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Birefringence and gyrotropy due to nearly Bragglike 
processes in the x-ray region 
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Propagation of electromagnetic waves is considered in scalar spatially periodic media at angles and 
frequencies that almost satisfy the Bragg conditions. The process of virtual rescattering into other waves and 
back leads to corrections to the phase velocity of the initial wave. The dependence of the amplitude of the 
scalar scattering on the polarization causes these corrections to produce birefringence in the region of the two- 
wave Bragg resonance. Near three-wave and multiwave resonances, subject to definite conditions on the 
symmetry of the medium, these corrections can lead also to gyrotropy, i.e., to rotation of the plane of 
polarization of the wave. The possibility of observing the effects in crystal at x-ray frequencies is considered. 

PACS numbers: 78.70.Ck, 78.70.Gq, 78.20.Fm 

1. INTRODUCTION tions in both the kinematic and the dynamic theory (see, 
e.g., Refs. 1-3). More complicated a r e  the polariza- 

It is known that the dielectric constant of a con- tion effects in the case of multiwave refraction (see 
densed medium differs from unity in the x-ray band Refs. 1-4). In all  these cases,  however, apart from 
(A - 1 A) only in the fourth or even fifth decimal point, the change in the polarization state of the incident wave 
and is furthermore a pure scalar: itself, diffracted waves a r e  excited in fact. 

where m and e a r e  the mass and charge of the electron, 
~ ( r )  is  their density, and w = 2 n c / ~  is  the radiation fre- 
quency. The propagation of x-ray photons through a 
medium is therefore not accompanied a s  a rule by a 
change in their polarization state. 

We wish to discuss in this paper the possibility of 
observing birefringence and gyrotropy in pure form, 
i.e., without rea l  excitation of other waves. As the 
mechanism for producing these effect we propose the 
process of virtual rescattering into other waves and 
back. The smallness of the amplitude of the elementary 
rescattering act can be offset to  a considerable degree 

Exceptions a re  cases when the conditions of Bragg by the proximity to the Bragg resonances. 
rescattering from a given wave into another at the cor- 
responding Fourier component e,exp(iq*r) of the di- 2. BIREFRINGENCE IN PROPAGATION NEAR A 
electric constant a re  satisfied in the crystal. Since the SOLITARY BRAGG RESONANCE 
amplitude of the scattering from a wave A into a wave We consider wave propagation in a direction close to 
B on scalar perturbations is proportional to  f,, the satisfaction of the Bragg condition for the Fourier 
a e,(e;. e,), where e, and e a r e  the unit vectors of component of the dielectric constant 
the polarization, it follows, a s  i s  well known, that the 
Bragg interaction is different for the s- and p-polariza- &(r) =2 16e.I cos (c~.+cp)=6e,e"'+8e-,e-'". (1) 
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In  the absence of absorption, 6&(r) is here  r ea l ,  cor-  
responding in t e r m s  of (1) t o  the relation 6 ~ - ~ =  6~:. 
We denote by nA and n, the propagation directions of 
waves that satisfy exactly the Bragg condition at  a 
certain frequency w,: 

where ko i s  the wave number with allowance for  the 
average refractive index. 

We seek  the field in the crystal ,  with allowance for  
two-wave refraction at  the frequency w =w, +Am, in the 
form 

E(r) =A(?) exp (ck~r)+B(r) exp (ik,r), (3) 

where kASB =k,n,,,, while A(r )  and B(r)  a r e  slowly 
varying amplitudes. Maxwell's equations then lead to  
the system 

Here I;, i s  the operator of projection on a plane per- 
pendicular t o  the propagation direction of the wave A ,  
i.e., 

and analogously for @,. 
In the right-hand side of Eq. (4a) we have retained, 

besides the operator FA that is  obtained directly from 
Maxwell's equations and that  ensures  the transversality 
condition nA . A(r  ) = 0 ,  a l so  the operator 3,. Its action 
on the vector B, by virtue of the same transversal i ty 
condition n, . B(r) = 0,  is equivalent t o  the action of a 
unit operator. Introduction of the operator 3, into (4a) 
facilitates the calculations that follow. A similar  r e -  
mark holds for  Eq. (4b). 

It is easy to verify that in the absence of rescattering 
( ~ E ~ = B E - ~ = O ) ,  Eq. (4a) is satisfied by a plane wave in 
the form 

exp (ikonAr)A(r) =Ao exp {i(konA+AonA/e+ka@A)r), 

where 9,. n, =O. 

Assume that a wave A that does not satisfy exactly the 
Bragg condition i s  incident on the crystal. We write 
down the solutions for  A(r)  and B(r)  in the form 

A (r) =exp {i(Aon,lc+k,@,) r)a (r) , 

B (r) =exp {i(AonAlc+k,rpA) r)b(r) , (6) 

where the angle 9, characterizes the deviation from the 
central directions n,, (i.e., $ A * ~ A =  0); a(r) and b(r)  a r e  
amplitudes that a r e  changed only by the Bragg interac- 
tion. We assume here  that, owing to the inexact sat is-  
faction of the Bragg condition, the wave B is weakly ex- 
cited. In the equation for  b( r  ) 

*L. 

Am 
Is (*A, Ao)  = knBqA + -(nBnA-l) 

we can then neglect the gradient compared with the 

Bragg detuning A, (which has the dimension of recipro- 
cal  centimeters). 

In th is  case  b( r )  is excited only virtually: 

and substitution of this  expression in (4a) yields an  
equation for  the change of the amplitude a(r ) along the 
r ay  n,: 

It i s  convenient here t o  express  the symmetrical  
mat r ix  f, whose components lie only in a plane per-  
pendicular t o  n,, in t e r m s  of coordinates such that 

n,=e,, [nX .n,] a e,, n.-nA (n .n~)  ae.; 

s o  that its components take the form 

Thus,  the wave A i s  subject under these conditions 
t o  birefringence with principal axes e, and ex, the ra te  
of phase advance being 

It is convenient t o  express the value of the Fourier  
component (eql in t e r m s  of the thickness I, over which 
complete transfer  from one wave t o  the other takes 
place within the framework of Ewald's Pendellosung 
solution in the dynamic diffraction regime. Namely, 
for  the symmetrical  Laue case 

where cos9 n , .  n,. In  addition, the rat io of the 
deviation A, from the Bragg condition to  the width of 
the dynamic resonance in t e rms  of the same variables 
is given by 

0 
hs=al~.l 

2c cos (8/2) ' 
and this rat io is cu >> 1. 

Of course,  the perturbation-theory approach itself 
i s  valid only a s  an  expansion in t e rms  of the small  
parameter  1. In the solution (6), (8) the energy 
fraction contained in the wave B i s  -a-2, and is neg- 
ligibly sma l l  already a t  cu - 10. The r a t e  of growth of 
the phase difference rp, - cp, then takes the form 

Estimates of the effect in accord with (14) a r e  given 
in Sec. 4 below. 

3. BIREFRINGENCE AND GYROTROPY NEAR 
THREE-WAVE BRAGG RESONANCES 

We consider the propagation of the wave A near a 
direction that sat isf ies the three-wave diffraction condi- 
tions. Assume that the three reciprocal-lattice vectors 
q,,, qBc, and q,, form a closed triangle 

For  a given tr iad of vectors q,, satisfying the condition 
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(15), it is convenient t o  use them a s  the sides of a 
triangle ABC and find in its plane the point 0 of inter- 
section of the perpendicular bisectors (the center of the 
circumscribed circle of the triangle, Fig. 1). We draw 
from this point a line 00' perpendicular to the plane of 
the triangle ABC. It is easy to  show that the waves for 
which the Ewald sphere intersects the ABC plane along 
the circumscribed circle of the triangle satisfy the 
Bragg three-wave diffraction condition. Thus, the 
manifold of waves with exact Bragg directions n,, n,, 
and n, depends on a single parameter. This param- 
eter can be, for example, the frequency w,, s o  as  
to have at ko = W , ( ~ ) ' ~ ~ / C  

In our problem we take into account three Fourier 
components of the dielectric constant (in the absence 
of absorption, the zeroth component can be included in 
ko = wo(co)"a /c )  : 

6s  (r) -6e*(r) 
-2{1 heA. I cos (qABr+q~s) + I 6enc I cos (qBcr+cpBc) 
+ 1 hecA I cos (qcAr+cpcA)) eheAB exp (iqAsr) + . . . . (17) 

The phase shifts p,, =-  phi of the Fourier components 
depend on the choice of the origin, and a shift A r  
causes them to change in accord with the law 

By the same token, at least two out of three phases in 
(17) can be made to vanish (the two components Ax and 
Ay in the ABC plane). By virtue of the condition q,, 
+%, +q,, = O  the sum cp,,, of these phases, taken in 
accordance with the rule for going around the triangle 
in some definite direction (e.g., ABC), turns out to be 
independent of the choice of the origin 

In the general case p,,, is not equal to  zero, al-  
though in some concrete cases the equality p,,, = O  
can follow from the symmetry of the crystal (for more 
details see ,  e.g., Refs. 1-3). 

The gyrotropy effect of interest to us, a s  will be seen 
from the sequel, is proportional to sinp,,,. In analogy 
with the two-wave case, at the frequency w = wo + A w  
the field in the crystal, which differs slightly from the 
exact Bragg frequency, will be represented, given 
n,, n,, and n,, in the form 

FIG. 1. Orientation of wave vectors kA, kB, and kc in three- 
wave Bragg resonance; qAB, pBC, and qcA are the crystal 
reciprocal-lattice vectors. 

E (r) =A (r) exp (ik,r) +B (r) exp (ik.r) +C (r) exp (ikcr), (20) 

where A, B, and C a re  slowly varying amplitudes that 
satisfy the equations 

(n,V) A - i A ~ A / c = i ( f ~ , B + f * ~ c ) ,  (214  

Assume that incidence on the crystal of a wave A(r) 
exp(ik,. r )  with certain values of the angle +, and of the 
frequency wo +Aw, which led to a detuning from the 
exact Bragg condition. It is convenient then to  seek the 
solution of Eqs. (21) in the form 

{A(r), B(r) ,  C(r)}=la(r), b(r), c(r)) exp (i(k,$A+~onA/c)r}, (23) 

where $,. n, =0,  while a(r) ,  b(r) ,  and c (r) are  even 
slower functions of the coordinates. It follows for them 
from (21) that 

(ncV )c  (r) +i&c (r) --ifcAa+ifcBb, (2 4c) 

The expression for A, differs from (25) by the change 
of subscripts C- B, and i s  contained in formula (7). 

If we stipulate the vanishing of both Bragg detunings 

then we can obtain the dependence of the admissible 
slopes JI, =mAw that preserve the exact Bragg condition 
and correspond to a shift of the center of the Ewald 
sphere along the line 00' in Fig. 1. The vector m l n ,  
lies in this case in the plane containing the vector n, 
and the line O d ,  and its value can be easily deter- 
mined by equating (25) t o  zero. 

We shall be interested in the situation wherein the 
Bragg condition is  not satisfied exactly for both the 
pair AB and the pair AC, the waves B and C being ad- 
mixed only virtually, with a small  amplitude of the 
order  off,,/^, -a;: and of higher powers of this param- 
eter. 

We represent the amplitudes of the waves b and c in 
the form of a ser ies  in powers of the small  parameter 
f / ~ ,  i.e., b = b , + & + .  . . and c = c , + c ,  +. . .; we as-  
sume here that a ( r )  is of zeroth order of smallness. In 
addition we make the assumption (whose validity will 
be confirmed by the calculation results) that differentia- 
tion with respect to the coordinates in (24) leads to an 
additional smallness of order f / ~  or  of a higher power 
of this parameter. 

We a r e  interested in the variation of the amplitude 
a(r )  along the ray n,, assuming, for example, that the 
crystal boundary is perpendicular to the direction n, 
=eI, and then a =a(z), b =b(z), and c =c(z). We divide 
the right and left sides of (24b) and (24c) by A, and A,, 
respectively. Substituting b(z) =b,(z) + 4 ( z )  +. . . and a 
similar expression for c(z), and equating t e rms  of like 
powers of A-', we obtain 
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so that the equation for da/dz, accurate to  t e rms  of 
second order in A-' inclusive, takes the form 

The terms proportional to 12;' and A;' in (27) describe 
the contributions of the virtual admixture of the waves B 
and C to  the average refractive index and to the bire- 
fringence of the wave A; each of these contributions co- 
incides with the one considered in Sec. 2 above. The 
gyrotropy of interest to  us is due to the term ah-'f3. 
To be able to  observe this small  gyration we must 
stipulate that there be no stronger birefringence of 
order A-'fa. In other words, conditions must be 
found such that the matrix acting in the xy plane 

is a multiple of the unit matrix, i.e., that it yield only 
a correction to the average refractive index of the 
wave A. 

It i s  easy to verify that this i s  possible only if the 
following two conditions a r e  simultaneously satisfied: 

1) the planes made up by the vector pairs (n,, n,) 
and (n,, n,) a re  perpendicular to each other; 

2) the detunings A, and & satisfy the relation 

We assume these two conditions to be satisfied. The 
action of the terms .of2A" then yields the relation a (z )  
=ii(z) exp(iwz), where 

leABlZ l--(nAnB)'(nAnc)' 
F-- & l-(nAnC)' * 

(29) 

Separating this relation, we obtain for a(z) 

di 
-= i r , w .  
dz 

(30) 

We shall assume that in the xy plane, which is  per- 
pendicular to  n, =e,, the x axis l ies in the plane (n,, n,), 
and the y axis in the plane (n,, I+); we recall  that we 
assume that the last two planes a r e  perpendicular to 
each other, s o  a s  to set  equal to  zero  the birefringence 
of f irst  order in f / ~ .  The matrix f 2  contains a sym- 
metrical rea l  part that describes the average refractive 
index ?: and the birefringence +:, and an antisymmetri- 
cal pure imaginary part that describes the gyration o r  
the optical activity fi: 

(nAnB)'- (nAnc)' (nBnc) sin AB sin AC 
AB sin AC (urnc)'- (rims)' 

(3 1b) 

sin c p ~ c  T i  - (e)' I ~ ~ ~ ~ ~ e ~ ~ i - - ( n . ~ c ) s i ~ A B a i n A ~  
AB & 

( p  i i ) .  
( 3 1 ~ )  

We have introduced here the notation AB = (n, - n,). 

servation of gyration: pABC =171/2. Then there is no 
birefringence in second order,  and the rate dp/dz of the 
polarization plane (p  is  the angle) is 

do Tsa-Tm sin (P*BC 
2 (5) ' I e-eBCecA1--- 

(nBnc) sin AB sin AC, 
dz ABAC 

(32) 

where we must put sincp,,, =*I. 

In the general case, however, then q,,, is  not equal 
to  i r / 2 ,  birefringence appears in second order in addi- 
tion to  gyration. When a linearly polarized wave enters 
the crystal, i ts  average polarization rotates in the 
course of propagation and becomes elliptic a s  well. The 
corresponding formulas a r e  straightforward in princi- 
ple, but a re  quite unwieldy and will not be presented 
here. 

It is easily understood that when the Bragg interac- 
tions involve four and more waves i t  is likewise pos- 
sible in principle to obtain birefringence and gyration. 
A highly important problem is posed by the symmetry 
requirements that the medium must satisfy in order to 
obtain p,,, + 0 in the three-wave problem. This ques- 
tion is not considered in this paper. 

4. DISCUSSION OF EXPERIMENTAL POSSIBILITIES 

We assume for numerical estimate a tentative value 
of the order of 10-5-10-4 cm for I, in (12) (see Ref. 2, 
Chap. 9). A deviation of 10 widths of the dynamic-dif- 
fraction curve from the Bragg condition, a -  10 [where 
a i s  defined by Eq. (13)] will then yield, in the two- 
wave case, a birefringence of the order of 

d -(cp - )--- 
dz ' (Pa i0+~-10+~ cm-I. 

L& 
On the other hand, the absorption coefficient C( can 
amount under typical conditions to Iff -5 x 10' cm-'. 
Thus, a phase difference cp, - p, - 2 - 1 0  rad can ac- 
cumulate over an absorption length I , ,  = p". This 
means that the production of strong birefringent ele- 
ments based on almost-Bragg two-wave resonances is 
really feasible. We note that it is possible to use non- 
ideal (mosaic) crystals, since we need not satisfy exact- 
ly the conditions of dynamic diffraction. 

As for gyrotropy (rotation of the polarization plane), 
we get for it from (32) the estimate 

"P 1 - - sin cprnc - . 
d& lea' 

Assuming sincp,,, - 1, 1,= and a2 = lo+', we ob- 
tain dp/dz - 10" cm-'. Over an absorption thickness 
labs - Iff cm, the gyration angle can amount to  8 -  1 rad, 
i.e., a perfectly observable value. 

We have thus predicted in this paper strong x-ray 
birefringence and gyration effects resulting from two- 
and multiwave almost-Bragg interactions. Observation 
of these effects uncovers wide possibilities for the ap- 
plication of various methods of polarization optics of 
the visible band in the x-ray region of the spectrum. 

We consider f irst  the case most favorable for the ob- '2. G. Pinsker, Dinamichskoe rasseyanie rentgenovskikh 
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luchey v ideal'nykh kristallakh (Dynamical Scattering of 'v. A. Baskakov and B. Ya. Zel' dovich, Focusing of X-Rays 
X Rays in Ideal Crystals, Nauka, 1974 [Springer, 19781. via Mulitwave Dynamic Diffraction, RAN Preprint No. 191, 

'c. I. Iveronova and GL P. Revkevich, Teoriya rasseyaniya 1978. 
rentgenovskikh luchei (Theory of X-Ray Scattering), Izd. 
MGU, 1978. 
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A kinetic theory is developed for the effects that arise when a free-molecular polyatomic gas flows between 
two surfaces in an external field. The influence of the field on the transport processes is due to the 
nonequilibrium polarization of the gas molecules when they are nonspherically scattered from the surface of a 
solid, and to the destruction of this polarization in the field. The change of the gas flow velocity in a channel 
in a magnetic field, and the onset of a transverse heat flux between the surfaces (whose temperatures are equal) 
is examined in detail. In contrast to the previously investigated thermomagnetic phenomena, the considered 
effects in a gas stream can occur when the molecules are scattered from the surface not only inelastically but 
also elastically. At the same time, these effects occur only if the interaction with the surface is such that the 
states of the molecule before and after the collision are correlated. 

PACS numbers: 47.45.Dt, 47.60. + i, 47.10. + g 

1. INTRODUCTION molecules deflected from the surface can occur only in 

The influence of a magnetic field on heat flow in a 
strongly rarefied (I>> L, where I i s  the molecule mean 
free path and L i s  the characteristic dimension) poly- 
atomic gas (the thermomagnetic effect) has already been 
observed and investigated earlier.'*' Other possible 
effects in an inhomogeneously heating gas in a magnetic 
field were also analyzed, such a s  the appearance of 
transverse heat and mass fluxes in a gas contained be- 
tween two surfaces having different temperatures, or 
of thermomagnetic forces acting on the walls.3 The 
physical causes common to the changes in 
the transport processes in a magnetic field a r e  the 
polarization of the molecules inelastically scattered 
from the solid surface and the precession of the mag- 
netic moment of the molecule about the field direction. 
A distinguishing feature of the foregoing effects is the 
oscillatory character of the dependence of the macro- 
scopic fluxes in the gas on the intensity of the constant 
external field a t  a fixed geometry of the problem. The 
concrete dependence of the macroscopic quantities on 
the intensity and orientation of the field i s  determined 
entirely by the law of nonspherical scattering of mole- 
cules by walls. Therefore the kinetic effects in a 
strongly rarefied gas in an external field serve a s  a 
unique source of information on the physical mechanism 
of the orientation-dependent interaction between mole- 
cules and the surface of a solid, and on the properties 
of the surface itself.Z14w5 

a nonequilibrium gas. The effects listed above a r e  due 
t o  the temperature inhomogeneity of the system. It can 
be assumed that the molecules reflected (elastically and 
inelastically) from the walls become polarized also in 
the case of gas flow. The presence of a predominant di- 
rection of the velocity of the molecules incident on the 
surface and the dependence of the probability of the scat- 
tering on the mutual orientation of the velocity v and of 
the angular momentum 16 of the molecule should make 
the distribution function dependent also on the orienta- 
tion of the vector M, i.e., should lead to polarization of 
the molecules. The molecule precession produced when 
the external field is turned-on changes this dependence 
(it destroys partially the polarization). As a result, the 
kinetic properties of the system a r e  altered in an ex- 
ternal field; in particular, the scalar transport coeffic- 
ients acquire a tensor character. 

In this paper we construct a theory of the phenomena 
connected with the influence of an external field on the 
transport processes in a stream of strongly rarefied 
polyatomic gas. We solve the problem of the flow of 
collisionless gas in a channel made up of two infinite 
surfaces in a magnetic field. We investigate the change 
of the channel resistance in the field and the onset of heat 
flow between the surfaces (which have equal tempera- 
tures). These effects a r e  the Knudsen analogs of the 
known viscomagnetic effect6 and of the effect of vis- 
comagnetic heat flow,' which take place if I S  L. They 

By virtue of the isotropy of the distribution of the a r e  however, by another physical mechanism, 
molecules of the equilibrium gas with respect to their namely polarization of the molecules by nonspherical 
orientations and directions of motion, polarization of scattering from the surface. 

904 Sov. Phys. JETP 52(5), Nov. 1980 0038-5646/80/110904-06$02.40 O 1981 American Institute of Physics 904 


