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A quantum theory of irrotational perturbations of an ideal fluid in a spatially flat isotropic homogeneous 
cosmological model is constructed. Two gauge-invariant canonically conjugate scalars are obtained that 
describe the evolution of the two physical degrees of freedom of irrotational perturbations of the matter in an 
expanding universe; they are analogs of the velocity potential and the density perturbation in a stationary 
nongravitating medium [E.M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2, 1978, $241. A 
Lagrangian and an equation of motion of second order are obtained. Canonical quantization is performed, 
and the concept of phonons (sound quanta in a nonstationary universe) is introduced. Conformal 
noninvariance of sound waves in an isotropic universe is proved. It is shown that the mechanism of 
spontaneous production of phonons in the process of the cosmological expansion is the cause of the formation 
of the initial spectrum of adiabatic perturbations of the matter density in an isotropic Friedmann universe. In 
the subsequent evolution in the stage after hydrogen recombination in an expanding universe the long- 
wavelength density fluctuations may lead to the formation of galaxies and clusters of galaxies. Estimates are 
made of the spectrum of the primordial density fluctuations. It it shown that they are in agreement with the 
requirements imposed on the initial spectrum by the adiabatic theory of the origin of galaxies. 

PACS numbers: 98.80.B~ 

In this paper, irrotational perturbations of an ideal 5 1. IRROTATIONAL MOTIONS OF AN IDEAL 
fluid in a Friedmann cosmology will be canonically FLUID IN THE GENERAL THEORY OF RELATIVITY. 
quantized. The main reason why this problem has not LAGRANGIAN OF THE LINEAR I f  ED EQUATIONS 
hitherto been solved is the difficulty of constructing two 

Irrotational motions of a perfect fluid in the general 
canonically conjugate scalar operators describing in- 

theory of relativity can be described by a single scalar 
variant (independent of the coordinate system) pertur- function-the potential cp =p(x), whose gradient is pro- 
bations of the matter in a nonstationary universe. portional to the four-momentum of a particle of the 
These scalars a r e  the analogs of the operators of the matter": 
velocity potential and the density perturbation of mat- 
t e r ,  on which the algebra of quantum perturbations of p,=wui='p. i , (1.1) 

an ideal stationary nongravitating medium is based. ' where u' i s  the four-velocity of the matter (up '=  l), 

Adiabatic perturbations of the matter density in homo- W- (e+p) In= (p, icp, '" (1.2) 
geneous isotropic cosmological models were investigat- i s  the specific enthalpy, p is  the pressure, E i s  the mat- 
ed for the first time by Lifshitz.' Using the Fourier ter  density, and 
method, Lifshitz reduced the problem to two second- 

dP n=-=ex de 
order equations describing the behavior of two "fictit- 

dw 
(1.3) 

ious" modes (which can be eliminated by transition to a 
different coordinate system) and two physical (invar- i s  the particle number density. Among the four quan- 
iant) modes of irrotational perturbations. Field and tities w ,  p ,  E , and n, only one is independent and they 
Shepley? using Lifshitz's method, obtained an equation a r e  related to each other through the equation of state 
of second order for the evolution of the Fourier com- of the matter: 
ponents of the physical perturbations of the matter den- P=P(w).  (1.4) 
sity. In the present paper, we construct a Hamiltonian In what follows, we shall not require notation for the 
formalism of irrotational perturbations of an ideal fluid temperature and specific entropy. 
in the spatially flat Friedmann cosmological model and 
in this framework carry out a canonical quantization of Equation (1.1) i s  an exact integral of the Euler equa- 
these perturbations. The sections of the paper a r e  a s  tions 
follows: 

uR(p, a-pr, i) -0, (1.5) 
0 1. Irrotational motions of an ideal fluid in the gen- 

which a r e  the projection of the hydrodynamic equations 
era1 theory of relativity. Lagrangian of the linearized 

onto the directions orthogonal to the velocity vector2': 
equations. 

(tip-uIuk) T:,,=o, 
8 2. Irrotational perturbations of the matter in a 

Friedmann cosmology: Hamiltonian formalism. where T:= ( E  +p)uiuk -pbq i s  the energy-momentum 
$ 3 .  Sound quanta (phonons) and their conformal non- tensor of the matter. The continuity equation (u,q:, 

invariance in an isotropic universe. = 0) expresses the law of conservation of the particle 
number in a volume that i s  comoving with the matter: 

04. Primordial spectrum of adiabatic perturbations 
of the matter density. (nu'); i=O. (1.6) 

807 SOV. Phys. JETP 52(5), Nov. 1980 0038-5646/80/110807-08$02.40 O 1981 American Institute of Physics 

--- 



The semicolon denotes the convariant derivative in the 
metric gik. 

Despite the apparent simplicity of the definition (1.11, 
irrotational motions present a complicated hydrodynam- 
ic picture with the occurrence of shock waves:' hydro- 
dynamic discontinuities, etc. The self -gravitation of 
the matter flows influences the geometry of space, and 
the motions (1.1) generate gravitational waves of a 
special structure that do not lead to the occurrence of a 
solenoidal component of the momentum pi (Thomson's 
theorem). The Einstein equations G'f= T!, which de- 
scribe these processes, a r e  obtained by equating to 
zero the first variation of the action (c =ti = 8nG = 1) 

with respect to the metric gik for fixed function cp. 
 he continuity Eq. (1.6) follows from a 6W = 0 varia- 
tion with respect to cp for constant gik.] In (1.7), 
g= det{gik}, and R = Rf = -Gf i s  the scalar curvature. 
Equations (1.2) and (1.4) determine the pressure p a s  
a function of the potential cp and the metric gik. 

One of the main problems that a r i ses  in this direction 
is the investigation of small perturbations of certain 
exact solutions of the type (1.1). In this case, the 
function (D i s  the sum of the known function cp"', which 
determines the background solution, and a small func- 
tion 6cp= +, which i s  the subject of the analysis: 

(p=cp'o~+m, g*=g*c~)-h* (1.8) 

The small tensor hik i s  defined in the background space 
g:' and i s  a linear function of the scalar +. (In the first  
order in cP, gravitational waves a r e  not generated. ) 
This problem i s  topical for the following two reasons: 

a )  the most important solutions possessing a definite 
symmetry a r e  special cases of (1.1) (for example, the 
simplest anisotropic cosmologies, the Friedmann mod- 
els,  spherically symmetric collapse, and so forth); 

b) the problem of the evolution and the initial spectrum 
of adiabatic perturbations of the matter density in a 
homogeneous isotropic universe i s  the key to the ex - 
planation of the origin of structure in the Universe and 
the expected small anisotropy of the microwave back- 
ground associated with it. 

The Lagrangian of the linearized Einstein equations, 
which connect the perturbations of the metric h: to the 
potential d, i s  obtained by expanding the integrand of 
(1.7) up to second order in cP and h! (see Appendix I): 

where 

and P i s  the speed of sound. [ ~ l l  the operations a r e  
performed in the background metric gik, and here and 
in what follows the superscript (0) i s  omitted.] The 

perturbed Einstein equations [and the continuity Eq. 
(1.6), which i s  a first  integral of them], a r e  obtained 
from a 6W'2'=0 variation with respect to JI '~ (with re -  
spect to +) for fixed + ( ~ )  and background metric: 

where 

In what follows, we shall be interested in the Cauchy 
problem for Eqs. (1.10). 

52. IRROTATIONAL PERTURBATIONS OF THE 
MATTER IN A FRIEDMANN COSMOLOGY: 
HAMlLTONlAN FORMALISM 

To quantize the irrotational perturbations (sound 
waves) in the Friedmann cosmology, it i s  necessary to 
separate the physical degrees of freedom, of which 
there a r e  obviously two: For the second-order hyper- 
bolic Eqs. (1.10) it i s  necessary to specify on the initial 
Cauchy hypersurface B two functions, for example, the 
velocity potential + and the density perturbation 6c (the 
derivative of + along the normal to c). 

We introduce a synchronous coordinate system in 
which the scalar 40"' depends on the universal time t: 

Here, 6,, i s  the unit tensor, and the function a = a(t) 
determines the expansion rate of the background space : 

ci = 
3 (- ) =e, -2 (t). =.s+p, (2.2) 

where the dot denotes differentiation with respect to t. 
For the unperturbed four-velocity and particle number 
density we obtain from (2.1) and (2.2) 

For the perturbed hydrodynamic quantities in the f i rs t  
order in 9 we have 

where v = +/w.  The small tensor hUB in the Euclidean 
three-space x= h a }  ( x ,  Y, Z )  is determined hy Eq. 
(2.1) up to a term of the form 

f ( t )  6-11, (2.5) 

which vanishes after redefinition of the constants of in- 
tegration of Eqs. (2.2) for the function a(t). The gen- 
era l  form of ha,  (A and B a r e  scalars and linear in +) 
i s  

h.~=A6=p+B, eo. (2.6) 

(All operations with Greek indices a r e  performed by 
means of 6, ,. For example, . 

Thus, we have expressed all  the perturbed quantities 
in terms of the three scalars v,  A, and B. The gauge 
freedom in the choice of these scalars is due to the ar- 
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bitrariness in the construction of the synchronous coor- 
dinate system (2.1) (Ref. 5): 

where F= F(x) and H =H(x) a r e  a rb i t ra ry  functions of 
the spatial coordinates ( F  and VH a r e  smal l  quantities), 
and it has the form (uidxi = i n ~ , ~ , , d x ' d x ~  = inv) 

1 d dt 
E=u + - F, a = A  + -F, B=B+F J- + H .  

2 aZ (2.8) 

It follows f rom the transformations (2.7) that the scalar  
q=y( t ,x) ,  

i s  gauge invariant (this means that q i s  a four-scalar; 
v ,  A, and B a r e  three-scalars) .  

We now proceed a s  follows: Using some of the Eqs. 
(1.10), we express the original s ca l a r s  v ,  A,  and B in 
t e rms  of the invariant sca lar  q ,  a f te r  wkich, substitut- 
ing in (1.9), we find the Lagrangian L = and a n  
equation of motion of second order  for  the function q,  
which describes the evolution of the two physical de- 
grees  of freedom of the irrotational perturbations of the 
ideal fluid in the flat Friedmann model. 

We rewrite Eqs. (1.10) in the coordinate system (2.1): 

where 

It follows from Eq. (2.12) that AC i s  a n  arb i t ra ry  func- 
tion of the t ime,  which, by virtue of (2.5), can be se t  
equal to zero. Further,  s ince the sca lar  B determines 
the perturbations of the metric only through the second 
derivatives B,,,, i t  i s  defined only up to an  additive 
function linear in x.  It follows from this  that Eq. 
(2.12) has only the tr ivial  solution 

C=O. (2.13) 

Equations (2.11) and (2.13) enable u s  to express  the 
s ca l a r s  v,  A,  and B directly in t e rms  of the function q: 

where 

The functions Q and P, which a r e  integrals with respect  
to the universal t ime t,  a r e  defined up to a rb i t ra ry  ad- 
ditive functions of the spatial coordinates. This a r  - 
bitrariness in the definition of the function Q i s  a n  ex- 
pression of the gauge freedom (2.8) and can be el im- 
inated by going over to a suitable f rame of reference. 
We shall consider more  carefully the indeterminacy of 
the integral P. 

Substituting Eqs. (2.14) in Eqs. (2. lo),  we obtain an  
expression for  the perturbation of the matter  density, 
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and a n  equation that re la tes  q to the Laplacian of the 
function P, 

It follows f rom Eq. (2.16) that for  P+O the integral 
P ( t , x )  i s  determined from the known function q ( t , x )  up 
to an  additive harmonic function P,(x) of the spatial 
coordinates: 

AP,=O. (2.17) 

Thus, Eqs. (2.14) enable u s  to find the functions v , A ,  
and B from the given sca lar  q(t ,x)  up to a particular 
solution that does not vanish under gauge transforma- 
tions: 

A solution of Eq. (2.17) satisfying the condition of 
uniform boundedness in the x space for quantities of the 
type Po,, [if this condition is not satisfied for  the 
solution of the Cauchy problem, Eqs. (2.10)-(2.12) of 
linear perturbation theory a r e  invalid] i s  the bilinear 
form 

P o = a a l ~ a x B ,  aWB=const i2.19) 

with vanishing t race  a: = O .  The solutions (2.19) de- 
scribe irrotational perturbations of infinite scale in the 
flat Friedmann model. They a r e  homogeneous and of 
the f i r s t  type in the Bianchi classification; the only ob- 
servational manifestation of them i s  a quadrupole aniso- 
t r ~ p y  of the microwave background (see Appendix II), 
It follows from Eqs. (2.2) and (2.5) that the function A 
i s  defined up to a constant term. Hence, we obtain the 
general  form of irrotational perturbations with infinite 
sca le  of variation in t e r m s  of the invariant scalar  q: 

q=const. (2.20) 

For P = 0 ,  the function Po(x) i s  a rb i t ra ry ,  and the solu- 
tion (2.18) determines a damped mode for dust. The 
general solution with P =  0 in a synchronous comoving 
f rame (v = 0)  has the form 

q = q ( x ) :  Q=2aq/3d, (2.21) 

The growing mode for dust i s  completely specified by 
the scalar  q ,  which is  a n  arb i t ra ry  function of the x 
coordinates. 

Thus, with allowance for what we have said above 
we may conclude that for  P#O the sca lar  q describes 
the evolution of the two physical degrees of freedom 
of irrotational perturbations of the matter in the spat- 
ially flat Friedmann cosmological model. Differentiat- 
ing (2.16), we obtain a second-order equation for the 
sca lar  field q(t,  x): 

a' 
(jf'+2 - 4'-P2Aq=O, 

a 
(2.22) 

where the pr ime denotes the operation aa/at and a 
= (~ /p) (y /3)"~ .  TO solve this equation on the initial 
Cauchy hypersurface t= const, we must specify two 
arb i t ra ry  smal l  functions q and q '= Ap/3a2 of the spa- 
t ial  coordinates [see (2.16), (2.141, and (2.15)]. 
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Equation (2.22) for the scalar field q can he obtained 
by equating to zero the variation with respect to q of the 
act ion 

After the substitution of (2.14) in (1.9), fairly lengthy 
calculations lead to the conclusion that the Lagrangians 
L and 2 differ only by a divergence term. 

We denote by u the gauge-invariant scalar canonically 
conjugate to q: 

o = o ( t ,  x )  = a a 3 E / a ~ = a Z q ' = ~ ~ / 3 .  (2.24) 

We can use o to express the density perturbations [see 

The constructed scalars q and a describe the invariant 
variations of the velocity potential and the perturbations 
of the matter density in an expanding universe. Note 
that the invariant perturbations of dust (8 = 0) can be 
expressed in terms of q and U. From Eqs. (2.21) and 
(2.25) we obtain a damped mode, q = 0, u =u(x), and a 
growing mode, q =q(x), U =  4 Saydt/3. 

8 3. SOUND QUANTA (PHONONS) AND THEIR 
CONFORMAL NONINVARIANCE IN  AN ISOTROPIC 
UNIVERSE 

The canonical quantization of the irrotational perturba- 
tions (sound waves) in an expanding universe i s  based 
on the Lagrangian L and uses the equal-time commuta- 
tion relation for the canonically conjugate operators q 
and o: 

This relation i s  analogous to the commutation rule be- 
tween the operators of the velocity potential and the 
density perturbation in a stationary medium,' the oper- 
ators q (2.14) and a (2.25) playing the corresponding 
parts in the nonstationary universe. 

The concept of phonons (quasiparticles, sound quan- 
ta) ar ises  when we go over to the Fock representation 
of the algebra of the q field [see Eqs. (2.22) and 
(3. I)~'].  We introduce the space of the state vectors 
of the q field with definite number of phonons having 
three-momentum k. In this representation, the opera- 
tor of the q field has the form (k = I k I )  

where a, and a,f a r e  the operators of annihilation and 
creation of phonons with momentum k, and they satisfy 
the Bose commutation relations [see (3. I)]: 

tar,ar,l =O,[ak,  ak 1=6 ( k t - k , ) .  (3.3) 

The basis of the Fock space consists of eigenvectors 
of the phonon number operator N=a:a,. The functions 
vk= vk(t) satisfy the equation 

where w = Pk and U =  a"/a a r e  functions of the time and 
a r e  normalized by the condition 

The gauge invariance of the scalars q and u makes it 
possible to rewrite Eqs. (2.22)-(3.5) in generally CO- 

variant form (see Appendix III). 

An important property of Eq. (2.22), which describes 
the evolution of the sound waves in an expanding uni- 
verse,  i s  i ts  conformal noninvariance with respect to 
the equation for propagation of sound in flat space- 
time. We introduce the new function ;= aq. Then the 
equation for the gauge-invariant scalar in the con- 
formally Euclidean coordinates (q,x), where 9 = .f dt /a ,  
has the form 

a" qt'-p'Aq = - q .  
a 

(3.6) 

It follows from this that sound waves in a nonstationary 
isotropic universe a r e  conformally invariant only when 
a "=O. A universe filled with ultrarelativistic particles 
with equation of state p =  & / 3  has this property. In such 
a universe, the processes of nonadiabatic amplification 
of sound waves and the production of phonons a r e  im- 
possible. In a l l  cases when a "ZO, spontaneous produc- 
tion of acoustic oscillations accompanies the process of 
cosmological expansion. This mechanism forms the 
initial spectrum of perturbations of the matter density 
in an isotropic universe. The long-wavelength fluc- 
tuations of the density may be the cause of the forma- 
tion of galaxies and clusters of galaxies in the frame- 
work of adiabatic theory. lo 

The finding of the correlation functions of the den- 
sity fluctuations, the metric, and other quantities r e -  
quires the construction of the quantum propagator 
(Green's function) of the field q,  which we define a s  
follows: 

where T  i s  the operator of time ordering: 
q  ( x , )  q  (12) for t , > t ~ ,  

~ q ( x ~ ) q ( x ~ ) = {  q  (22) q  ( X I )  for t ~ < t z .  

This operation i s  generally covariant, since the com- 
mutator 

i G ( x , ,  x 2 ) = [ q ( x l ) q ( x 2 )  I (3.9) 

vanishes if the points x ,  and x, a r e  separated by a 
spacelike interval. The averaging in Eq. (3.8) i s  per - 
formed with respect to the quantum ground state 10) 
of the field q ,  in which the quasiparticles of (3.2) a r e  
absent: a, 10)=0. Substituting (3.2) in (3.71, we ob- 
tain 

1 " 1 " sin kr 
K , ( x , ,  x , )  = ----- j dSke'LA'~, = _;;J k dk 11~- 

( 2 n )  -" 2n 
O ' (3.10) 

We must here say something about the energy-mo- 
mentum tensor of the acoustic oscillations of the mat- 
ter density. In the preceding sections we constructed 
the Lagrangians L and L ,  by means of which we can 
obtain the field Eqs. (1.10) and (2.22). In the deriva- 
tion of these Lagrangians, the background metric was 
assumed to be known: In L (1.9), we used the_ equations 
G ~ ~ ' = T ~ ~ '  for the background metric, and in L (2.23) 
the explicit form of the metric (2.1). For this reason, the 
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Lagrangians L and L cannot in general be used to obtain 
the energy-momentum tensor T:' of the phonons, which 
describes the gravitational influence of the acoustic 
oscillations of the matter density on the background 
metric. 5 '  This tensor can be calculated by means of 
the Lagrangian L ' ~ '  obtained in Appendix I. 

To calculate the effect of the back reaction of the 
produced phonons on the rate of the cosmological ex- 
pansion, the tensor T;', averaged with respect to the 
Heisenberg state vector of the field q,  must be sub- 
stituted in the right-hand side of the Einstein equations 
describing the evolution of the background metric [see 
Eq. (2.211. 6' In what follows, we shall not need the ex- 
pression for TI:', since to estimate the primordial 
spectrum of adiabatic perturbations it i s  sufficient to 
have the operators of the perturbations of the metric h,, 
and the matter density ~ E / E  [see (2.6), (2.141, and 
(2.25)]. 

To conclude this section, we draw attention to the 
scale invariance of the constructed quantities. The 
background metric (2.1) i s  invariant under a change in 
scale of the spatial coordinates x and corresponding 
multiplication of the function a(t) by a constant, under 
which the vector ax remains unchanged. Under such a 
transformation, the following quantities a r e  invariant: 
p ,  E ,u ,A,  BU', h, q ,  ~ a - ~ , ~ ~ a - ~ , k a - ' ,  wa-l, ~ , a ' ' ~ , ( i ~ a - ~ ~ ~ .  
We shall use this later to choose a convenient normal- 
ization for the wave vector k. 

54. PRIMORDIAL SPECTRUM OF ADIABATIC 
PERTURBATIONS OF THE MATTER DENSITY 

The conformal noninvariance of acoustic waves in an 
isotropic universe casts a new light on one of the basic 
problems concerning the origin of structure in the 
Universe (galaxies, groups and clusters of galaxies), 
namely, the problem of the initial conditions. Pa r -  
ticularly attractive from this point of view is the idea 
of obtaining the initial spectrum of density fluctuations, 
which lead to the formation of galaxies in the later 
evolution, from an initially unperturbed, maximally 
symmetric state of the matter in an isotropic homo- 
geneous universe. In this approach, finite fluctuations 
of the geometrical and hydrodynamic quantities ar ise  
in the process of the cosmological expansion a s  a re-  
sult of nonadiabatic amplification of the zero-point vi- 
brations of the phonon vacuum. The actual form of 
the resulting spectra must be calculated in each case 
in accordance with the particular model of the singular- 
ity that i s  used, for example, a model with a bounce, a 
model in which the equation of state of the matter changes 
during the expansion (as a result of the production of 
short-lived supermassive particles, phase transitions, 
etc. ), or  a model of an explosion from an initially sta- 
tionary state of the universe, etc. 

Below, we shall obtain the correlation functions of 
the main physical variables a s  a function of a single 
parameter Pk, which i s  the coefficient of nonadiabatic 
amplification calculated in the classical problem of 
scattering of a q wave [see (3.6)] by the effective poten- 
tial U=a"/a .  

Suppose that after a certain time to> 1 [in the usual 
units, to> t,, = ( 8 n ~ t 5 / c ~ ) ~ ' ~ ]  the equation of state of the 
matter has the form p=  ~ / 3 .  In this stage of the cos- 
mological expansion 0 "= 0, and we can define the ener- 
gy ground state lout) of the field q for t>  to a s  the state 
in which there a r e  no phonons with energy w > 0 [see 
(3.2)]: 

where w = k / a .  We denote by l in) the Heisenberg 
state vector in which the field q is. In the limit t - -a, this state l in) is the ground state in accordance 
with the cosmological hypothesis of a maximally sym- 
metric, isotropic, and homogeneous initial state of the 
Universe. Mathematically, this can he expressed in 
the form 2, I in) = 0, where the operators a, and a: a r e  
operators of creation and annihilation of phonons only 
a s  t - --. The normal modes ;, corresponding to the 
a, quasiparticles [see (III. 3)-(ll'I. 511 for t >  to have the 
form 

where a, and P, a r e  constants determined in the solu- 
tion of Eq. (3.6) with the effective potential U ( t )  corre- 
sponding to the employed model of the cosmological 
singularity. The operators a, and a, a r e  related by the 
Bogloyubov transformation a, = akak + P,ta:. 

The correlation functions quadratic in the field oper- 
ator q(x) in which we a r e  interested, taken at different 
points x, and x, and averaged with respect to the field 
state l in), can be calculated by means of the function 
K,,(x,,x,) [see (3. 711. They diverge in the limit x, - x2 of coincident points because of the unphysical con- 
tribution of the zero-point vibrations of the "vacuum" 
(i. e. , the state lout) in which phonons a r e  absent) in 
the stage t > to. This divergence is eliminated by sub- 
tracting from the function Kln(xI,x2) the "vacuum" 
Green's function in this stage 

fi 
K,. ,(x, ,  x , )  =- ----;-(s-'+in6 (s2) ), 

4n 

the conformal interval s2 = (ql - q2)$ - 2 vanishing on 
the sound cone. The real  symmetric function 

T(31. ~ z )  =T(xzr  51) =KIn(xi ,  2%) ( x i ,  x2) 

i s  finite for x, -x2. Substituting here Eqs. (4.1) and 
(4.21, we obtain [see (3. lo)]  

YZ " sinkr 
T (x,, x i )  = - 

S d k 7 -  ( l p , l z  eos ( o ~ q )  + ~ e  ( a , ~ ; e - ~ ' ~ ~ ) ) .  (4. 3) 
2n2 

The first term in the integral depends on the time dis- 
tance "17 = q, - q2 between the points x ,  and x, and de- 
termines the contribution to the function T(xl, x,) of 
real  phonons. The number density of the phonons in 
the interval of momenta d3k i s  proportional to 
x IPkI2d3k. The second term determines the nonlocal 
part of the vacuum polarization [v= (17, + q2)/2], and it 
i s  linear in P,. For perturbations that a r e  below the 
sound horizon (wq >> I ) ,  the contribution of the second 
term to T(x,,x2) is exponentially small. 

To obtain the correlation functions of the fluctuations 
of the density, metric, and other quantities, i t  i s  neces- 
sary to carry out the corresponding operations of dif- 
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ferentiation and integration of the function T(xl,x,) at the 
points x, and x, [see (3.7)]. If in the final result we go 
to the limit Aq = O  o r  Aq = Y  = 0, we obtain, respective- 
ly, the correlation functions on the section t=const and 
the mean squares of the fluctuating physical quantities 
a t  the point x. 

We rewrite Eqs. (2.14) and (2.25) in the stage t >  to 
(a = t1I2 = q/2) in a more convenient form, eliminating 
the gauge degrees of freedom and the infinite mode 
(2.181, which a r e  not quantized: 

We then obtain for the mean squares of the perturbations 
a t  the point x [we retain helow only the first  term in 
(4.3), since it makes the main contribution to T(xl,x,) 
for 17 ,> k-'1 

etc. The correlation functions on the section t=const 
a r e  obtained from Eqs. (4.5) by introducing the factor 
sin(kr)/kr in the spectral integrals. The long-wave- 
length density fluctuations due to the contribution of the 
produced phonons and which subsequently lead to the 
formation of galaxies a r e  formed during the hydrody- 
namic time - w", during which the sound traverses 
a distance equal to the diameter of the perturbation [it 
is only for wq >> 1 that the nonlocal contribution of the 
vacuum polarization can be ignored in T(xl, x,) (4.3 )I. 
From (4.51, we obtain for such perturbations 

The wave vector k is  normalized a s  follows: at the 
time t for perturbations that have the Jeans scale 
(w,v= l ) ,kD= (3/4t)lf2. 

The coefficient Bk depends on the evolution of the 
cosmological model in the stage t< to and will be given 
for different models in a following paper. 7'  The most 
optimistic estimate i s  obtained in an initially stationary 
cosmological model. In this model, the Friedmann 
universe (a = tl") ar ises  a s  a result of an explosion from 
an initially stationary state with constant space-time 
curvature H 2 1 (a - e ", t <  to= 1/2H). l3 Approximation 
of this model (taking into account the contribution of 
conformal fields in the single-loop approximation) in the 
language of the Einstein equations gives a rough estimate 
for the mean square fluctuations of the density in the 

long-wavelength region (the state lin) i s  selected by the 
condition that in the stage @= -1 there should be no 
exponentially increasing solutions a s  t - -m ): 

Thus, when the radiation-dominated stage of the ex- 
pansion ends the density perturbations on the scale k, 
<<k <<v% have a flat spectrum. If the fundamental di- 
mensionless constant H is not too small, these pertur- 
bations a r e  responsible for the formation of g a l a ~ i e s . ' ~ ' ' ~  
Note that our estimate must be made more precise, 
since the field equations near the singularity differ from 
the Einstein equations. However, the fundamental 
cause of the initial perturbations of the matter density- 
the conformal noninvariance of irrotational perturba- 
tions in an isotropic universe-does not depend on the 
modification of the equations a t  Planck curvatures. 

I thank Ya. B. Zel'dovich, I.D. Novikov, A.G. Doro- 
shkevich, D. A. Kompaneets, A. A. ~tarobinski i ,  and 
A. D. Popova for fruitful discussions of the work, valu- 
able comments, and consultation. 

APPENDIX I 

Assuming that Eqs. (1.8) a r e  exact, we expand the 
following quantities up to second order in and hik:" 

6w 1 1 1 - = -6(q1,~9,,,g'*)"'=x - - x2--vihiku. 4- - vlui, (I. 1) w'OJ w'o' 2 2 

6p 6w I 6w ' -- --+-(-I, 
eco'+p'o' w'o' 2p2 w'O' (I. 2) 

1 1  I ag,.=a..+n:nlk. a i q = e  ( T n  +--n,p+-hz) . (I. 3) 
4 8 

where 

6f=f-f"', v ,=Q,~ /w(o) ,  x=viu'O' , -u?' u:' hrk/2. 

All the operations a r e  performed in the background 
metric gI:'. [In deriving (I. 3), we used the exact equa- 
tion dln(-g)=gi*dgi,, from which it follows that ln(g/ 
g'O')= h +hB:/2.] 

Substituting (I. 1)-(I. 5) in Eq. (1.71, we obtain 

(I. 6) 

Ecol+p'o' 
L'2' = -(v,vi-2vi*: ~ ~ - - x ~ ( l - p - ~ ) )  

2 
I 1 + - (p(oJ - zR(o) 

4 
1 1 

- , k , i - , l i )  + G T . (I. 7) 

In obtaining the field Eqs. (1.10) from Le', we do 
not vary the background metric. Assuming that it i s  
known and substituting G:i'= T::' in L", we obtain the 
Lagrangian L (1.9). 
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APPENDIX II  Eqs. (2.22) and (2.23) in the generally covariant form 

In this appendix, we consider irrotational perturba- 
tions of infinitely large scale in the spatially flat Fried- 
mann cosmological model. It follows from (2.14)- 
(2.19) that there always exists a coordinate system in 
which the solution (2.18) has the form 

0-0, hr=2a.B/.-3 dt, (11. 1) 

where ass= const, a: = 0 (h = 0). We shall say that this 
coordinate system is homogeneous. It follows from 
(II. 1) that the invariant perturbations of the hydrody- 
namic variables in the homogeneous system a re  zero, 
6z  =u, = 0. Obviously, a linear superposition of per- 
turbations of infinite scale is  also a solution of (II. 1). 

The expressions in (11.1) a r e  an asymptotic expan- 
sion (for large t) linear in a , ~  of the exact solution 

which i s  completely defined by the constant 3 x 3 ma- 
tr ix 

A= (a,,), Sp (A)  SO. (II. 3) 

The function a=a( t )  i s  found from the equations 

which a r e  identical to Eqs. (2.2) in the approximation 
linear in 2. As t - 0, we have 

The asymptotic behavior (11.5) describes the Kasner 
singularity, and the principal values of the metric ten- 
sor ga6 a r e  proportional to t Q a ,  where pa a r e  the Kasner 
indices (p,  +p2 +p, =p: +pg +pz = 1). Obviously, the 
eigenvalues of the matrix A ,  which can be found from 
the equation 

det {a,~-hS,~) =0, 

a re  related to the pa by the simple equation 

h.=~(p.-113). U.6)  
The solution (11.2)-(II. 4)  describes a cosmological 

model of the first Bianchi type with comoving Euclidean 
three-space. Note that irrotational perturbations of 
infinite scale in the spatially flat Friedmann model, 
which give r ise  to anisotropy in the deformation of 
the expansion, do not perturb the spatial curvature. 
Perturbations of vortex and gravitational-wave type 
of infinite scale6 also lead to the solution (II. 2)-(II. 4). 

APPENDIX Il l  

From the quantities that characterize the flat Fried- 
mann model we construct the symmetric tensor 

Drr=7 (p-'u,uk+P,k) 13, (111.1) 
where P,, =gik -uiu, i s  a projection tensor. Obviously, 
the background scalars (0, y,ur ,, , etc. ) depend a s  func- 
tions of the coordinates x%n the universal time t 
=J u,dxi = Sdcp/w(cp); a11 the other background quan- 
tities can be expressed in terms of these scalars,  
the -- metric g,,, and the vector u' (for example, ui,, 
=uf,pi,/3, ~f :, = -u,uf,  etc.). Using Dik, we can rewrite 

Z (q) =D'kq,,q,k/2, (Drkq,i),,=O. (III. 2) 

The relations (3 .I)-(3.5) a re  generalizedfor arbitrary 
Cauchy hypersurface by means of a bilinear form com- 
posed of any two (classical) solutions g,  and q, of Eq. 
(111.2): 

By virtue of the conservation law J:,;, = 0, the integral 

where dCi i s  an invariant measure on C ,  does not de- 
pend on the choice of the Cauchy hypersurface C. For 
q,= ~ , ( t ) e ' ~ / a ( Z n ) ~ ' ~  [see (3.211 we have 

( q k q , . )  =6(k-k'), (qr'qr.') =-6(k-k'), (III. 5) 

The functions 9, and q: determine a basis of the Hilbert 
space of all classical solutions of Eq. (III. 2) and divide 
this space into two subspaces: the positive-frequency 
(9,) and negative-frequency (q:). 

 he worldline of a particle (the element) of the matter i s  a 
matter tube whose walls are  frozen into the matter. The 
indeterminacy of the amount of matter that forms the element 
i s  expressed mathematically in the fact that the potential rp 
and, therefore, the functions w and n-' are  defined up to mul- 
tiplication by a constant; p ,  E ,  P ,  and the other hydrodynamic 
variables do not have this ambiguity. 

3 ' ~ h e s e  directions a r e  tangent to the surfaces=const. In the 
regions of space-time where w * 0, one can always introduce 
a comoving coordinate system with synchronous time rp: 

3 ) ~ o t e  that the condition (1.1) may be violated on a shock front. 
We do not consider such processes here. 

4 ) ~ n  this case, the quantization procedure is analogous to quan- 
tization of a real scalar field in an isotropic u n i v e r ~ e . ~ * ~ * ~  
Note that in the ideal-fluid approximation dust @ = 0) is al- 
ways classical: Constancy of the pressure (and the tempera- 
ture) when the matter density changes means that thermal 
excitations (phonons) a r e  absent. 

5 ) ~ n  e r ror  a t  this place in the paper of Ford and parkerl1 in 
their derivation of the energy-momentum tensor of gravita- 
tional waves was pointed out by A. D. Popova. 

po he energy-momentum tensor is regularized by the standard 
methods developed for free quantum fields in curved space- 
time. 

" ~ o t e  that because Eq. (2.22) has the same form a s  the cor- 
responding equation for the amplitude of gravitational waves 
in an isotropic universe it i s  possible to extend to the case 
of phonons the main conclusions for the long-wavelength part 
of the spectrum from Refs. 11 and 12 (for P=const, U=rw"/a 
= aU/a). 

8 ) ~ h i s  spectrum explains naturally the homogeneity of the Uni- 
verse on large scales, since the amplitude of perturbations 
for k < k ,  decreases when their scale increases (Refs. 2, 5. 
10, and 14) and these perturbations do not succeed in growing 
in the p = 0 stage. Note that in the conversion to perturbations 
of the metric (t - to) the gravitational waves also have a flat 
~ p e c t r u m . ' ~  

9 '~11 the notation for the metric quantities, including the Ricci 
tensor E l i k  and the Einstein tensor G , , = R i k -  R g i , / 2 ,  corre- 
sponds to the notation adopted in Ref. 5. 
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On the connection between the size of the Universe and its 
curvature 
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Closed three-dimensional Riemannian spaces with curvature that is constant in all directions are considered. 
It is shown that the topological structure of any such space uniquely determines the sign of its curvaturex 
and also restrictions on its size. Let R be the radius of curvature and D the diameter of the space, i.e., the 
distance between its most widely separated points. Then for%> 0 one finds D > 0.326R, and for x< 0 
apparently D > 1.1281R I; f o r x =  0, the value of D is arbitrary. Further, Einstein's equations and 
astronomical data indicate that the modulus of the present-day radius of curvature of the Universe satisfies 
IR 1 >0.5(c/H,)z0.9~ 102' cm, where c is the velocity of light, and Ho is the Hubble constant. Therefore, if 
observations show that the diameter of the Universe is Do<1028 cm, this will mean that as a whole our 
Universe is flat (jy= 0). A model of a flat world is proposed which is closed in the form of a three- 
dimensional torus; all of its parameters (size, rate of expansion, mean matter density, etc.) are expressed in 
terms of atomic constants and a universal time. In this model, the present-day diameter of the Universe is 
Do = 0.102(c/Ho)--2X lo2' cm, which does not contradict observational data. 

PACS numbers: 98.80. - k 

5 1. INTRODUCTION dimensional s p a c e s  of constant curva ture  gives 18 

The a i m  of the  p resen t  p a p e r  is to establ ish s o m e  con- 
nections between local and global p roper t i es  of the 
Universe. The  problem is analyzed on t h e  b a s i s  of 
Einstein's genera l  theory of relativity i n  the  f rame-  
work of locally isotropic  and homogeneous cosmologi- 
cal  models. I t  is well known that the  exceptional iso- 
t ropy of the  cosmic  microwave background enables one 
in  conjunction with the "generalized Copernican princi- 
ple" (i.e., a terrestrial observer  is not distinguished) 
t o  introduce a universal  t i m e  and three-dimensional 
space  orthogonal t o  i t ,  th i s  space having at any t i m e  
constant curvature i n  a l l   direction^.'-^ We r e c a l l  that  
i n  accordance with Schur 's  theorem local  isotropy en-  
t a i l s  local  homogeneity, namely, if at every  point of a 
Riemannian manifold the curvature h a s  the  s a m e  
value in a l l  direct ions,  then it a l s o  h a s  a constant 
value as one moves from point to point. 

In  the construction of cosmological models  based on 
three-dimensional  spaces of constant curvature,  physi- 
c i s t s  usually employ t h r e e  degenerate  types of space: 
Euclidean space  E3, ~ o b a c h e v s k i ;  space  L3, and the  
s p h e r e  9.'-4 But the  genera l  classification of th ree-  

topologically different types of space  with curva ture  
k =O and a n  infinite number of topological types with 
k = -1 and k = + 1 (Ref. 5). Al l  three-dimensional  s p a c e s  
with k = + 1 are closed and orientable; among t h e  flat 
three-dimensional  s p a c e s  there  are t e n  types* which are 
closed ( s ix  are orientable')) and eight types which are 
open (four of them orientable); the s p a c e s  with k = - 1  
contain a n  infinite number of c losed types and a n  infinite 
number of orientable types. 

The  s p a c e s  of the  types E3, L ~ ,  and S3 are distin- 
guished in this complete set by the  fact  that  they are the 
only ones that  are topologically s imply connected. 
Therefore ,  it is only in  them that  each  celest ia l  object 
can  be observed only in one direct ion at a part icular  
s tage  of expansion of the  world.') 

The  multiply connected s p a c e s  of constant curva ture  
can be obtained formally by specifying in li?, L3, and s3 
cer ta in  nonclosed manifolds (fundamental regions)  whose 
boundaries are identified (or "glued") in accordance 
with definite laws ( see  Refs. 2 and 9; the  p rec i se  formu- 
lations can  be found in Appendix A). Then  each  light 
source  can  be joined t o  a n  observer  by s e v e r a l  geodesics 
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