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A boundary condition is obtained for the spin-dependent distribution function. This condition describes the 
scattering by the fluctuations of a short-range surface potential. For electrons that are not spin-polarized, the 
angular dependences of the coefficient of diffusivity are obtained. The specularity of the scattering of normally 
incident electrons is increased by processes with spin flip. 

PACS numbers: 72.10.Fk 

1. The theoretical analysis of surface scattering of 
conduction electrons is based on the boundary condi- 
tions (BC) for the distribution function. The published 
derivation of these conditions (see the latest review1) 
is incomplete, since the interaction of the electrons 
with the surface is described within the framework of 
simple models that a r e  equally applicable to metals 
and semiconductors. We consider here one more 
model, viz., scattering by fluctuations of a short- 
range surface potential of a semiconductor or  semi- 
metal, with account taken of processes with spin flip, 
which a re  important formaterials with large spin-orbit 
splitting of the spectrum. 

The interaction between a conduction electron de- 
scribed in a volume by the Hamiltonian p2/2m of the 
effective-mass approximation, and a short-range 
surface potential, is specified by the BC for the wave 
function $z, on the surface z =0: 

This formula follows directly from the BC obtained 
by us earlier2 for long-wave (compared with X )  fluctua- 
tions of the potential. In the case of short-wave fluc- 
tuations i t  is possible to derive Eq. (1) because of the 
presence of the small parameter a/X (a is the thickness 
of the near-surface region and X is the characteristic 
de Broglie wavelength of the electron). In the fore- 
going, m is the isotropic effective mass,  p =  -iWV, a is 
a Pauli matrix, the coefficient x determines the mag- 
nitude of the spin-dependent interaction with the surface 
potential, and the three-dimensional coordinate is 
written in the form (x, z). The characteristic momen- 
tum p, describes the surface without allowance for the 
scattering, and the random increment u, determines the 
degree of imprefection of the surface. In the limiting 
case when p, >> ti/& and x = 0, the BC written above cor- 
responds to the model of scattering by a potential wall 
whose height is determined by the random function u,. 
We emphasize that the quantity pi/m is not connected 
with the work function of the electron [Eq. (1) is re- 
placed at large p ,  by the BC # = 0 and the scattering 
mechanism discussed above is ineffective], since we 
consider slow electrons localized in energy a t  the ex- 
trema of the bands. In the general case, even the sign 
of p, is arbitrary; a t  p, <O, ushallow" Tamm statesS 
a r e  present on a perfect surface (the assumption that 

Pt/m is of the order of the work function contradicts 
also the possibility of the existence of such states). 
The parameter x is small in the case of weak spin-or- 
bit interaction, but in a number of materials2 (InSb, 
InAs, lead chalcogenides, bismuth) the spin-dependent 
interaction with the surface is not small, and this leads 
to singularities in the spectra of the two-dimensional 
electrons, and of the here-discussed rapid surface re- 
laxation of the spin. 

The quantum-mechanical problem of the scattering 
of an electron by an imperfect surface described by the 
BC (1) is solved below in the Born approximation. The 
obtained wave functions determine the connection be- 
tween the distribution functions of the incident and re- 
flected electrons, i. e. , yield the BC for the spin-de- 
pendent distribution function. This BC describes a 
new surface-scattering mechanism that contributes to 
various kinetic effects governed by the near-surface 
electrons. We discuss here the angle (as well a s  en- 
ergy) dependence of the diffusivity of the scattering of 
electrons that a re  not spin-polarized, and compare the 
results with the experimental data. 415 

2. It is convenient to consider the problem of scatter- 
ing by a surface described by the condition (1) by 
changing over to the momentum representation in the 
two-dimensional coordinate x ,  i. e . ,  by introducing the 
spinor 

In this representation, the eigenvalues E a r e  deter- 
mined by the Schradinger equation (in differential form 
with respect to the variable z), supplemented on the 
surface by an integral BC whose kernel is the Fourier 
transform of the random function u,: 

We seek the wave function of the problem (3) on a 
half-space z 3 0 in the form 

$ ( p i I z )  = $ ( - ) ( p ,  F )  e x p  (-ipz/fr)+$(+' ( p l l ,  p) exp ( i p z l h ) ,  (4) 

which satisfies the Schradinger equation. Introducing 
a real, continuous and positive parameter h= (2mE 
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-pf)ll2, we neglect the Tamm states (their spectrum 
for a perfect spectrum was obtained in Refs. 2 and 
3) and the size quantization of the electrons in the 
z direction (the specimen is assumed tobe thick enough). 
The spinors ~)'*'(p,,,~) determine the amplitudes of the 
reflected (+) and incident (-) waves and a re  connected 
by virtue of the BC (3) by the integral relation 

= (2rnE -p'2)1/2] 

x F ( ~ ~ ~ o [ ~ ~ ~ p , ~ ] - ~ ~ ] $ " ' ( p ~ ~ , ~ ) = -  PO PO ( I + - ~ ~ ~ ~ x P I I I +  . PO ~--)IP(-)(P~~,P) Po 

1 - - j dp' u(p,,--p') [Ip(+'(p1, F')+ Ip(-'(pl, F') I. 
( 5 )  

(2nh) " 

We write down the solution of the scattering problem, 
following ~ a l ' k o v s k i i , ~  in the second Born approxima- 
tion, iterating with respect to the integral term in (5) 
and expressing the amplitude JI(+)(p,,,~) of the reflected 
wave in terms of the amplitude $(-)(p,,,P) of the incident 
one. It is convenient to carry out these transformations 
by diagonalizing (5) with respect to spin with the aid of 
the unitary operator 

2-"(I+ ia,cos cp+io, sin cp), (6) 

where the angle cp determines the orientation of the 
two-dimensional vector pll ={fill coscp,fiII sincp). The 
result of the calculation is given by the formulas (we 
use a nondiagonal representation) 

in which we have introduced the operator 

The macroscopic quantities calculated with the aid of 
the wave function (7) should be averaged over the 
random surface. We present here formulas for this 
averaging (designated hereafter by (. . . ))  in the case of 
two surface-scattering mechanisms: by smooth (com- 
pared with a) fluctuations of the surface potential, and 
by point defects of the surface. For  the f i rs t  mecha- 
nism in the case of an isotropic and homogeneous ran- 
dom surface, we obtain the correlator (u,u,), which is 
writtten for the Fourier transforms in the form 

Here a2 is the mean squared fluctuation of the random 
function u,, and W(p,) is an isotropic correlation func- 
tion, usually assumed to be Gaussian. In scattering 
by randomly disposed point defects with low concentra- 
tion, the statistical-averaging operation is determined, 
in analogy with the three-dimensional case,7 by inte- 
grating with respect to the coordinates of the impuri- 
ties. The resultant correlator differs from (9) only in 
that i t  contains in place of a2W(p,) a constant propor- 
tional to the surface concentration of the impurity. The 
integrals with respect to p, should be cut off at momen- 
ta of the order of E/a (if the impurity is localized on a 
surface with area a2). 

3. The one-electron statistical operator of the elec- 
trons incident on the surface and reflected from it  is 
defined in terms of the amplitude JI'*'(p,,, p,) by the 
formula 

A A '  

in which p , ,  satisfies the quantum-kinetic equation 

written in the representation of the eigenfunctions of 
the problem (2) (the subscripts A' and A number these 
states). The collision integral J,,, describes the inter- 
action with the volume scatterers,  and the character of 
the volume scattering can change in the near-surface 
region. We note that p'*'(pi, pi I p,,, p,) is a 2 x 2 matrix 
(whereas p , ,  contains the spin in the se t  of quantum 
numbers A) and the independent variables a re  here p,, 
and p, rather than p,, and E a s  in Sec. 2. 

The distribution functions F(p,,, *pa) of the incident 
and reflected electrons on the surface z = 0  are  ex- 
pressed'' in terms of the diagonal elements of (lo), 
averaged over the random surface. Writing down ex- 
plicit expressions for ( p(+'(p,,, p, ) p,, ,p,)) with the aid of 
(7) and (9), and changing from two-dimensional inte- 
grals in (7) to integration over the half-space of the in- 
cident momenta 

J dJpl.. . 
?">O 

[the elasticity of the scattering gives r ise  here to the 
delta function 6(E - E')] ,  we arrive a t  the BC (v, =p, /m)  

(12) 
This matrix BC can be simplified by introducing the 

scalar and spin distribution functions f (p , , ,~ , )  and 
o(p,, , p,) respectively, using the relations 

f (PI,, P.) =Sp F(P,, P,), a(p11, P Z )  =Sp oF(p11, PZ) , 

F(PII, PA --'IZ{~(PII, pZ),+aa(pll, P J I ,  
(13) 

in which the trace is taken over the spin variable. We 
write the BC for these functions by acting on (12) with 
the operators Sp.. . and Spo.. . and using the definitions 
(13). As a result, the scalar and spin components of 
the distribution function on the surface a re  connected 
by the relations (i = x, y,  z )  
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(15) 
with the tensor coefficients of these BC given by 

Boundary conditions similar to (14) and (15) were ob- 
tained also for other scattering models. ' The mecha- 
nism considered here differs in that the tensor coeffi- 
cients (16) a re  given in explicit form, and a t  1 X I -  1 the 
probability of scattering with spin flip is not small. 
Tne functions f (p , , ,~ , )  and u(p , , ,pa)  are  separated only in 
the case of spin-independent surface scattering (at 
x =O), when C, = D, = 0 and all  the tensor coefficients 
a re  proportional to 6 , , .  

Upon substitution of the equilibrium distribution 
fe,(E), uea=O, these BC turn into identities because 
the surface scattering is elastic. Let us verify that 
(14) and (15) correspond to a zero particle flux 
through the surface. Defining the fluxes of the inci- 
dent (J-) and reflected (J,) electrons a s  

I-  = d a p p J ( p , ,  p d ,  J+ = I d'p P ~ ( P I I ,  - P Z ) ,  (17) 
R.>o Pl=-O 

we apply the operator 

dap ... 
n>o 

to the BC (14). The integral term then vanishes (we 
use the symmetry condition ~(p!~,p,Ip'p:) =A(~',P:~PII,P,) 
and we obtain the equality J,= J,, meaning no particle 
flux through the surface. 

4. The diffusivity P(E, 0) of the scattering of the elec- 
trons that a re  not spin-polarized, is defined a s  the in- 
tegral probability from a given state into all other 
states." The quantity P(E, 0) enters in the BC (14) 
alongside the function f (p,,, -p,) [the factor 1 - P(E, 0) 
determines the degree of specularity of the scattering] 
and is expressed in terms of the coefficient 

Using the explicit expression 

+12x).*}{[  PO = 1 - ( f )  ' - ( x ~ ) ' ] '  

+ ( 2 : ) ' } - ' { [ l -  ($12 - (x$)2]z + (2%)2}-' 
(18) 

and changing to integration with respect to the two-di- 
mensional momentum for the diffusivity, we obtain the 

equation 

P.P. P ( E , o ) =  ( ~ ) 2 ~ d p r ~ ( l p r p ' ~ ) - ~ n ( p ~ ~ , p : i p ' , ~ z ) ,  
Po 

(19) 
pl,= (2nzE)" oos 0 ,  p,= ( 2 m E )  ""in 0 ,  p,= ( 2 m E - p f Z )  '", 

in which 0 i s  the electron incidence angle. 

The integration with respect to the momentum trans- 
f e r  q=p,,  - p' i s  carried out in (19) for the limiting 
cases of long-wave and short-wave surface inhomo- . 
geneities [the correlation function W(q) cuts off the 
integral at q >q,,]. In the case of long-wave correla- 
tions [E/q,, >> E/(2mE)lJ2] we obtain a formula 

E E E - 2  

+4x2- cos2 0 }{[ 1 - -(sinz O+x2 cos' 8 )  ] +I - sinz 0 )  , (20) 
Eo Eo Eo 

that is not suitable in the case of normal incidence of 
the electron [ ( 2 r n ~ ) " ~  cos0- q,,,]. For normal inci- 
dence we obtain a different asymptotic form, but a t  
0 = 7r/2 the formulas coincide and therefore (20) de- 
scribes approximately the angular dependence in the 
entire range of variation of the angle 0. 

If the inverse inequality E/q,, <<E/ (2rn~) ' /~  holds 
(short-wave inhomogeneity), we obtain an angular de- 
pendence of the form 

E '1, 
P ( E ,  0 )  aP. (E;) sin 0 

The last formula describes also scattering by point 
defects, and 02W(q) must be replaced by a constant. 
The coefficient P, diverges at large momentum trans- 
fers,  and the integral should be cut off a t  q,,-E/a, 
i. e . ,  only an order-of-magnitude estimate of the 
amplitude of the diffusivity i s  obtained for this scat- 
tering mechanism. 

The angular dependences (20) and (21) a re  shown in 
the figure for different values of E/E, and X. The 
grazing electrons a re  specularly reflected on account 
of the factors sin20 and sin0. This angular depen- 
dence is preserved over the entire range of variation of 
0 for extremely slow particles E/Eo -0 (or in the case 
of a high potential wall). With increasing E/Eo the dif- 
fusivity increases more slowly with 0, and a t  finite 
values of x (which take into account the scattering with 
spin flip) a situation is possible wherein the function 
P(E, 0) becomes nonmonotonic. The maximum of this 
function approaches the point 8 = 0  a s  E/Eo- 1 and 
I x I - 1, and when the parameters E/Eo and I X I  are  
equal to unity the diffusivity diverges like (sin@)* and 
(sin@)-' for the cases (20) and (Zl), respectively. At 
these values of the parameters, the scattering of the 
grazing electrons turns out to be strong, and we cannot 
make for them the assumptions made in the derivation 
of the BC. With increasing E/E,, the functions (20) 
and (21) fall off respectively a s  (E/E,)-' and (E/E,)-'/', 
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FIG. 1. Angular and energy dependences of the scattering dif- 
fusivity. The functionsF = [P(E,  O)/PolEo/E and += [P(E. 8 ) /  
~ , ] ( E ~ / E ) ' ~ ~ ,  defined by Eqs. (20) and (21), were calculated 
here for the values E / E ~ = o . ~  (I), E/EO=0.5 (2), E / E , = ~  (3) 
and x = O  (a), IxI=0.5 (b), I x I = 1  (c). 

and the form of the angular dependences does not vary 
with energy. 

An experimental investigation of the angular depen- 
dences of P(E, 8) was made for  bismuth4p5 (a number of 
results  were obtained also for other semimetals and 
metals). The model considered here does not de- 

scribe in detail the structure of bismuth (no account 
is taken of the anisotropic and multivalley character 
of the spectrum, nor of its strong nonparabolicity), 
but does reflect certain characteristic features of the 
experiment. Thus, the almost-specular reflection of 
the normally incident electrons, which was observed 
already in the f i r s t  studies (see Ref. 4), is obtained 
here  a t  x = 1 (corresponding to the case of bismuth) in 
a wide range of E/Eo. Another distinguishing feature 
is the very large difference between the values and an- 
gular dependences of P(E, @) on surfaces oriented along 
different crystallographic planes; this fact can be at- 
tributed to the different values of the parameter Po in 
the BC(1) on these surfaces. 

5. The formulas given above can be used directly to 
describe surface kinetic effects in 111-V semiconductors 
a t  E/EI << I (E, is the forbidden-band width). The struc- 
ture of the BC(14) and (15) obtained here is standard, 
s o  that it is possible to treat  various kinetic effects in 
the usual manner. ' For  example, the condition (15) is 
transformed (see Ref. 8) into the BC for the magneti- 
zation, which leads a t  I X I  - 1 to a rapid surface relaxa- 
tion of the spin. Using (14), we can describe galvano- 
magnetic size effects. The scattering mechanism in- 
troduced here should then be treated a s  supplementing 
(assuming the scattering to be weak) the mechanism al-  

ready discussed in the literaturellg and is effective in 
the case of a surface enriched with electrons. A weak 
scattering can be ensured both by small  fluctuations of 
the surface parameters (Po,, << 1) and by a "nonreso- 
nant" character of the scattering (at  E/Eo >> 1 o r  E/Eo 
<< 1). 

The analysis of almost-specular reflection (the only 
one carried out theoretically) is vital also for the solu- 
tion of the inverse scattering problem on a diffuse su r -  
f a ~ e , ~ * l O  since it makes it possible to s e t  the energy and 
angular dependences of the scattering probability in such 
a way that only several  parameters of this dependence 
a r e  determined in experiment. 

" ~ u c h a  connection is obtained if (10) is used to express the 
Wigner distribution Function on a half-space and the quasi- 
classical limit is taken. Then (11) is transformed into the 
usual kinetic equation. 

 nother her definition of the diffusivity is necessarg in a number 
of problems.' 
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