
of a certain solution of the "complete" tetrahedra equa- 
tions (3.8). If this is  so, then there exists apparently 
a larger family of commuthg operators T(8, u) that 
depend, besides on the direction 8 of the auxiliary line 
s, also on the rate u a t  which this line i s  shifter over 
the lattice 2'. The family T(0) determined by us is  then 
the limiting case of T(8) = T(0, u) I,,,. 

I thank A. A. Belyavin, A. V. ~ i k h a l l o v ,  A. M. 
Polyakov, and V. A. Fateev for helpful discussions, 
and also Yu. G. Stroganov for pointing out an e r ro r  in 
the initial draft of the article. 

APPENDIX 

In the cited equations we used the following abbrevia- 
t ions: 

 his method was first proposed by Karowski, Thun, Truong, 
and ~ e i s z ?  

 he Mangles equations a r e  in fact a component part of the 
quantum inverse-problem problem, since this equation is 
satisfied by the R matrix that defines the commutation rela- 
tions between the elements of the g l o k l  monodromy matrix 
(see Ref. 13). 

3)0f course, the lattice yNM(a)  does not differ in its coordi- 
nate structure from a rectangular lattice, and we speak of 
a lattice of parallelograms only to maintain the geometric 
meaning of the parameter a,. 

4)~he idea of the derivation presented below stems from the 
papers of ~axter' and of Faddeev, Sklyanin, and Takhtadz- 
hyan.'2 

5 ) ~ n  the "lattice" interpretation (see Sec. 4) of this model, the 
condition for allowed states corresponds to the fact that in 
the three-dimensional lattice Y ( { n , ) { [ , ) )  it is permissible 
to color the faces black and white only in a way that the black 
faces form closed surfaces without edges. 
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Influence of spatial dispersion on the image forces and 
electron energy spectrum above the surface of liquid 
helium 
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Zh. Eksp. Teor. Fiz. 79,665-671 (August 1980) 

An analytic expression is obtained for the potential of the electrostatic image forces above the surface of liquid 
helium, with account taken of the spatial dispersion of its dielectric constant. The calculated frequencies of 
the transition between the surface electron levels agree well with the experimental data for He3 and He4. 

PACS numbers: 67.40. - w, 67.50. - b 

1. INTRODUCTION helium under the influence of electrostatic image forces 
were Cole and  ohe en''^ and   hi kin.^ The existence of 

The f i rs t  to point out the possibility of the onset of such surface (two-dimensional) states was experiment- 
localized electronic states over the surface of liquid ally confirmed by Brown and  rimes^'^ for ~ e * ,  and 
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then by 6delrman and ~olodin" '  for  He3. 

In f i r s t  approximation, the problem of the energy 
spectrum of the electrons localized near the surface of 
liquid helium can be considered on the basis of a simple 
model potential,8 which corresponds to infinite repul- 
sion (Vo- -) on the liquid-vapor interface (x=O), and 
coincides in the gas phase (x > 0) with the potential of 
the classical image forces 

where E is the dielectric constant of liquid helium, 
equal to 5 =1.0572 for  He4 and E3 = 1.0428 for ~ e ~ . ~ * ' ~  
In this case the problem reduces to the one-dimensional 
SchrGdinger equation, which is identical with the equa- 
tion for the radial wave function of the hydrogen atom in 
the s state, and the electron spectrum takes the form 

where Ek,, is the two-dimensional momentum of the 
electrons along the surface, a. =fi2/me2 is the Bohr 
radius, e and m a r e  the charge and mass of the elec- 
tron, and Z*e+e(&-  1 ) / 4 ( ~  +1)  i s  the effective image 
charge. 

This model leads to a prefectly satisfactory (within 
5%) quantitative agreement between the theoretical and 
experimental frequencies f i n  of the 1 --n transition fre- 
quencies for He4 and He3 (see the table). The reason is  
that, by virtue of the smallness of Z* for  helium, the 
binding energy 

is small  at  k,, =0 ,  compared with the potential of the 
volume repulsion of the electrons from the filled shells 
of the atoms, Vo= 1 eV, and the maximum of the elec- 
tron wave function u,(x) i s  located a t  the large distance 
a0/Z*= 100 A from the surface of the liquid, where the 
classical expression (1) is valid with high accuracy. 
Contributing to the good agreement between theory and 
experiment is also the partial cancellation of two ef- 
fects: on the one hand, the lowering of the electron 
levels En on account of the finite height of the potential 
barrier  Vo, and on the other, the expulsion of the levels 
from the potential well of finite depth, inasmuch a s  the 
real  image forces do not diverge a t  the point x = 0, in 
contrast to (1). 

TO describe the finite (nonsingular) image forces i t  i s  
customary to use various model potentials.2'ii"4 In 
particular, to eliminate the divergence of Wo (x) on the 
surface, Grimes, Brown, Burns, and zipfeli3 haveused 
a device known in the theory of metal surfaces,I5 that of 
shifting the origin (the image plane) into the interior of 

TABLE I. 

I Experimental values H , ~ , ~ , ~ ~ ~ I , L ~  Theoretical values 

off ,,. GHz 1 1 1 ,  H z  t i  ... G k  

the liquid helium by a certain distance xo, so  that the 
effective potential energy of the electron takes the form 

With the aid of the method developed by Sanders and 
weinreich,12 in first-order perturbation theory, the fol- 
lowing expression was obtained for the self-energy of 
the electron in the n- th statei3: 

Comparison with experiment yielded for He4 a t  Vo =1 
eV the value xo ?1.04 A,13 and for He3 a t  Vo=0.9 eV the 
value xo = 1.25 A . ~  In a sufficiently strong clamping 
electric field I , ,  however, when the electrons a r e  lo- 
calized much closer to the surface of the liquid phase 
than a t  I, = 0, a noticeable (albeit small) discrepancy is  
observed between the experimental and theoretical 8. 
dependences of the transition frequencies f12 and fia,  
calculated on the basis of the phenomenological model 
(3), both for H e q ~ e f .  13) and for ~ e ~ . ~ ' '  

Hipolito, de Felicio, and ~ a r i a s ' ~  obtained for a po- 
tential in the form (3) an exact solution of the SchrSd- 
inger equation in terms of confluent hypergeometric 
functions, and found the eigenvalues of the energy for 
the surface electronic states with n =1, 2, and 3 a s  
functions of the parameter xo, which was chosen from 
the condition of equality of the frequencies f i 2  andf i3  to 
their experimental values for  He4 (in the absence of the 
clamping field), and turned out to be equal to xo =1 .O1 
A. Calculations of the dependences of .f12 and f13 on I , ,  
carried out with this value of x,,'"ead to a splendid 
agreement with experimenti3 in a wide clamping-field 
interval. 

In the present paper, on the basis of the Green's func- 
tion of the longitudinal self-consistent field, which de- 
scribes the screening of the Coulomb interaction near 
the interface between media with spatial dispersion,16 
we calculate the potential of the image forces of a point 
charge located over the surface of liquid helium, and 
show that for a correct  choice of the asymptotic form of 
the dielectric constant E(k) = 1 + const/k"s k- m the 
effects of spatial dispersion ensure continuity (finite- 
ness) of both the potential W(x) and the electrostatic at- 
traction force F ,  = -aw/ax on the liquid-vapor inter- 
face. This potential i s  approximated with high accuracy 
by the model potential (3) and it i s  this which explains 
the success of the phenomenological theoriesi3'14 in the 
description of the surface electronic states. 

2. POTENTIAL OF IMAGE FORCES NEAR THE 
SURFACE OF LIQUID HELIUM 

As shown by us earlier,I6 the potential electrostatic 
energy of a point charge located in vacuum a t  a distance 
x from the surface of a semi-infinite medium with di- 
electric constant ~ ( k ) ,  i s  given by 

- 
w ( x ) = - e ? J  q d q ~ ( q :  x.  s), (5) 

0 

where D(q;x,xr) i s  the Green's function of the Poisson 
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equation for the longitudinal self-consistent field, and 
equals in this case 

which takes into account the quantum corrections phen- 
omenologically and leads to a correc t  asymptotic be- 
havior of the form (1 3)  a s  k - 03, when all the electrons 
act a s  f ree  ones. 

e-QZ I-qa ( q )  
D ( q ; x , x ) = - -  

29 l + q a ( q )  
(x>O) ,  

Calculating the electrostatic energy (5) on the basis of 
(14) accurate to terms - ( ~ - 1 ) ~ ,  we obtain 

In contrast to metals, for which the dielectric con- 
stant is relatively well k n o ~ n , ' ~ ' ' ~  in the case of dielec- 
trics and semiconductors with covalent bonds the ques- 
tion of the calculation of E(k) from f i r s t  principles, with 
allowance for the forbidden band in the electron spec- 
trum, remains open at  the present time. Various phen- 
omenological m ~ d e l s ( ' * ~ ~ ) w e r e  propsed in this connection 
for : (k). The simplest of these is the Inkson model,1g 
according to which the dielectric constant of a semicon- 
ductor (dielectric) is given by 

Expression (15) goes over into (10) a s  kp-- *. 
As x- 0 i t  follows from (15) that 

E-I  
E ( k )  =I + k= (k,'+q2) "., 

I -kk2(E-I)  A2. 
(16) 

We see  that the asymptotic form ~ ( k )  = l  + const/k4 a s  
k-- 03 ensures continuity, a t  the point x =0 ,  of both the 
potential W(x) and the image forces F ,  =-aw/ax. 

where & is the static permittivity in a homogeneous 
electric field (as k- O) ,  and the parameter X-' plays a 
role of the length of screening by the bound (valence) 
electrons, and i s  of the same order of magnitude a s  the 
atomic radius yo. At large momentum transfers we 
have c(k) - 1 + X '/k2, which agrees formally with the 
Thomas-Fermi approximation (TFA) for the conduction 
electrons in a metal. 

3. SHIFT OF LEVELS OF SURFACE ELECTRON 
STATES BY SPATIAL DISPERSION EFFECTS 

As noted above, the shift of the levels of the surface 
electronic states i s  due to the fact that the potential 
barr ier  Vo on the liquid-vapor boundary is  finite, and to 
the difference between the rea l  potential of the image 
forces W(x) from the classical potential Wo(x). There- 
fore for nonsingular potentials in the f irst-order per- 
turbation theory these effects can be considered inde- 
pendently,12 and the total shift of the self-energy of the 
electron is  equal to 

AE,=AEnf+3E,"; (1 7) 

In the case of liquid helium, when c - 1 << 1 ,  we can 
assume with good accuracy that 

Substituting (9) in (71, and then in (6) and (5), and inte- 
grating with respect to k, and q ,  we obtain 

Z'e- 2Z'?-j. 
I+-(J) Z- - - ---- {: [H, (-) -.v, (-)I - 1 ) .  

x ( E - 1 )  
(1 0) 

where Z*=  ( F  - 1 )/8, and H1(z) and Nl(z)  a r e  Struve and 
Neumann functions. It follows therefore that at  x >> (t 
- 1 )' " / 2 ~  we have 

where u,(x) a r e  hydrogenlike wave functions of the one- 
dimensional Coulomb problem, which takes for the f i rs t  
three levels the form 

and at  xc,! ( L- I ) " ~ / ~ x  
u, ( x )  =2xpXe-@"; p=Z'/n,; 

u 2 ( x )  =2- 'xp ( l - ' / z p x )  e-@li'; 
u , ( x )  = 2 . 3 -  xp' [ l - Z / 3 p x + Z / z ;  ( B X ) ~ ]  e-Rri3, 

where y =1.78. . . i s  the Euler constant. 
from which it follows, in particular, that 

We see  that a s  x -  0 the potential W(0) of the image 
forces is finite, but i t s  derivative a ~ ( x ) / a x  I,,, diverges 
logarithmically. The reason is  that the Inkson model 
(as well a s  the TFA) does not take into account the quan- 
tum effects that lead, in particular, to the following 
asymptotic form of the dielectric constant of a gas of 
f ree  electrons in the random-phase approximation1T: 

Substituting (15) and (20) in (19) we see  that AE; is 
expressed in terms of the generalized hypergeometric 
ser ies  and in terms of spherical Legendre functions 
of the second kind QL, with the aid of the formulasz1 

where a = l/na,k,, and kF is the Fermi  momentum. 

Schulze and unger20 have proposed an interpolation 
formula for (k) of a dielectric (semiconductor): where r ( v )  i s  the gamma function and the parameter 

takes on the value ~ x / P ( E -  1)'12 o r  4kp/3' 2 p ,  i.e., b 
>> 1 . 
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We express (22) with the aid of the MacRobert trans- 
formation in terms of hypergeometric functions of the 
small argument l/b2, and as  a result of simple but 
cumbersome calculations, retaining the f i rs t  nonvan- 
ishing terms, we obtain 

Thus, according to (21) and (24), the shift of the n-th 
level is equal to 

1 
AE. = ,(AEiff AEI") , (25) 

and the corresponding corrections to the frequencies of 
the transitions between the levels f l ,  a r e  determined by 
the expression 

Substituting in (1 8) and (21) the values V, = 1.3 eV and 
Z* = 6 . 9 5 ~ 1 0 ' ~  for He4 and Vo =0.9 eV and Z* =5.24 
~ 1 0 ' ~  for He3 (see Ref. 2), we get 
AE,'(HeL) =-5.94. lo-' eV; AE,'(Hes) =-3.06. eV. (27) 

If we substitute in (24) the value of the Fermi  momen- 
tum kF calculated for the total electron density (assum- 
ing two electrons per atom), s o  that kF = 1.09 and kF 
=0.99 A" for He4 and He3, respectively, then we obtain 
for Af12 and Af13 values that a r e  somewhat too high. A 
much better agreement with experiment is obtained for 
He4 (see the table) by putting kF = X = Xo and regarding Xo 
a s  the parameter of the model (141, a parameter chosen 
from the condition that the potential (15) coincide with 
(3) at the point x=O for the optimal choice of xo =1.01 

In this case Xo =0.545 A-' and AE? =2.74x10m5 eV. 

For these values of the parameter xo and Xo, the de- 
pendence of the dimensionless potential w ( 5 )  ~ ( x ) / e ~ X ,  
on 5 =Xox, calculated in accordance with (15) for He4, is 
shown in the figure by the solid curve. The dash-dot 
curve shows in the same figure the model potential (3), 
while the dashed curve shows the potential of the class- 
ical image forces (1). We see  that the analytic expres- 
sion (1 5) obtained in the present paper with allowance 
for the spatial-dispersion effects i s  approximated with 
high accuracy (within 3%) by the model potential (3), 
and this explalns the splendid agreement between the 
calculations of Ref. 4 and the experiment of Ref. 13. 

For  He3, taking into account the approximate esti- 
mate6 xo = (1.25 k0.15) A, we get Xo = (0.428 * 0.051) A-' 
and AE; = (1.50 * 0 . 1 8 ) ~  lom5. In this case the agreement 

FIG. 1. Dependence of the dimensionless potential w(5) = w&)/ 
e2ho on 5 =hDx for EIe4 a t  h o = h  = k F =  0.545 A-' and Z*= 6.95 
x 1 0 - ~  (solid curve),  of the model potential G O ( t )  = - Z * / ( 5  +box) 
a t x  =1.01 A (dash-dot) and of the potential wo(5) =-Z*/5 of 
the classical image forces (dashed). 

between the theoretical values of .fin and experiment is 
somewhat worse than for He4 (see the table). 

It should be noted in conclusion that there exists an 
additional contribution to the shift of the transition fre- 
quenciesfl,, due to the renormalization of the self-en- 
ergy of the electrons on account of their interaction with 
the zero-point surface oscillations (ripplons). For  the 
nonsingular potential (15), the constant of the electron- 
ripplon interaction is  equal to 

(28) 
and 

- (*)Ih . 
'I- 

Z P O , ~  , ..=('l(P+*2q))'' '; 
where p i s  the density of the liquid phase, S is  the area  
of the surface, u i s  the surface- tension coefficient, and 
g is  the acceleration due to gravity (see Ref. 8). 

Calculations using integrals of the type (22) and (23) 
show that g,,(q)- @*I4. In second-order perturbation 
theory the shift of the n- th level is equal to 

(30) 
P 

Thus, 6En- (2*18 for He4, and i s  negligibly small  for 
He3. For other d i e l e ~ t r i c s " ~ ,  however, such a "polar- 
on" contribution can be quite substantiaLZ3 
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Contribution to the theory of the two-dimensional mixed 
state in type-1 superconductors 

B. I. lvlev and N. B. Kopnin 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
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We consider the nature of the two-dimensional mixed state produced on the inner surface of a hollow cylinder 
when the superconductivity is destroyed by current. The two-dimensional mixed-state layer constitutes a 
structure periodic along the cylinder axis, consisting of alternating annular superconducting regions and 
regions in which the macroscopic phase coherence is disturbed and the order-parameter phase undergoes at 
certain instants of time 2?r jumps at a frequency satisfying the Josephson condition, while the order parameter 
oscillates between zero and a certain finite value. This picture is analogous to the phase slippage centers in the 
resistive state of a narrow superconducting channel. The current-voltage characteristic of the sample is 
calculated, and one of its peculiarities is the presence of an excess current that depends little on the sample 
voltage. 

PACS numbers: 74.55. + h 

1. INTRODUCTION s t a t e  produced near  the inner  sur face  of the cylinder i s ,  

In the study of the p roper t i es  of current-carrying 
super-conductors a situation frequently a r i s e s  wherein, 
despi te  of the p resence  of a constant e lec t r ic  field in 
the sample ,  purely thermodynamic fac tors  favor  the 
formation of a superconducting s ta te  e i ther  in  the en t i re  
sample  o r  in definite sect ions of the sample  (if the tem- 
pera ture  of the superconductor and the magnetic field in 
these sect ions a r e  lower than the c r i t i ca l  values).  
Thus, the coexistence of a constant e lec t r ic  field and 
superconductivity is observed in nar row (quasi-one-di- 
mensional) superconducting channels in a cer tain range  
of c u r r e n t  (the so-called res i s t ive  s t a t e ;  s e e ,  e.g., 
Refs. 1 and 2). One m o r e  example is connected with the 
destruction of the superconductivity by c u r r e n t  in solid 
type-I superconductors, when the sample  becomes 
s trat i f ied into al ternat ing normal  and superconducting 
domains (the intermediate  s tate) .  The superconducting 
domains cannot be in touch with one another  on the 
macroscopic sect ions,  f o r  otherwise the s a m p l e  be- 
comes short-circui ted.  I t  is c l e a r  nevertheless  that 
near  the cylinder ax i s ,  where the magnetic field is 
weak, the formation of the superconducting s t a t e  should 
b e  favored. 

A peculiar situation takes place when the supercon- 
ductivity is destroyed by c u r r e n t  in hollow type-I cylin- 
d r ica l  samples .  A s  noted by L. ~ a n d a u , ~  when the cur-  
r e n t  through the sample  exceeds YC (Y: +r$) /2 r1rz  
(where rc = c ~ , r 2 / 2  is the c r i t i ca l  c u r r e n t ,  and r1 and 
Y, a r e  the rad i i  of the inner and ou te r  s u r f a c e s  of the 
cylinder),  the intermediate  s t a t e  in the in te r io r  of the 
sample  vanishes and goes over  into the normal  s tate .  
At the s a m e  t ime,  on the inner  sur face  the field is 
weak. therefore the normal  s ta te  is unstable there. T h e  

however, not purely superconducting, s ince  a constant 
e lec t r ic  field is presen t  in the sample.  Such a s t a t e  is 
called two-dimensional mixed (TM), and was experi-  
mentally observed by I. Landau and ~ h a r v i n . ~  A qualita- 
tively s i m i l a r  picture appears  on the  sur face  of a bulky 
superconducting sample  when an ex te rna l  magnetic field 
exceeding the c r i t i ca l  value is turned off. When turned 
off, the magnetic f ie ldin space  vanished rapidly, where- 
a s  in the sample  volume, on account of the induced eddy 
cur ren ts ,  i t  r e ta ins  a l a r g e  value f o r  a r a t h e r  long time. 
A s  a resu l t ,  the formation of the TM s ta te  turns out to 
b e  convenient on the surface.  This  situation was  inves- 
tigated experimentally in  detai l  by Dorozhkin and Dolgo- 
~ o ~ o v . ~  

In a l l  the l is ted examples,  in  s o m e  sect ions of the 
superconductor there ex i s t s  simultaneously a constant 
e lec t r ic  field and superconductivity. The  p r i m a r y  rea-  
son is that the constant e lec t r ic  field penetrates  into the 
supercond.uctor to a finite depth l E .  I t  is known that this 
depth a s  a ru le  greatly exceeds the coherence length 
((T) a s  well a s  the penetration depth X(T) of a constant 
magnetic field (for alloys without paramagnet ic  impur-  
i t ies  we  have near  the c r i t i ca l  t empera ture  l E  =1,(4T 
/TA)"',~ where lE  is the diffusion length of the quasi- 
par t ic les  I ,  = ( 8 ~ ~ ~ ) ~ ' ~ ) .  

We a r e  dealing thus with a situation i n  which the es-  
tablished superconductivity ex i s t s  against  the back- 
ground of a constant e lec t r ic  field. If the conditions of 
the problem a r e  such that the field differs  f r o m  z e r o  in 
macroscopic sect ions of the s a m p l e ,  then the s c a l a r  po- 
tential cp can a s s u m e  l a r g e  values. I t  is c l e a r  that when 
the la t t e r  increases  the superconductivity should be- 
come destroyed in the en t i re  volume. This ,  however, 
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