ' )8 , . ' ,  
*I 

where 

In a weak magnetic field, when the Larmor  radius 
Y a d ,  practically a l l  the electrons inevitably collide with 
the surface of the layer ,  and the character  of their col- 
lision manifests itself in significant fashion in the mag- 
netoacoustic effects. The electrons, reflected specu- 
larly,  move along open quasiperiodic orb i t s  (Fig. 1) and 
if the probability of volume scattering within the period 
T i s  small ,  

v7'- (dr) "=/l< f , 

then resonance sound absorption can be expected. We 
note that in a thin layer of the metal (d<< I), this effect 
should be observed in weaker fields than in a bulk 
~ a m p l e . ~ '  

By repeatedly using the boundary condition 

we can write out the solution of the kinetic equation (7) 
in the form of a sum of perturbations undergone by the 

FIG. 1. 

a ry ,  with account of volume and surface scattering. 
Inasmuch a s  only electrons with k . v = w effectively 
interact with the ultrasound, one should take into ac-  
count only the portions containing the turning point v, 
= O .  Taking it a s  the point from which the phase of the 
electron on each portion of the orbit  is reckoned, we 
obtain 

The symbolic notation (@)"f(h,p,) indicates the n-fold 
application of the  operation (4) in the variables h and 

Pz. 

By knowing the nonequilibrium increment xiaf,/ac 
to the electron distribution function, we can calculate 
the electron dissipation function and, consequently, the 
sound absorption coefficient 

4liZeH Irn Irn 
li 

r ( [ I )  = -Re j dp, j v,(h)dA j dtA (X++X-) .  
crlph7 

0 0 -L  

Here p is the density of the crystal ,  while the maximum 
(for a given p,) period of the motion T =2X, is  deter- 
mined from the conditions 

( t ) d = d  L m  (Zd/u: ((I))''*. (12) 
0 

We note that in a not too weak magnetic field, a t  suf- 
ficiently smal l  relative width of the scat tering indicatrix 
A ,  the following inequalities a r e  easily satisfied: 

and the quantity 

8-iL=exp (2h ( io -v )  ) 

is practically unchanged by the surface scattering of 
the electron. After integration over t ,  the sound ab- 
sorption coefficient turns out to be equal to 

where 

i s  the probability integral, which differs significantly 
from unity only a t  sma l l  absolute values of the argument, 
and s is the sound speed. 

We now introduce the quantity 

~ ( h , ~ , ) = i - P  ~ d p , '  dhrw(h,  h', pZ ,pz f )  [l-.9(h1, pzf)/.9(h, pa) 1, (I5)  

so  that W +  =Q$.  As will be c lear  from what follows, 
Q(X,p,) is a smooth function in comparison with the 
scat tering indicatrix and repeaied application of w r e -  
duces to multiplication by Q: WnJI= Qn+. This allows 
us  to rewrite the expression (14) in the form 
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which formally corresponds to the approximation of the 
specularity parameter ,  the ro le  of which, however, 
is played by the function ~ ( h , p , ) .  I t  can be computed, 
however, only by specifying a definite model of the 
s tattering indicatrix. 

We shall assume that w depends only on (p:-p+l and 
represents  a Gaussian o r  the even simpler  s tep  distri- 
bution 

1ui (p+'-pT l l p o ) ~ w ( z )  - e s p ( - z ? / A 2 ) ,  (17) 
w ( z )  -@ (2 -A) ,  (18) 

8 is the Heaviside function. The normalizing factor i s  
chosen from the condition (5); in the limit A - 0 the func- 
tion 4 2 )  i s  equivalent to a 6 function (purely specular 
reflection). Then, calculating the integral (15), we get 

Q z l - P ,  x B l ,  

where p,  i s  the radius of curvature of the intersection 
of the Fe rmi  surface with the plane P, =const, and v, 
is the velocity of the electron in th is  plane a t  the turning 
point 

r--cp,/eH"=cp, ..,,/eH. 

The choice of the model (17) o r  (18) fo r  the scattering 
indicatrix manifests itself only in the value of the nu- 
merical  factor 5 (equal respectively to + fi o r  +). This 
is  the basis  for  assuming that the results  obtained below 
with the help of the expression (19) a r e  qualitatively 
valid for  an  arb i t ra ry  central distribution w. 

The parameter ~ = ( d r ) ~ ' ~ k ~  has  a simple physical 
meaning: ( ~ Y ) " ~ A  is the mean displacement, along the 
wave vector k, of the turning point of the electron after 
i ts  surface scattering. The smallness of this displace- 
ment in comparison with the sound wavelength makes it 
possible for  the electron to itteract in resonance fashion 
with the sound field; the opposite case ,  for our problem, 
is equivalent to "diffuse" scattering of the electrons with 
probability P. 

3. We calculate the damping coefficient of the low- 
frequency sound. At w << v ,  the sound field is practically 
unchanged within the time of the f r ee  path of the elec- 
t rons,  and taking in (16) the limit a s  w- 0 we obtain 

Am 

J(p, )  = (4/hm2)Re I d h h ( l - Q e - z v ~ ) - ' .  (20) 
(I 

In calculating this integral, it must be kept in mind 
that ,  since the characteristic angles of incidence of the 
"effective" electrons on the surface of the layer a r e  
small ,  8 - ( d / ~ ) ' / ~  << 1 ,  the total scattering probability 
P can turn out to be proportional to 9: 

(see, for  example, Ref. 8), where u, is the velocity of 
t h e  electron a t  the turning point. Omitting unessential 
factors of the order of unity, which depend on the shape 
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of the Fe rmi  surface,  we can write down the results  in 
the following form (Fig. 2): 

1) x>> 1,  P(8) =const. If the scattering indicatrix is 
a smooth function, then the dependence r(H) is deter- 
mined by the total scattering probability: 

r ( H )  =rspec=rol / (dr)  '',, Pl/ ( I - P )  (d r )  ' '*<I,  

r ( H )  = r , ( 2 - P ) / P ,  P1/(1-P) (dr)"'>>l ,  
(22) 

and goes into saturation sooner the la rger  the value of 
P. In the case  of diffuse scattering (Pz 1)) the sound 
absorption coefficient in a weak field ( r>>d)  does not 
depend on H and i s  identical with the bulk-sample value 
calculated in Refs. 9 and 10: 

2) n>> 1,  P(8) = C9 Here there  is  a maximum on the 
r(H) curve when CI -r: 

Only in  these two cases  is the specularity-parameter 
approximation valid, which parameter  is equal to 1 
- P, a s  was to be  expected. 

If the same scattering indicatrix has a sharp  maxi- 
mum for angles corresponding to specular reflection of 
the electrons from the boundaries of the layer,  then the 
resul t  turns out different, i.e., 

.3) x < l ,  P ( 8 )  =const: r ( H )  =r.,.,((dr) "~/LPx') ln( l+lPx2/(dr)  '") ; (25) 
4) x c l ,  P ( 6 ) = C 6 :  

r (N) =Hrs,,,, O<R< t, (26) 

where the magnetic-field-independent quantity 

is  determined by the parameters of the scattering indi,- 
catr ix model. 

A common result  is that the sound absorption in the 
conducting layer in a weak magnetic field is greater  
than in i ts  absence, and a t  a sufficient degree of spec- 
ularity of the reflection of the electrons from the 
boundaries of the conductor [P :< 1 o r  k A ( d ~ ) ~ / ~  << 1)  the 
specularity can be much greater  than in the bulk Sam- 
ple. However, the dependences of r ( H )  in cases 1)-4), 
shown in Fig. 2,  a r e  different. A comparison of these 
curves with the experimental curves obtained a t  
various sound frequencies (in the range v >> w >> s / d )  
allow us  to a s se s s  the character  of the scattering of the 

FIG. 2. 
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electrons by the surface of the metal and to estimate 
the scattering-indicatrix parameter. 

We now proceed to the case of high sound frequencies, 
when the following inequalities a re  satisfied in a weak 
magnetic field: 

Here it is already impossible to consider the sound 
wave a s  statistical and only those electrons interact 
effectively with it whose period of motion in the "glanc- 
ing" orbits T is a multiple of the period of the sound 
wave: a size cyclotron resonance is generated. 

Integrating the expression (16) for the sound attenua- 
tion coefficient by the stationary phase method, we ob- 
tain 

Here To is the extremal value of the period T ,  and T: is 
its second derivative with respect to p,; the sign in the 
argument of the sine function correspond to the sign of 
T:. Formula (29) describes the oscillations of the 
ultrasound absorption, which a r e  periodic in the square 
root of the reciprocal field. 

We can estimate the total probability of surface and 
volume scattering of the electron within the period of 
its motion, Q, +vT,, from the experimental r(H) depen- 
dence. Thus, if this probability is small, then the 
following relation is valid 

where t ( x )  is the Riemann function, and H,lf2 = 1726, 
m= 1,2 ,3 , .  . . . The quantity Q,, which plays the role 
of the effective specularity parameter in the given 
case,  can be expressed in terms of the relative width 
of the scattering indicatrix A and the total scattering 
probability P(9): 

~ ~ = l - ~ ( l ' 2 d l r ) ,  x>l. 

Q o ~ I - P ( Y B d l r ) ~ k ' ~ ' d r ,  x t l .  

It i s  easy to generalize the result obtained above to the 
case of arbitrary polarization of the sound waves. The 
distribution function of the charge carr iers  must be 
sought in the form (5) by replacing x@,, t ,  x)zi,, by the 
quantity x,,@,, t, r)zi,, and replacing A,,C,, in the kinetic 
equation (7) by the quantity g = Aijzi,, + eE . v. For trans- 
verse  waves, we must take into account in ttie calcula- 
tion of the damping decrement the electric field E pro- 
duced by the crystal  deformation^,^^-'^; this field can 
be found by means of Maxwell's equations and can be 
considered in the form of a renormalization of the ten- 
sor  A,,:  

Here it is easy to verify that the magnetoacoustic effects 
in weak magnetic fields a r e  little sensitive to the polar- 
ization of the sound wave. 

4. In strong magnetic fields ( r e d ) ,  oscillations of r, 

of the type of Sondheimer  oscillation^,'^ ar ise  a s  func- 
tions of the magnetic field H and of the thickness of the 
sample d and a re  due to the drift of the charge car-  
r i e r s  into interior of the plate. In the absence of open 
electron orbits, they a r e  possible only when the vector 
H is inclined to the plane of the surface of the plate by 
an angle 9 2 dv/v. 

For calculation of r,,(H,d), the solution of the kine- 
t ic equation must be represented in the form 

I 

x , i(pr,  t ,  r ) =  5 g , , ( ~ . . t ' ) 8 ~ , ~ + j  dpZl1 j dcpf W . ( p l ,  k t f1;  pZll al l )  

I ,  

j g l j ( p Z l ,  t 1 ) G I ( t 1 ,  pz1)dt1 
*r 

+ . . . + j d p z t . .  . J dp,, j d g l . .  . j d g n W ( p z ,  hi"; pzr, A,') (33) 
x w ( p z 1 ,  a,"; pzz, a : ) .  . . W ( P ~ , , - ~ ,  A"'"; pzn, a=') 

I* 

x j glj (pZntn) G, (t', pZn) at'+ . . . , 
in., 

and then the functions g(p,, t )  and W(P., cp ;p : ,  P') ex- 
panded in Fourier series:  

g(p., t )  = z g l ?  (p , )exp ( imQt)  itj = g, ( P A  exp ( imQt ) ,  
m m 

Wmm'(pz ,  c p ;  p:, cp') = Wmm' (p z ,  p:)exp(imcp--in'cp'). 
(34) 

m,m. 

Here W is the kernel o i  the integral operator (3), A, a r e  
the moments of the collisions of electrons with the sur-  
face of the sample a t  the points r,[q, a r e  the phase 
jumps in the trajectory of the electron upon reflection 
(A,+,< A,, n = 1 , 2 , 3 , .  . . )]. The function ~,( t ' ,p , , )  is 
determined by the following relation 

G,( t1 ,pZn)  =exp ((v-ia) (t '-t)  
+ik(rn-r+r (pzn,  tn ) - (p zn ,  A,,')) 1, 

Q"t,=Q"t'+cp,+cpl+ . . . +cp., Q,h,'=Q,h,+cp,+cp,+ . . . +q,,  
Q,-,5,"-Q,-,h,+cpi+cpr+. . . +p,- , ,  

Q,=Q (p.,) ,  r ( p , ,  t )  = j v ( p , ,  t f )  dt' .  

After integration over t' and q, with account of (34), the 
integrand expression for x i j  will contain three types of 
functions 

exp { i d l r (p . ) } ,  exp { ikr(p , ,  t )  ), Wmm' (pzn-,pz.)  

with a different sharpness. The first  of these selects 
the electrons responsible for the Sondheimer oscilla- 
tions. These a r e  electrons from the vicinity of the 
limiting point on the Fermi  surface and electrons with 
extremal displacements 2nr, in the period T in the 
depth of the sample. 

The amplitude of the Sondheimer oscillations depends 
significantly on the relation between the parameters 
d / r ,  h-, and the width of the scattering indicatrix A ,  
and can be calculated without difficulty for an arbitrary 
dispersion law of the ca r r i e r s  and an arbitrary charac- 
t e r  of their reflection from the boundaries of the 
sample. 

If the sound wave propagates along the plate, and 
drift of the charge carr iers  is  possible only along the 
normal to the surface of the sample, then a t  h-<< 1 the 
electrons do not "notice" the inhomogeneity of the 
sound wave, and the dependence of the amplitude 

274 Sov. Phys. JETP 5212), Aug. 1980 Gokhfel'd eta/ .  274 



r , , ( H , d )  on the magnetic field and the plate thickness  
turns out to b e  the s a m e  a s  f o r  Sondheimer osci l la-  
tions of the t ransverse  magnetoresis tance p,, of thin 
plates i n  a homogeneous e l e c t r i c  field.'5 I t  is easy  to 
verify th i s  if we u s e  fo rmulas  ( 3 3 )  and ( 3 4 )  and re ta in  
the  fundamental approximation in the s m a l l  parameter  
L.r in the expression f o r  r: 
r(H, d)=IT,+  - R e  

d ' ( "z , 'g -m(pz)  [I-  e x p  {- - ( i k V + a m )  
pu'd i k v + a ,  IV,l 11 

Here  r ,  i s  the absorption coefficient of the acoust ic  
energy in the bulk sample ,  v, =v(P,,) is the electron 
velocity averaged over  a s ingle  period, 

In the asymptotic formula ( 3 5 )  the re  a r e  t e r m s  k. vj  in 
the expressions (omj +ik- v) inasmuch a s  they play the 
principal r o l e  in the c a s e  v<< k v c  D f o r  mi =O. 

If the sound wave propagates normal  to the metallic 
l ayer ,  and the F e r m i  sur face  possesses  axial symme-  
t r y ,  s o  that u, does not depend on t ,  then formula ( 3 5 )  
is exact fo r  any value of the magnetic field. At P=O. 
a l l  the m ,  a r e  equal to  rn, and p,, =p , ( -1) ' .  and un- 
complicated t ransformations allow us  to represen t  r in 
the  following form: 

If v,(P,) is a monotonic function, then r , , ( H , d )  i s  
determined by a smal l  neighborhood of o r d e r  ?- 'd near  
the upper limit of integration over  0,. Here  we must  
keep it in mind that a t  m* 0.  g ,(P,) goes to z e r o  at 
p, = P  a t  l eas t  like ( p  - p,)'!'. F o r  the longitudinal wave 
g, ( -0 , )  =g,(p,) and for  the t r a n s v e r s e  wave the odd com- 
ponent g,(p,) can differ f rom zero.  

Representing the function g(p , )  in the form 

and integrating over 0 ,  i n  the formula ( 3 6 ) ,  we obtain 
the following expression for  r,, 

kr" 
k r s l .  

ros, ( H ,  d )  = 

I 'o - ( l ] , ' l - (kr ) ' f  I~,n12)J, ,  ArBl, k r # ~ n .  
( l id )  

where 

c+ cos lid e x p ( -  ( 2 - i )  p.) + e r y  ( -?nh. )  -1. 1 

n = i  
4n' 

( 38 )  

It  is easy  to note that the fac tor  J,, which osci l la tes  
with H and d ,  tends t o  a finite l imi t  as I = v / v  - m; how- 
e v e r ,  i ts  derivative dJ, /dH h a s  a logarithmic singu- 
l a r i ty  d J , / d H = l n ( l / d )  if the e lec t ron  a t  the limiting 
point of the F e r m i  sur face  executes  a n  integral number 
of revolutions on a path equal  to d .  

The amplitude of the Sondheimer oscillations r in- 
c r e a s e s  significantly if the condition kr = m  i s  sa t i s -  
f ied f o r  a given magnetic field. F o r  the mth component 
in formula (361, the denominators in the square  brackets  
a r e  much s teeper  functions than eld1' near  p , = p  and the 
r e s u l t  f o r  r,, tu rns  out t o  be completely different: 

d x  exp (- ( i  - y)  x )  r., = f. 2 (- 2 .  cli1d i d ; ~ )  { 2  f 
I - 2i1 ib  kd "=I 2?,6  

d x  e s p  (- ( i  + y)  x )  
a 

d x  e s p  (- ( i  + y )  Z) I ( 3 9 )  
- ! z - ( P n - I ) i b  

(ZFL-lW 
- ! z - ( 2 r r + I ) i b  ' 

(zn+1)9 

where $I = m d / r  - k d ,  6 = d / l ,  y = r / l .  Formula ( 3 9 )  is 
valid only a t  s m a l l  $n and s imple  analysis  shows that a t  
$I = O  the amplitude of the Sondheimer oscillations i s  
equal  to 

If the function u,(P,) has a n  extremum a t  some point 
p , = 0 , ,  then the factor  J, ,  which osci l la tes  with H and d ,  
h a s  different form: 

cos kd e s p ( - ( 2 n - i )  pm~)+--!--exy(-2n~nE,)}, 

,,=, ( 2 n - 1 ) '  (211) 
( 4 1 )  

where p', =in?d/r,  + d / l .  Since the numerical  fac tors  of 
o r d e r  unity a r e  omitted. in the  presence of a n  extremal  
displacement of the electron i n  the inter ior  of the s a m -  
ple we can use formula ( 3 7 )  f o r  r,,, However, J, must 
be taken in the fo rm ( 4 1 ) .  It i s  easy  to show that the 
amplitude of r,,, inc reases  with increase  in I a s  ( ~ / d ) " ~  
if + nz, and a t  be = m we shal l  have r = ro(kZ)1121/d .  

Simple analysis  shows that fo r  a description of the 
osci l la tory dependence of r on H and d  fo r  a r b i t r a r y  
charac te r  of the reflection, it is  quite appropriate  t o  
use the specularity-parameter approximation and we 
easi ly  obtain the following formula for  r,,: 

i.e.. v  in fo rmulas  ( 3 9 ) - ( 4 1 )  must be replaced by the 
effective collision frequency v,,, = v  - ( v / d )  In(1- P), 
which takes into account the dissipative charac te r  of 
ref lect ions of the electrons f rom the boundaries of the 
sample.  

In meta l s  with open F e r m i  sur faces ,  oscillations of 
the sound absorpt ion of the Sondheimer type take place 
even in a paral le l  magnetic field, thanks to the drift 
of the electrons with open orbi ts  into the interior of the 
sample.  The i r  displacement along the normal to the 
plate within the period of motion is identical f o r  the 
whole l ayer  of open c r o s s  sect ions of the F e r m i  s u r -  
face ;  therefore the amplitude of the oscillations does 
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not contain s m a l l  fac tors  of the type (r/d)lf2 o r  (r/d)', 
which determine the fract ion of the effective electrons 
i n  the c a s e  of closed orbi ts .  At not too low tempera-  
t u r e s ,  when the c lass ica l  consideration of magneto- 
acoust ic  effects is valid, i t  is easy  to calculate 
r,(H,d) with the help of formulas (35)-(37). 

In thin metal l ic  f i lms (d << I) one must ,  generally 
speaking,  take into account the  quantization of the 
t r a n s v e r s e  motion of the electrons.  

Let  a layer  of metal  0 5 %  % d  have open sect ions of 
the  F e r m i  sur face  along p,: 

* P = = P = ( E ~ ,  P V .  P = )  =p.(er,  PV+ Po, P Z ) .  (43) 
The electrons of these sect ions i n  a n  a rb i t ra r i ly  s t rong  
magnetic field H =(O, 0,  H) inevitably collide with the 
boundaries of the l ayer  and in the c a s e  of specu la r  r e -  
flection the i r  spectrum t u r n s  out t o  be discrete:'= 

~ ~ ~ + . H d l Z c  
2c 

~ ( E , P ~ ~ , P ) = = - -  j P . ( e , ~ ~ , ~ u ) d ~ " = n  - eHh 
(44) 

p y a - r H d / Z r  

(n is a positive integer).  Consequently, the density of 
s t a t e s  has  s ingular i t ies  a t  the  points &,(H,d) a t  which the  
condition (44) is sat isf ied for  the ex t remal  values of 
p, and t h e  position of the  "center of orbit" pyo i n  p space. 
At t empera tures  comparable with the distance between 
levels  &,,,(H,d) - c,(H,d), this  should lead to a new type 
of oscillations of the thermodynamic and kinetic quan- 
t i t i es ,  which has the s a m e  period a s  the c lass ica l  
Sondheimer oscillations. 

Using the quantization ru le  (44), we can  calculate the 
contribution of open sect ions of the F e r m i  sur face  t o  
the ultrasonic damping coefficient f rom perturbation 
theory: 

H e r e  Po is the period of the open F e r m i  sur face ,  P o  
= ~ I I ~ T / A E ~ ,  

h a p ,  - I  h 8 " a p ,  - I  
- \ F ,  z -- - = - - 

I r I , i r F  1 - ? d l d s r  I I ~ Y ~ /  
is the distance between size-quantized levels  of the 
e lec t ron  energy,  and 2pH is their  spin splitting. As a 
consequence of the laws of conservation i n  the c a s e  of 
interaction of the electron with the acoustical phonon, 
a l l  the quantities in (45) a r e  taken on the cen t ra l  sect ion 
of the F e r m i  sur face ,  which is a l so  assumed to be  open. 

At low tempera tures ,  when Po<< 1 ,  the expression (45) 
descr ibes  gigantic oscillations of the sound absorption 
coefficient a s  a function of the magnetic field (and layer  
thickness) in the c a s e  kll H. 

It is easi ly  noted that in f ie lds  H, = ~ ~ c P , / e d ,  N 
= 1 , 2 , 3 , .  . . , ( [ H  - H,/<RH,/~P,) the quantity a does 
not depend on py0 and is equal t o  

At these values of the field, the sound attentuation 

is exponentially s m a l l  (except f o r  c a s e s  of integer 

values of a, (H,). Outside t h e  vicinity of the points H,, 
integration over p,, is c a r r i e d  out by the s tat ionary-  
phase method: 

On the curve  r ( H ) ,  a s h a r p  spike appears  of height 

when one of the ex t remal  (in p,) values o,,,(H) 
=a(&,* pH, p,,, 0) is equal to the quantum number n. 
The location of the  spikes H ,  and the shape of the i r  
envelope r(H,) a r e  determined by the specific depen- 
dence p, =px(&, p, ,  0)  which makes  it  possible t o  improve 
the  precis ion of t h e  existing model of open F e r m i  s u r -  
faces  f r o m  the  experimental  data. 

The c a s e  of "weakly corrugated" open F e r m i  s u r -  
f a c e s  a l s o  d e s e r v e s  attention. If IP, - 3, I<< 5, on the 
cen t ra l  c r o s s  sect ion,  then i n  s t rong  f ie lds ,  when 

(px - 3,) << e~Fi/cp, ,  observat ion of the oscillations of 
r (H)  due to  spin splitting of the size-quantized elec-  
t rons  energy levels  is possible: 

The condition for  observat ion of these effects i s ,  a s  
is usual f o r  quantum oscillations, the smal lness  of the 
t empera ture  in  comparison with the  distance between 
t h e  levels  A&, =: ha,/d. F o r  f i lms  of thickness d - 10- 
- c m ,  the requ i red  tempera ture  range (T - 1 K) 
tu rns  out t o  be  quite real is t ic .  

5. Up to the presen t  t i m e ,  we have assumed that t h e  
sur face  sca t te r ing  of the  e lec t rons  is "single-channel," 
i.e., in the c a s e  of a given p- ,  the equations (2) have 
a single solution p,, to which corresponds a s h a r p  max- 
imum in the  kernel  of the integral  boundary condition 
(3). However, in  the genera l  c a s e ,  the coupling be- 
tween the quasi-momenta of the incident (p,) and re f lec -  
t e d  (p-) of the e lec t rons  is not single-valued in one c a s e  
of purely specular  reflection: if the line p X U  =cons t  
in te r sec t s  the F e r m i  sur face  a t  s e v e r a l  non-equivalent 
points with v,(P,)< 0,  then a t  the instant of collision with 
the boundaries of the l a y e r ,  the electron can  be  thrown, 
f o r  example, to another  cavity of the F e r m i  surface.  
Such "surface hopping" significantly change the char -  
a c t e r  of the  electron orb i t s  in the magnetic field and, 
consequently, the conditions of interaction of e lec t rons  
with the sound wave propagating along the normal  to  the 
layer.17 

Le t  t h e r e  be two convex cavi t ies  in the F e r m i  s u r -  
face,  consistent with the para l le l  t rans fe r  

e  ( p , )  = e ( p , )  = E F ,  pZ -pL=2ahb. 

where the vector  b, which in part icular  can simply co- 
incide with the period of the rec iproca l  lattice of the 
c rys ta l ,  is located in the  plane (P,,p,) and makes a n  
angle cp with the P, axis.  

Then, i n  a magnetic field H =(O, 0 ,  H)  paral le l  to  the 
l ayer ,  the electrons colliding with one of i t s  boundaries 
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w = O ,  d will move along open t ra jec tor ies  which, a s  a 
consequence of sur face  hopping, consis t  of sections of 
t h e  complete orbit,  displaced along the  normal  by a 
distance 

a s  shown in Fig. 3. It  is c l e a r  that  in  the  s ta t i c  case ,  
when w<< v, the  contribution of such e lec t rons  to the 
acoustic absorption depends on the phase difference of 
the sound wave over  a length C B / ~ H ,  and th i s  leads to 
oscillations of the  absorpt ion with change in H. 

We find the electron distribution in the layer. The 
solution of the  kinetic equation (7) in  the given c a s e  is 
a sum of functions of type (8) f o r  par t i c les  located a t  
t h e  given instant on the i-th cavity of the F e r m i  s u r -  
face: 

Here the t ime  is measured  f r o m  the l a s t  instant of 
collision with the boundaries ti  = t - A,. The boundary 
condition f o r  finding A, should be wri t ten down with 
account of the fact that a t  the moment A, a hop of the 
e lec t ron  from the k-th cavity of the F e r m i  sur face  can 
occur with probability a, (if k): 

&<+Ti 

x ~ ~ ~ , ~ . ~ = ~ ~ r ~ o . = . ~ + ~ ~ - ~ ~ ~ ~ ~ o , ~ , ~ ,  j vZdt - j ' ,d t .=u,  (49) 
4 

where 7, is the t ime of passage of the i-th sect ion of 
orbi t .  At the s a m e  t ime ,  the total distribution of non- 
equilibrium part ic les  should not change in the  c a s e  of 
specular  reflection: 

Consequently, a, = 4 - a. Solving Eq. (491, we find 

q, = J dt. .~,CF,~'~ = L1,,,(2rrlik~3,')"- r s p ( - i k z , , ) ,  

where xi, - x is the coordinate of the turning point of 
t h e  electron;  the remaining quantities with index 0 a l s o  
a r e  taken a t  this  point. We a r e  interested in  t h e  c a s e  
in which the hopping probability a exceeds the probabil- 
ity of intravolume scat ter ing of t h e  electron in the t ime  
7,: 1 > a>> vri  - Y / L  Here  the quantities A, do not de- 

bz, k 

FIG. 3. 

pend on a and a r e  equal to  

Thus ,  the electron distribution i n  the  l ayer  is known, 
and the sound damping coefficient can  be calculated 
f r o m  the formula 

The  l imi t s  of integration with respec t  t o  T ,  a r e  s o  
chosen that  t h e  turning points on the orb i t s  1 and 2 ,  a t  
which the electron effectively interacts  with the sound 
field, a r e  located simultaneously in the  layer. 

The oscillating par t  of the attenuation coefficient 
tu rns  out to be  equal  to 

Ar,,, (HI -r, (lld)cp (8) cos ( k c B l e N )  ; 
cp(H) =0, H<Ji , ,  

q ( H ) - H / H , - 1 ,  O<H-A,<H,. 
q ( H )  =const-I, l&<H, 

H,=cB/ed. H z = c l p  ,,,, l e d ,  

where Ap, is the s i z e  of the sect ion of the F e r m i  s u r -  
face p, =constant.  The amplitude of t h e s e  oscillations 
i n c r e a s e s  monotonically f r o m  z e r o  in  fields H I <  H <  H, 
and does not depend on the magnetic field at  H >  Hz. In 
f ie lds  H-Hz,  it r eaches  the o r d e r  of the total attenua- 
tion coefficient and by f a r  exceeds [ - (k r ) ' lZHZ/(~  - Hz) 
72 11 the amplitude of the ordinary Pippard resonance,  
which is possible a t  H  > H,.'" 

In contrast  with the well known magnetoacoustic ef- 
fects ,  the period of oscillations 6 ( H - ' )  = 2 n e , / k c ~  is 
determined not by the shape but by the mutual location 
of the individual cavi t ies  of the F e r m i  sur face  in P 
space ,  i.e., by the vector  b. If b is identical with the 
b a s i s  vector  of the rec iproca l  lattice of the c rys ta l ,  
then the considered example with i = 1 , 2  i s ,  of course,  
a special  c a s e  of the m o r e  genera l  situation, when there  
is a s e t  of nonequivalent intersect ions 

[p,n]=const, ~ ( p , )  =E,,  c,,(p,) <I1 

i n  the scheme of repeating bands. 

Let  the cel l  of the rec iproca l  lattice b, xb, in the 
plane perpendicular t o  the magnetic field contain the 
convex curve ~ ( p )  = E,: p,  = const,  and the p, axis  is 
paral le l  to the direct ion {m,, m,) (m, # m, a r e  positive 
integers  which do not have a common divisor). Then on 
the orbi t  of the  e lec t ron  colliding with one and the s a m e  
boundary of the layer  there  can  be no m o r e  than m ,  
+m, nonequivalent portions. shifted relat ive to one 
another along the normal  (x ax is )  by a distance 

Generalizing the previous consideration, it  is not dif- 
ficult to show that even in this case ,  in fields H >  c ~ ' / e d  
the function r (H)  experiences oscillations with period 
2ne/kcB1, the amplitude of which a t  H > H ,  does not de- 
pend on the magnetic field and in o r d e r  of magnitude i s  
equal to  rol/d: 

We now d iscuss  another important case ,  when two 
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different cavities of the Fermi  surface a r e  located 
along the p, axis, parallel to the normal to the layer of 
the metal. For simplicity, we assume that the surfaces 
&,(p) = cF and c2(p) = cF a r e  convex, and their projections 
on the plane (p,,p,) a r e  symmetric relative to the p, 
and p, axes. Then the calculation differs from that 
given above only in that after the surface hopping the 
turning point of the electron i s  shifted by an amount 
h, - x,,, which depends on p,. Integration over p, by 
the stationary phase method leads to the appearance of 
a factor (b)- ' I2 in the amplitude of oscillations of the 
sound absorption: 

AF,,, (H) =ro (lldl%)rq'(H) cos (kdH-/H-n/4), 
cpl(H) =0, H<H-, 

(p1(H)-H/H--1, O<H-H-<H_, 
rpl(H) =const-I, H+<H, (55) 

Experimentally, this case can be realized in bismuth, 
the Fe rmi  surface of which is shown schematically in 
Fig. 4: the bisector axis intersects the electron and 
hole ellipsoids, the dimensions of which along the tr i-  
gonal axis a r e  essentially different: hp,,/hp,, =O. 15." 

If the magnetic field is directed along the binary 
axis, then at H >  H-, a s  a consequence of the surface 
hopping of the charge ca r r i e r s  on the "glancing" orbits ,  
both electron and hole segments a r e  possible, whose 
turning points a r e  located simultaneously in the sample. 
Here the following r(H) dependence should be observed 
in the experiment: at the points H <  H- only electron 
orbits a r e  completely contained in the layer and r(H) 
undergoes Pippard oscillations with a relatively large 
period 6,(H-') =2se/kchp,,. Then at H - <  H <  chp,/ed 
the fact oscillations (55) a r e  superposed on them [ 6 ,  
=4ne/kc(hp, - A,,]) while at H >  chp,/ed there appears 
also the period 6, =2ne/kchp,,. 

Such an experimental result ,  when there a r e  three 
periods of magnetoacoustic oscillations in the case of 
two convex cavities of the Fermi  surface, would be in- 
dicative of a two-channel surface scattering of the 
charge car r iers .  For observation of the effect, a high 
quality of the surface of the sample is necessary, and 
i ts  thickness should not exceed 2n/k6,Ho, where H, is 
the field, starting a t  which the Pippard oscillations on 
the  electron ellipsoid in the bulk sample a r e  seen. 

6. The analysis of the most characteristic special 
cases that has been given shows that in thin conducting 
layers one can observe new magnetoacoustic effects 
that do not occur in bulk conductors. These effects 
a r i s e  a s  the result of a change in the dynamics of the 
electrons that a r e  multiply reflected from the surfaces 
of the layer. Here a calculation of the dependence of the 
sound attenuation coefficient r on the applied magnetic 

FIG. 4. 

field H can be carried out without simplifying assump- 
tions on the specularity parameter,  and the results  a r e  
formulated in t e rms  of an integral boundary condition 
fo r  the charge ca r r i e r  distribution function in the 
layer. 

Static resonance in a weak magnetic field (see Sec. 3 )  
turns out to  be very sensitive to  the shape of the scat-  
tering indicatrix, and i ts  investigation a t  different 
acoustic frequencies w allows us to determine the width 
of the scattering indicatrix A ,  the total probability of 
surface scattering P, and also to analyze the dependence 
of P on the angle of incidence of the electron on the 
surface of the sample. 

The investigation of periodic changes of r in the r e -  
gion of strong magnetic fields of the type of Sondhei- 
mer  oscillations makes it possible to determine the 
degree of specular reflection of the charge ca r r i e r s  
from the surface of the sample in independent fashion. 
The study of the dependence of r on H a t  low tempera- 
t u re s ,  when account of the quantization of the trans- 
verse  motion of the electrons in the plate i s  important, 
allows us to obtain information on the form of the open 
electron orbits. 

The oscillation size effects provide the possibility, 
lacking in bulk samples,  of determining the local char- 
acterist ics (velocity of the electrons and radius of cur-  
vature of the Fe rmi  surface) of the electron energy 
spectrum. One can investigate multichannel reflection 
of electrons from the boundaries of the sample with 
the  help of magneto-acoustic measurements. This 
effect (see Sec. 5) makes it possible to  make precise 
the mutual arrangement of the individual cavities of the 
Fermi  surface,  which is very important for i ts  estab- 
lishment from experimental data. 
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The main types of plasma instabilities in two-dimensional electron systems are investigated from the point of 
view of amplifying two-dimensional plasma waves. Structures consisting of two plasma layers or of a plasma 
layer above a conducting half-space are considered. The conditions for the onset of two-stream, kinetic, and 
dissipative instabilities are found. Under certain conditions the instability criteria differ qualitatively from 
their three-dimensional analogs. The critical drift velocities and oscillation growth factors are calculated. 

PACS numbers: 52.35.P~ 

Experimental  s tudies  of p lasma waves in two-dimen- 
sional e lec t ron  s y s t e m s  c a r r i e d  through during the  
l a s t  th ree  years'-3 have confirmed the principal theo- 
r e t i c a l  conclusions concerning the dispersion law for  
such  oscillations. The is ' s  repor t4  includes a detailed 
review of these  studies. Cer ta in  specific charac te r i s -  
t i c s  of two-dimensional plasmons-their gapless  spec- 
t r u m ,  complicated dispersion law, and relatively low 
group  velocity-make them v e r y  at t ract ive objects f o r  
physical r e s e a r c h  and open up prospects  fo r  interesting 
applications. F r o m  th i s  point of view it would certainly 
be desirable  to work with two-dimensional plasmons a s  
with "ordinary" traveling waves (e.g. ul t rasonic waves), 
i.e., t o  modulate them,  amplify them, etc. We note 
that the experimental r e s u l t s  now available re la te  to  
the case  of standing plasma waves, whose presence  was 
detected ei ther  by a change in the Q factor  of a resona-  
t o r  (in the c a s e  of e lec t rons  above a liquid helium s u r -  
face)  o r  by the resonant  absorption of radiat ion in the 
f a r  infrared (in the c a s e  of the inversion layer  in a 
metal  insulator-semiconductor s t ructure) .  

In this  paper we examine the principal types of plas- 
ma instabilities in two-dimensional s y s t e m s  a s  they 
re la te  to the problem of amplifying two-dimensional 
plasma waves. As in the three-dimensional problem, 
a wave may become unstable a s  a resu l t  of the dr if t  
of one par t  of the plasma with respec t  to another (see,  
e.g., Ref. 5). 

A specific feature of the case  we a r e  considering i s  
that the two p a r t s  of the plasma a r e  spatially separated:  
for example, they may be two paral le l  thin plasma 
layers ,  o r  a plasma layer  above a conductive half- 
space. In  such sys tems  coupled waves a r i s e  and ampli- 
fication can be achieved a t  a cer tain drifr velocity. The 

coupling coefficient depends on the distance between the 
l a y e r s  and on the plasmon momentum; this consider- 
ably complicates the dispersion law for  the waves. In 
addition, the c r i t e r ion  for  instability may differ sub- 
stantially f r o m  i t s  three-dimensional analog. In par -  
t i cu la r ,  it turns out that the beam instability i s  char-  
acter ized by a threshold drift  velocity that depends on 
t h e  distance between the two plasma layers .  At below- 
threshold drift  velocities. instability can a r i s e  only for  
plasmons whose wave number k l i es  within a ce r ta in  in- 
t e rva l :  k ,,,, < k <  k ,,,, ( k  ,.,,,, = 0 in the three-dimensional 
case) .  

What was sa id  above i s  valid for the beam instability 
of a cold plasma. When the thermal  motion of the par-  
t i c l e s  is taken into account, wave amplification a s  a 
resu l t  of kinetic instability becomes possible. The most 
favorable c a s e  f o r  the development of th i s  instability i s  
rea l ized  when the  effective m a s s e s  of the part ic les  of 
the moving and s tat ionary p lasmas  differ greatly. Final- 
ly, when e lec t rons  a r e  strongly sca t te red  i n  one of the 
p lasmas  and the drift  velocity is low enough the s i tua-  
t ion  is reminiscent  of the amplification of sound by a n  
e lec t r ic  cur ren t  in a piezoelectric medium. 

Es t imates  show that  in the case  of e lectrons above a 
helium film on a conductive backing, amplification be- 
gins  a t  comparatively low drift  velocities of the c a r r i e r s  
in the  backing. At present ,  such a sys tem i s  the most 
promising for  obtaining amplification of two-dimen- 
sional plasma waves. 

The problem of oscillations in  spatially nonuniform 
plasma s t r e a m s  has been discussed in the l i terature.  
F o r  example, ~ i k h a ; l o v s k i i  and ~ a s h i t s k f i v n v e s t i ~ a t e d  
the stability of two neighboring electron s t r e a m s  separa -  
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