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The conductivity of certain two-dimensional systems with periodic arrangement of the inhomogeneities is 
considered. An exact solution is obtained for models with dielectric as well as superconducting square 
inclusions arranged in checkerboard fashion. The field distribution in the conducting region, the fluctuations 
of the current density, and the effective conductivity are obtained. Taken together with the results obtained by 
Dykhne [Sov. Phys. JETP 32, 63 (1971)l this makes it possible, when the properties of the components differ 
drastically, to provide a relatively complete description of such a system both in the vicinity of the 
metal-insulator transition and far from it. The conductivities of similar systems with inclusions of diierent 
shape are qualitatively estimated and the limits of the critical exponent are established. A relation that is valid 
also in the three-dimensional case is obtained between the permittivity of a medium with metallic inclusion 
and the conductivity having the same structure with superconducting inclusions. 

PACS numbers: 72.10.Bg, 71.30. + h, 64.60.Fr 

1. In the study of the physical properties of inhomo- mean free path, so that a macroscopic description with 
geneous media, principal attention is usually paid to a coordinate-dependent conductivity is applicable. 
systems with random distribution of the components 
(see, e.g., Refs. 1 and 2). This is natural, since real 
systems of this kind a r e  frequently randomly inhomo- 
geneous. Thus, for example, thin films obtained by 
sputtering on a substrate, have during the initial 
sputtering stage a strongly inhomogeneous random 
structure (island films). A theoretical analysis of such 
systems is fraught with extreme difficulties, which 
have not been overcome to this day. In essence, the 
only study in which some exact analytic results were 
obtained is that of ~ y k h n e ~  (and its generalizations4-6). 
A number of important results in the vicinity of the 
metal-insulator (MI) phase transition a r e  obtained by 
similarity theory.' To investigate the properties of 
randomly inhomogeneous media in the entire range of 

The periodicity of the STS leads to periodicity in the 
distribution of the electric field (current) and makes it 
possible by the same token to restrict oneself in the 
determination of the potential to a single unit cell of the 
structure. Clearly, this problem i s  simpler than that 
of the randomly inhomogeneous medium. The differ- 
ence in the complexity of the solution of these problems 
is similar to a considerable degree to the correspon- 
ding difference when it comes to finding the phonon 
spectra of an ideal and a disordered crystal. In two- 
dimensional STS, when the properties of the compo- 
nents differ greatly, it is possible in a number of cases 
to make use of the powerful methods of the theory of 
functions of complex ~ a r i a b l e . ~ ' ~  

- - 

concentrations it i s  necessary to resort to computer In addition to the obvious need for investigating the 
calculations and to model experiments. properties of the STS for various applications, their 

Another important class of inhomogeneous media 
comprises the so- called systems with topological 
structure (STS), i.e., systems in which all the inclu- 
sions a re  identical and form a periodic lattice. Among 
the real systems of this type are, for example, thin 
films with topological structure, used in semiconduc- 
tor devices.' These films, which a re  also obtained by 
sputtering, a re  on the one hand bulky enough to be 
practically homogeneous, and on the other thin enough 
to permit the distributions of the electric field and of 
the current in them to be regarded in a number of cases 
as  two-dimensional. The topological structure, i.e., 

study i s  also of fundamental interest since a metal- in- 
sulator phase transition can take place in these sys- 
tems. From this point of view such systems can serve 
as a relatively simple object for a theoretical and ex- 
perimental study of the phase-transition problem. The 
investigation of the STS properties, which is also of 
independent interest, permits on the one hand to dis- 
close the universality of the conclusions of the general 
theory of phase transitions and determine the role played 
in it by the STS. On the other hand, exactly solvable 
STS models can serve a s  the touchstones for a variety 
of possible approximate methods. 

the periodic distribution of the elements that cause the We consider in this paper certain STS models. Prin- 
inhomogeneity, is obtained, for example, by subsequent cipal attention is paid to a system in which the inclu- 
selective etching. It is important that the dimensions of sions, quadratic in shape, a r e  arranged in checker- 
the inhomogeneities a r e  large in comparison with the board fashion. The investigation of such a system is 
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of interest, in particular, for the following reason. 
Let p be the concentration (fraction) of the conducting 
component. If p -PC = 1/2, then the system becomes a 
checkerboard, and its conductivity o, becomes equal to 
zero, i.e., an MI transition takes place. In similarity 
theory2 it is assumed that the vanishing of o, proceeds 
in proportion to a power of the parameter r = (P - P,)/ 
p, that describes the proximity to the MI transition 
with respect to concentration: ue"rt. Calculation of 
the critical exponent t makes it possible, within the 
framework of similarity theory, to describe completely 
the checkerboard model, since the second critical ex- 
ponent was obtained by ~ ~ k h n e . ~  If the conductivities 
of both components o, and o, differ from zero, then ac- 
cording to Ref. 3 we have o, = (aio,)1/2 at  r = 0 (P =P, 
= 1/2) for isotropic systems whose macroscopic prop- 
erties remain unchanged when the substitution o l z  oz 
is made. In this case the approach to the MI transition 
is governed by the parameter h = u2 /ul << 1 : a, - ha, 
s = 1/2. The critical exponent s is the same both for a 
randomly inhomogeneous medium and for a checker- 
board. However, a s  will be shown below, with respect 
to the exponent t there is  no such universal behavior. 
For the checkerboard model o, vanishes logarithmical- 
ly. This is valid for ,all models in which the inclusions 
have corners in the region of the contact. 

A qualitative estimate was made of the effective con- 
ductivity of a system in which the conducting inclusions 
have a smooth convex shape described by a powerlaw 
function. This analysis, which is not rigorous, leads 
to the conclusion that for periodic systems (STS) the 
critical exponent cannot exceed unity: 0 6 t s 1. We 
note that for randomly inhomogeneous media t > 1 ( t  
~ 1 . 4  in the two-dimensional caseiv2). 

The effective conductivity of STS in the "dielectric" 
phase r <O was considered, when the conductivities of 
the components differ greatly. In this case the inclu- 
sions have a much higher conductivity than the matrix, 
and in first-order approximation the problem reduces 
to a calculation of the effective conductivity of a system 
with superconducting inclusions. It is possible to apply 
to the latter problem, which is also of independent in- 
terest, the same method a s  at  r >O. The result for the 
checkerboard model coincides with the one that follows 
from the "reciprocity relation" obtained by ~ykhne.' 
The relation between the corresponding exponents is 
then automatically satisfied., 

We consider also the permittivity c, of a system with 
conducting inclusions whose density is lower than criti- 
cal ( r  <0). We show that c, can be connected with oe of 
the problem of conductivity of a system with supercon- 
ducting inclusions (this is true in both the two-dimen- 
sional and the three dimensional case): c, =ae. This 
leads both to the statement that ce becomes infinite at 
the MI transition point, and to the relation between the 
corresponding critical  exponent^.^ 

2. We consider an isotropic film of conductivity ui 
with inclusions in the form of identical nonconducting 
squares arranged in checkerboard fashion, so  that the 
system a s  a whole has quadratic symmetry. Since such 
a system has an isotropic effective conductivity a,, the 

direction of the average electric field (E) can be chosen 
arbitrarily in the calculation of a,. We direct the co- 
ordinate axes x  and y parallel to the diagonals of the 
squares, and (E) along the x  axis. In this coordinate 
system the inclusions a r e  rectangular rhombs located at  
the points of a square lattice. To find the distribution of 
the current (field) in the chosen geometry it suffices to 
consider half the unit cell shown in Fig. 1 in the plane of 
the complex variable z = x  +iy. On the shaded sections 
of Fig. 1, the normal component of the current (field) is 
zero, while the tangential component vanishes on the 
dashed sections. To make the analysis general we con- 
sider the case of a rectangular lattice with a#b.  

The complex potential @ ( z ) ,  whose derivative yields 
the components of the electric field 

can be obtained by the same method a s  in Refs. 8-10. 
The conformal mapping of the region of Fig. 1 on the 
upper half-plane of the complex variable 5 (Fig. 2) is 
given by the function g(z) determined from the Christof- 
fel-Schwarz which takes in this case the 
form 

c 
z=C $ ( l - t y - ' L [  (1-k,'t2) (l-k,'tZ) I-" dt, 

0 

O<k,<k,<l. (2) 

The appendix contains the equations that follow from the 
correspondence of the points on Figs. 1 and 2 and yield 
the parameters k,, k,, and C. We now map the upper 5 
half-plane on the interior of a rectangle in the plane of 
the variable w such that the dashed sections aia, and 
a,a, of Fig. 2 go over into the vertical side of this rect- 
angle: 

The problem has thus been reduced to finding the com- 
plex potential for flow in a channel of constant cross 
section, s o  that 

cP ( w )  -Aw, (4) 
where A is a real constant. Formulas (2)- (4) together 
with the definitions of the parameters they contain yield 
the solution of our problem. For  the derivative of the 
complex potential we have 
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where the function f(z) is determined from (2). 

Using (5) and (I), we easily verify that the obtained 
solution satisfies all the boundary conditions in the re- 
gion of Fig. 1. When the cusp points 2, =& a + id a r e  
approached, in accord with Ref. 11, the field increases 
without limit 

O'(z) - (z-zo) -'", (6) 

while at the points z =&dl + i b  it vanishes. 

From (2)- (4) we can obtain the distribution of the field 
(current) inside a square with impermeable sides and 
with a pointlike source and a pointlike sink at opposite 
vertices. We note for this purpose that a s  d-0, as can 
be seen from Figs. 1 and 2, we have k1 -- 1 and k2 -0 
(a = b). The complex potential assumes a s  d - 0 the 
form 

@(z)='lrAln[ (l+b(z))/(l-E(z)) I, (7 

where the functions 5(z) a r e  determined from the equa- 
t ion 

The integral (8) can be expressed in terms of an incom- 
plete function.12 

3. To calculate the effective conductivity o,, we note 
that 

where U is the voltage drop on the cell and I is the total 
current flowing through the cell. U and I a r e  calculated 
just as in Refs. 8 and 9. As a result we obtain for a 
quadratic lattice (a = b) 

a,-al[K(kI')/K(kI) I ,  kIa=4-k,', (10) 
where K(k)  is a complete elliptic integral of the first 
kind. In the case a + b the right- hand side of (10) must 
be multiplied by a/b .  It is easy also to calculate the 
relative quadratic fluctuations of the current density 
A;. As a result it turns out that the expressions for A! 
and o, satisfy the exact relation6 

a.-ai/(l+A?), (11) 
a fact that serves to confirm the validity of the calcula- 
tions. 

Expression (10) yields the effective conductivity of 
the considered system in the entire region of the exis- 
tence of conductivity, 0 c d s a or  0 s r s 1. Here r 
= (p  - pe)/pe is a parameter that characterizes the 
proximity to the MI transition, P is the fraction (con- 
centration) of the conducting component, and PC is the 
critical concentration at which the effective conductivity 
vanishes. For the considered checkerboard system we 
have p,= 1/2, and the connection of r with d is given by 

7-i-[(a-d)2/az]. (12) 

If the dielectric inclusions a re  small compared with 
the size of the cell ( r=a  - d<< a, kl-- k,), we get from 
(19) and (A.9)- (A.12) 

a . / a 1 ~ i -  [ P  ( 1 1 ~ 5 )  /n] (r/a)z. (13) 

Comparison of (13) with the formula for the conductivity 
of a system with low concentration of nonconducting 

circles (cylinders) allows us to introduce an effective 
radius of a quadratic insulating inclusion 

Here Y is half the length of the diagonal of the square or  
the radius of the circle in which the square is inscribed. 
The effective area is larger than that of the square, but 
their ratio is close to unity: 

When the system approaches the MI transition point 
(d - 0) we have k1 -- 1 and k, - 0. From (lo), (A.9), 
(A.13), and (A.14) we get 

In expression (15) we have used the connection (12) be- 
tween the parameter T and d; as d- 0, this connection 
takes the form r c: 2d/a. The effective conductivity of 
the system under consideration vanishes logarithmically 
at the transition point. The MI transition is a phase 
transition of second order. 

4. The result (15) can be interpreted as  follows. Near 
the MI transition, the cell resistance, which coincides 
by virtue of the system periodicity with the effective re- 
sistivity of the sample, is determined mainly by the re- 
gion of the contact. As a rough estimate of the contact 
resistance we use the customary formula for the re- 
sistance of a conductor, which take in our case the 
form 

where x, s a ;  y =y(x) specifies the form of the contact, 
and y likewise does not exceed -a. For a checkerboard 
model 9 = ~ / 4 , ~ @ ) = d + x  (see Fig. 3),  and from (16) we 
obtain with logarithmic accuracy 

a,=a, [ln (a/;lT]-l. (17) 

Expression (17) agrees qualitatively with (15). The 
difference in the numerical coefficient i s  connected with 
the inhomogeneity of the current distribution. TO refine 
the estimate o, we obtain the distribution of the current 
(field) in the region shown in Fig. 3. A similar problem 
was solved, e.g., in Ref. 9. The transformation g1 
= &(z), where &(z) is determined from the equation 

ct 

z-iC, (i-t)-#t-" dt, C1-d/B(i/2, - )  fm-0, (18) 
0 

maps the interior of the region AlA2A,Al on Fig. 3 on 
the upper 5, half-plane. The region Imgi > 0 is then 
mapped on a half-strip; the complex potential takes the 
formg 

O (z) =iA, arcsin [2E,(z)-i]. (1 9) 

Here A, i s  a real constant, and f,(z) is determined from 
(18). 

The total current through the contact i s  
Z=2ai Im [@(id)-O(0) ]=2nu,A1. (20) 

The potential difference between the points z = x o  and 
z =- xo can be written in the form 

U=2Re 10 (O)-@(-ZO) I. (21 
Putting xo -a>> d, where 2a is the period of the struc- 
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ture, we get from (21), (la), and (19) 

From (20) and (22), talcing (9) into account (at a = b)  we 
obtain 

o,=a, (n /2 -0 )  ln-I ( v a / d )  . (23) 
Here y=  T(8) - 1 is a quantity that cannot be calculated 
by the described method. Equation (23) is valid at  
angles 8 not too close to n/2: 1/2 - 8 >> d/a. If the in- 
equality is reversed, when 8- n/2 and P - 1/2, we have 
from (18) and (19) 

'3 (2) =nA,zld,  

s o  that we obtain for the effective conductivity (x, =a): 
a, =a,d/a. The same result is given by formula (16), 
which is exact at 8 =  n/2, since the current distribution 
is uniform in this case. At 8= 1/4 formula (34) agrees 
with logarithmic accuracy with (1 5). 

The model considered has the following singularity: 
the inclusion has in the region of the contact a cusp in 
which the electric field becomes infinite. To clarify 
the importance of this circumstance, we consider a 
model with rounded corners, when the shape of the con- 
tacting inclusions is given by the branches of the hyper- 
bola 

x'lar2-y2/br'=1, 

and the average field is directed along the y axis. The 
complex potential of this problem is of the form8 

@ ( z )  =cons t~ ln [ z+ ( zg -c? )" ] ,  (24) 
~ , ~ = a , ~ + b , ~ .  

An estimate of the conductivity, analogous to that given 
above, leads to the results (23), with 

d=2a,, 0=arc t g (b , l a , ) .  

Thus, in the case of rounded contacts with round-off 
radius 5 d the effective conductivity varies logarith- 
mically a s  before. The logarithmic dependence is 
"acquired" a s  usual in the region d << x <c a (a is of the 
order of the period of the structure), so  that if the in- 
clusion has in this region the form of a straight line, 
then the conductivity takes the form (23). 

We return now to Eq. (16). For the contacts con- 
sidered, Eq. (16) gives the exact result at  8= n/2 and a 
qualitatively correct one at  8 = n/4. The apparent rea- 
son is that for these contacts the current distribution 
does not differ greatly from a uniform one. At the same 
time, in the case of sharp obstacles (8 - 0), which pro- 
duce a strong perturbation in the distribution of the 
current, formula (16) yields a result that is far  from 
(23). 

The foregoing circumstances raise the hope that for 
inclusions of sufficiently smooth form, which form in 

the region of the contact a channel with a smoothly 
varying cross section, the use of (16) will lead to a 
result close to the true one. For  inclusions whose 
shape in the region of the contact is given by the equa- 
tion y (x) = d  + a! ( x  ("(p b l ) ,  we obtain from (16) a, ad ' ,  
where t = (p  - 1)/p. Since p 3 1, it follows that 0 a t 4 1. 
The value t = 0 corresponds to a logarithmic behavior of 
a, similar to (23). We can thus expect for inclusions 
with smooth convex shape 

It follows from (25) that a, vanishes at  the MI transition 
point, with an infinite derivative. At the same time, for 
randomly inhomogeneous media we have do/d*r - 0 a s  
r - 0, since t> 

We note that the use of Eq. (16) for inclusion of con- 
cave shape (p  < 1) leads to the conclusion that in this 
case the MI transition is of first  order, since the inte- 
gral in (16) is finite at  r = 0. However, the validity of 
(16) in this case is doubtful, inasmuch a s  in the region 
of the cusp (with zero aperture angle) the perturbations 
of the current distribution a r e  large. 

We have considered so  far only dielectric inclusions. 
If the conductivity a, of the inclusions is different from 
zero but is low (a, << a,), the results above a r e  valid 
outside the "smearing" region2 r>> T,,. At r<< rO, ac- 
cording to ~ y k h n e , ~  

a<= (o ,o , )  ". (26) 

For a system of the checkerboard type, considered in 
Sec, 3, Eq. (26) becomes equal to (15) at  

i.e., at  o,<<a, the region of the smearing of the MI tran- 
sition is exponentially small. In the general case when 
a, has a power-law dependence on r [see (25)], the 
smearing region is determined from the condition 7:' 

" 0 2  /a,. 

5. The methods of Sec. 3 can be used also to investi- 
gate the "dielectric phase ( r  <0,u,/a, << I), also out- 
side the smearing region 1 T I>> re. We assume that the 
checkerboard model differs in the region T <O from 
that considered in Sec. 2 ( r  > 0) by the substitution a,  
=a,, i.e., squares with high conductivity oi a r e  ar- 
ranged in checkerboard fashion in a matrix of conduc- 
tivity a,. In first-order approximation, outside the re- 
gion of the smearing, the inclusions can be regarded a s  
"~u~erconducting" (a, -- -), so  that inside them E = 0. 
Consequently the tangential component of the field E ,  is 
zero on the inclusion boundary, and the current (field) 
has only a normal component. We consider the problem 
in the same geometry as in Sec. 2. Half of the unit cell 
is of the same form a s  in Fig. 1, but now the inclined 
sections A2A, and A,A,, just a s  the vertical ones, 
should be drawn a s  dashed lines (Et=O on the dashed 
lines). Accordingly the sections a,a, and a p g  on Fig. 2 
should also be shown dashed. Then the transition to a 
constant section channel will be given not by (3) but by 
the expression 

790 Sov. Phys. JETP 52(4), Oct. 1980 B. Y .  Balagurov 790 



The rest of the calculation is analogous to the preceding 
one : for a quadratic lattice we obtain a s  a result 

~.-aa(ki)/K(ki') .  (29) 

In the derivation of (29) we used the connection (A.8) 
between kl and k2. From (29) and (10) it follows that 

Formula (30), obtained for the considered particular 
case, agrees in form with the exact "reciprocity rela- 
tion" derived by ~ ~ k h n e ~  for isotropic two-dimensional 
two-component systems. The reciprocity relation takes 
the form (30), where o, is the effective conductivity of 
the "supplementary" system, which differs from the 
initial one by the substitution o, = 0,. 

For the checkerboard system considered above, as 
well as  for a randomly inhomogeneous medium, the 
reciprocity relation takes the form3 

o.(T) a, (-T) =al&. (31) 

Formula (31) is valid for all T. In particular, at T = O  
we obtain from (31) the relation (26). We consider now 
the conductivity outside the smearing region 1 T I >> r,. 
We express a, in the form 

From (31) and (32) follows a connection between the 
functions f, and f-: 

f + ( T ) f - ( ~ )  =i. (33 
In similarity theory it i s  assumed that f+ and f- are  
given by 

and it i s  proved that in the two-dimensional case 
t-q. (3 5) 

The equality of the critical exponents (35) follows also 
from expressions (33) and (34). Thus, the reciprocity 
relation leads to a relation (35) in an independent man- 
ner. Moreover, it gives the connection between 
o,(r > 0) and o, (T < 0) in the entire range of variation 
of 7, i.e., even outside the region of the applicability 
of similarity theory. 

6. Directly connected with the considered group of 
questions is the problem of calculating the effective di- 
electric constant E, of an inhomogeneous medium. An 
expression for c, can be obtained from the formulas for 
u, by making the substitution o, - ci, so that all the re- 
sults obtained for the conductivity can be directly applied 
to the permittivity. Of greatest interest is the behavior 
of the permittivity of a medium with metallic inclusions, 
particularly in the vicinity of the MI transition point.2 

Let the permittivity of the matrix by c2 and let the 
concentration of the metallic component P <PC, so  that 
o,=O,. i.e., the medium a s  a whole is nonconducting. 
Then E=O inside the metallic inclusions while on the 
boundary E (as well as  the induction D) has only a nor- 
mal component. In the dielectric regions we have 

rot E=O, div D=O, D-e.E. (36) 
It is easily seen that the calculation of the effective 
permittivity of such a system is similar to that of the 

effective conductivity of a medium with super conducting 
inclusion8, considered in the preceding sections. These 
problems a r e  equivalent subject to the substitutions D 
= j, E, = o,, cl = u2. 1.t follows therefore that E, is ex- 
pressed in terms of the same function f-(r) a s  6, 
=o,(r <o): 

where f (7) i s  defined in (32). The result (37) can be ar-  
rived at formally by assuming that c,- m for the first 
component (the metal). We emphasize that relation (37) 
is valid in either a two-dimensional or  a three-dimen- 
sional case, at any shape and arrangement of the in- 
clusions and at all r ~ 0 .  

It follows from (37) that when the MI transition i s  ap- 
proached from the side of the insulator, E, becomes in- 
finite.2 In similarity theory it is assumed that as ( T  1 - 0 (Ref. 2) 

It follows from (34), (37), and (38) that 

q-9. (39) 
The equality of the critical exponents (39) was estab- 
lished earlier2 by similarity-theory methods. 

It should be noted that in contrast to Eqs. (30) and 
(35), which a r e  valid under the restrictions considered 
above, (37) and (39) a r e  much more general. In particu- 
lar, a connection of the type (37) between the permit- 
tivity and the conductivity holds also in the anisotropic 
case. 

7. It can be concluded from the foregoing results that 
systems having a topological structure can be fitted 
within the framework of the general theory of MI transi- 
tions. In particular, the relations established between 
the critical exponents by similarity theory2 a re  satis- 
fied. A distinguishing feature of the STS is the nonuni- 
versality of the critical exponent t (in the general case 
this pertains apparently also to the exponent s). The 
value of the exponent t is determined by the shape of 
the inclusions in the region of the contact, whereas for 
randomly inhomogeneous media the value of t is deter- 
mined mainly by the topology of an infinite ~ lu s t e r . "~  

The shape of the inhomogeneities can be such that the 
dependence of o, on r i s  different in different concen- 
tration regions. Thus, if the inclusion has in the region 
of the contact the shape of a wedge with a round-off 
radius -Yo, then the effective conductivity in the region 
r, s d << a has a logarithmic dependence on d (and on r), 
while at d << Y, the dependence of a, on r can take a 
power-law form. 

To check on the validity of the qualitative estimates 
obtained with the aid of (16) it is desirable, in particu- 
lar, to obtain the solution for a model with round inclu- 
sions, o r  to determine the resistance of a contact made 
up of a pair of parabolas. An estimate with the aid of 
(16) yields for such a problem t=1/2. It is of interest 
also to investigate STS with the aid of model experi- 
ments similar to those made in Ref. 13. 

In conclusion, I am deeply grateful to Corresponding 
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Member of the USSR Academy of Sciences and A. I. 
Larkin for helpful discussions of the present work. 

APPENDIX 

From the correspondence between the points on Figs. 
1 and 2 we obtain with the aid of (2) the following equali- 
ties: 

a-CK,, d=CK, dI==C(KI-Ks), b=C(Ka+K,), di=CK,- (A.1) 
The integrals K, =K,(k,, k,) take here the form 

K, = j (i-f )-,A[ (i-k , ' t ) (I-k2t2) I-" dt, 
0 

I* 

K, =I (tz-I)-'h[(i-k:P) (I-k:ta) I-". dt, 
1 

(A.2) 
4 - I'F (tz-I)-'"[ (k?t2-I) (I-k2t2) 1-* dt, 

12 ',kt - 
K, = j (t2-I)-"[ (k,'t2-I) (k,'f -I)]-". dt. 

1/*t 

According to (A.l), we have five equations with which 
to determine the three parameters k,, k,, and C. For  
this system to be compatible we must have to identify 
relations between K,. The first ,  d + a  =dl + b, which 
i s  obvious from the geometry of Fig. 1, turns into an 
identity when the expressions for a, b, d, and dl from 
(A.l) a r e  substituted. The second follows from (A.l): 

K,(k,, kr)=Ks(kt, kz)+K'(kt, kz). (A.3) 
TO prove (A.3), we consider the integral 

I = j  (I-z2)-$[ (l-k;zZ) (~-k,t ')  d z ,  (44.4) 
c. 

where the contour Co emerges from the point z = 0 and 
goes off to infinity in the upper half of the complex z 
plane. If the contour Co i s  directed along the real  posi- 
tive semiaxis, then 

J=K,+iKz+ (&I) K,-K,. (A.5) 

We now deform the contour Co to make it coincide with 
the imaginary positive axis. It turns out then that the 
integral J i s  purely imaginary. From the vanishing of 
the real part of (A.5) follows the validity of (A.3). From 
the equality of the imaginary parts we obtain the rela- 
t ion - 

K2+Ks = 1 (i+ya)-"[ (I+k I y " ) (l+k,'y" ]I-" dy. (A.6) 
0 

For a square lattice (a = b, d =dl), a s  follows from 
(A.l), there should be satisfied one more equality 

K, (kt, kz)=Kz(k,, ks) +Ks(kt, kr), (A.7) 
which yields the connection between the parameters k, 
and k2. To find this connection we make in (A.6) the 
change of variable 

y=t(l-t2) -%. 

Comparing the transformed integral (A.6) with the ex- 
pression for K, from (A.2), we verify that to satisfy 
(A.7) we must stipulate for  the square lattice that 

kl'+k?=I. (A. 8 

We introduce in lieu of k, and k, the parameters k and 
u defined by 

k,t=P(l+Zx), k,'=kz(l-2%). (A.9) 

For  a square lattice we have from (A.8) and (A.9) 

The equation fo r  the determination of the parameter n 
at k = 1/a can be written in the form 

rla=KI/K,. (A.11) 
In the case when the inclusions a r e  small compared with 
the lattice period (Y <c a), we have, as seen from Figs. 
1 and 2, k, n k,, i.e., u<< 1. For  the integrals K, and 
K, a t  small u we obtain the following expansions (k 
= 1/a 1: 

Here K(k) is a complete elliptic integral of the f i rs t  kind. 
In the expansion of K, in powers of u it is convenient to 
make first  in the expression for K3 in (A.12) the change 
of variable 

tz=[k2(l+2x) ]-'([4xz'/(I-Zx) ]+I). 

Near the MI transition point we have d<<a, kt - 1, k2 
-0,u+1/2, i.e., x=1/2- A, where A<<l. The equa- 
tion for the parameter A can then be written in the form 

d/a=K2/K,, (A.13) 

and for K, and K, we can use the expansions (k = 1 / a ) :  

When expanding K2 in powers of A it is convenient to 
make first  in the expression for K, in (A.2) the change 
of variable 
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