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We have investigated all the zero-phonon branches of the Bose spectrum in the A phase of a model Fenni 
system with pairing in the p-state. The Bose spectrum of the collective excitations is determined by a 
functional of the hydrodynamic action obtained by the functional-integration method. In the A phase, all the 
zero-phonon spectra E (k) are complex even at k = 0, and the corresponding collective excitations attenuate 
moderately. The energies E,(O) = AO(1.9&iO.31) and E,(O) = A,(1.17 = i0.13) are calculated. 

PACS numbers: 71.45. - d, 05.30.Fk 

1. INTRODUCTION S,=g-' c,.+ ( p )  c , .  ( P )  + -ln I det ~ ( c ,  c + ) / M ( o ,  0 ) ,  
2 (2.1) We continue here an investigation of a the Bose spec- ..(,. 

of a previously proposedi for In this obtained by functional integration after integrating over 
model, the Bose spectrum is defined by a "hydrody- the Fermi  fields. In (2. I), c,(p) is the Fourier trans- 
namic-action" functional obtained by the method of func- form of the Base field T) With vector index and 
tional integration, after integrating over the Fermi  isotopic index a, while M is the operator 
fields. In a preceding paperz we investigated the pho- 
non branches of the spectrum and calculated the cor- 
rections to the linear dispersion law, while in Ref. 3 
we obtained all the zero-phonon Bose branches in the 
B-phase of the model. 

In this paper we investigated all the zero-phonon Bose 
branches in the A phase of the model a t  T = 0. The 
main result is that the energy E(k) of all the zero-pho- 
non Bose excitations in the A phase a r e  complex, while 
the imaginary parts differ from zero even a t  k=O. 
This result is physically obvious and is due to the pos- 
sibility of the decay of a Bose excitation into two fermi- 
ons. A Bose excitation with nonzero energy and with 
small momentum can always decay kinematically into 
two fermions whose momenta a re  almost opposite and 
close to the preferred directions along which the gap in 
the Fermi spectrum vanishes. 

Zero-phonon branches of the Bose spectrum in the A 
phase of ~e~ were considered in a number of studies. 4 4  

The imaginary parts of the spectrum were calculated 
only in Ref. 8, but not for all the modes. In this paper 
we calculate the complex energies of all the zero-pho- 
non Bose branches a t  zero momentum in the A phase of 
the model, using the technique developed in Refs. 1, 2, 
and 3. 

The calculation of the zero-phonon Bose spectrum in 
the A phase is technically more complicated than in the 
B phase. Even a t  k = 0, the equation F(E) = 0 for the 
spectrum has in the left-hand side of F(E) an integral 
that cannot be expressed in terms of elementary func- 
tions, while the roots of the equation turn out to be 
complex. They were calculated with a computer. 

2. MODEL AND ZERO-PHONON BRANCHES 
OF THE SPECTRUM 

The model system considered here' is determined by 
the hydrodynamic-action functional 

(2.2) 

Here 5 = c,(k - k,), n ,  = kf/kF, H is the magnetic field, 
p is the magnetic moment of the quasiparticle, u, (a = 1, 
2,3) are  Pauli matrices, and w = (2n + 1)rT a r e  the Fer- 
mi frequencies. The negative constant g is proportion- 
al to the amplitude of scattering of two fermions near 
the Fermi sphere, under the assumption that the ampli- 
tude is g(ki - kz, & - &), where kt and kz a r e  the mo- 
menta of the incoming fermions, and b and b a r e  those 
of the outgoing ones. The method of obtaining the func- 
tional S, is described in greater detail in Ref. 1. 

The Bose spectrum is determined in first-order ap- 
proximation by the quadratic part of S , ,  which is dif- 
ferent for the different superfluid phases. The quadra- 
tic part of S, for the A phase of the model is a sum of 
three quadratic forms, the first  of which depends on 
the variables c d, the second on c {z, and the third on 
cia. The second and third form a r e  transformed into 
the f i rs t  by the substitutions c f2  - cii and cis --ice. The 
quadratic form of the variables c,, is2 

where 

G ( p )  = (wZ+ t Z + A 2 ) - ' ,  A2=Ao2(n12+n22) = A 2  sinZ 8. (2.4) 

Here A. is the maximum value of the energy gap of the 
Fermi spectrum. In the term (ni * inz)' of (2.3) the up- 
per and lower signs a re  taken when the multiplication is 
by C ~ + C , ~ +  and by clic,i, respectively. 

We investigate now all the Bose-spectrum branches 
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defined by ( 2 . 3 )  at zero momentum k .  At k =  0  the form 
of the variables c a ( w ,  k =  0 )  and ci i+(w,  k =  0 )  is a sum of 
a form of c i i ,  c i t t ,  c21, cZiC and a form of cg1, cgi+. 
The functions that a r e  the coefficients of c a + c j l ,  c i i+c j t+ ,  
and c i l c j i  ( i ,  j =  l , 2 )  can be expressed in the form 

Here b,, (i, j = 1 , 2 )  a r e  the elements of the matrix 

in which the minus sign corresponds to the variables 
c d c j l ,  and the plus sign to cLcf , .  

On going from the left to the right sides of the formu- 
las  in ( 2 . 5 )  we used the possibility of averaging (at k 
= 0 )  over the azimuthal angle, on which the functions 
G I ,  G,, 51, and a r e  independent. We have used also 
the inequality 

which determines the value of the gap that enters in G1 
= (wf + 5 + A: sin2el)-l. 

We denote the coefficient 5 i j  in ( 1 . 5 )  by f ( w ) ,  and the 
coefficient of b U  by g(w) .  We put also 

The quadratic form of the variables u1, u2 ,  v1, v2 (k= 0 )  
can then be expressed a s  a sum of two forms: 

These forms correspond to the matrices 

f ( o ) + g ( o )  - d o )  
( - f ( m ) + g ( o )  

Equating to zero the determinants of the matrices 
(2 .  l o ) ,  we obtain the equations 

f ( o )  ( f ( o ) + 2 g ( o ) ) = O ,  f ( o )  ( f ( o ) - 2 g ( o ) ) = O  

or  (2 .11)  
f ( a )  =0, j ( o )  + 2 g ( o )  =0 ,  f ( o )  - 2 g ( o )  =O. 

We add to ( 2 . 1 1 )  the equation obtained from an exam- 
ination of the terms with csl and c i l :  

The three equations of (2 .11)  can be combined into one: 

in which +(I,O)A' denotes either A' or  -A2 or  0 .  

Changing over (at T = O )  in (2 .12)  and ( 2 . 1 3 )  from the 
sums to integrals and substituting the expressions for 
GI and G,, we rewrite ( 2 . 1 2 )  and ( 2 . 1 3 )  in the form 

Taking the integrals with respect to wi and with the 
aid of the Feynman technique (see Ref. 2 ) ,  we get 

Calculating the integrals with respect to a, substitut- 
ing w  - A o w ,  and putting cos0 = x ,  we arrive at  the 
equations 

The first  of this equation is the equation f  - 2 g = 0 ,  the 
second is f = 0 ,  the third is f + 2g=O, and the fourth is 
h = 0 .  I t  is they which determine the Bose spectrum at 
k = 0  following the analytic continuation i w  - E .  The 
spectrum branches corresponding to the second and 
fourth equations a r e  doubly degenerate. To take into 
account the forms of the variables cn  and c i s  which lead 
to similar equations for the spectrum, i t  is necessary 
to multiply by 3  the multiplicity of each branch in the 
considered model. 

The third and fourth equations in ( 2 . 1 6 )  have roots w  
= O  and correspond to the phonon branches. From the 
first  and second equation we can obtain the complex en- 
ergies of the zero-phonon branches E1(k=  0 )  and Ez(k  
= 0 ) .  

3. CALCULATION OF El (0 )  AND E p  (0)  

In an actual calculation of the nontrivial roots of the 
equations in ( 2 . 1 6 )  we encounter the problem of the 
analytic continuation i w  -- E  of the function 

in the integrands. The right-hand side of ( 3 . 1 )  is con- 
venient for a continuation first  from the positive imagi- 
nary axis E  = i w  (w  > 0 )  to the upper (physical) half- 
plane, and then to the lower one through the interval 
[O, 21 of the real axis. The first  term in the right-hand 
side of ( 3 . 1 )  is analytic in the vicinity of the interval 
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[o, 21. The contribution made to the integrals of (2.16) 
by the second term can be calculated in terms of ele- 
mentary functions that can be easily continued to the un- 
physical sheet through [o, 21. 

Using also the formula 

E+i[4(1-xz)  - EZ]"> = -Z E-i[4(1-2' )  - E'] '. In 
B- i [4 (1 -xZ)  - EL]" 2 (I -xZ)" , (3.2) 

we can write down the f i r s t  and second equations of 
(2.16) in the form 

* (1-1" [ 2 ( 1 - x 2 ) -  E'] E - i [ 4 ( 1 - x l ) -  E2]'" 
F z ( E ) =  - 2 J d x  In - 

[ 4 ( 1 - r y -  E']" 2(1-s2) '"  
0 

The logarithm outside the integral sign in (3.3) takes, 
upon analytic continuation into the lower half-plane 
through the segment [0, 21, the form 

Formulas (3.3) and (3.4) were used to calculate the 
roots E1(0) and E2(0) with a computer. The result takes 
the form 

the second of the branches being doubly degenerate. 

A computer search was made also of nontrivial roots 
of the third and fourth equations of (2.17) (which have 
trivial roots w =O). No nontrivial roots were found for 
the third equation. For  the fourth equations we found 
the nontrivial root 

4. CONCLUSIONS 

The obtained energies of the collective modes can be 
compared with the results  of a number of studies. We 
recall f irst  that in the A phase of the model the number 
of phonon modes (9) is larger than in real  H~'-A (5), 
and all the modes a r e  triply degenerate. The degener- 
acy is due to the use of the weak-coupling approximation 
in the model. Allowance for close-coupling effects (see 
the Appendix) decreases the number of phonon modes 
from 9 to 5. Application of a magnetic field decreases 
the number of phonon modes from 9 to 6 in the model 
considered here and from 5 to 4 when close-coupling is 
taken into account. 

Despite the additional degeneracy inherent in the mod- 
el, the modes calculated here agree well with those ob- 
tained by essentially different methods. The zero-pho- 
non spectrum of the considered model consists of three 
El branches and six E2 branches. The real  part Re 
Ei(0) agrees within 2% with the branch E = 2Ao obtained 

in Ref. 7 by the kinetic-equation method, while ReE,(O) 
agrees within 4% with the energy of the E = 1. 22Ao of 
the clapping (spin) mode. The difference is apparently 
due to the neglect of the weak coupling, since the e r ro r  
in the numerical calculation does not exceed 1%. The 
flapping (orbital) mode E = 1. 56A0 ( ~ e f s .  4 and 5) (E 
= 1. 58Ao, Refs. 7 and 8) does not appear in the consid- 
ered model of the A phase of ~ e '  (see the Appendix). 
The width r, r of this mode7 is so  large (larger by 
an order of magnitude than for  the clapping mode), that 
the flapping mode is poorly defined and is therefore not 
a s  interesting from the experimental point of view a s  
the well defined clapping mode. 

The results  reported here lead to the conclusion that 
the use  of the weak-coupling approximation has  little 
effect on the calculated frequencies of the collective 
modes. We note in this connection that in the B-phase 
the agreement between the frequencies in the weak and 
close-coupling approximations was exact. 

The identification of the modes El and E, with the 
modes obtained in Refs. 4-8 is based on the values of 
the real  parts of the mode energies. A more detailed 
classification of the spectrum with respect to the de- 
grees of freedom of the order parameter (see the Ap- 
pendix) shows that the number of the 2A0 modes (3) and 
of the clapping modes (6) in  the present paper and in 
that of wolfle3 a r e  the same. The only difference is 
that the four phonon modes of the orbital waves go over 
in our model into the flapping modes of Ref. 5 when the 
close-coupling effects a r e  taken into account. 

A s  for the imaginary parts of the zero-phonon mode 
energies, they were not calculated in Refs. 4-7. The 
damping of the clapping mode 0. 4A0 obtained in Ref. 8 
is larger than our value 0. 13Ao. The branches E =2Ao 
were not obtained in Ref. 8 a t  all. 

Our calculated imaginary parts of the energies Ei(0) 
and E2(0) a r e  of the order of 15% of the real  ones, so 
that the damping can be regarded a s  moderate, and the 
excitations themselves can be regarded a s  resonances. 
We note that the damping increases with increasing real  
part  of the energy (from 13 to 17%). 

The solution (3.6) has an imaginary part  of the order 
of the real  one, and i t  cannot be interpreted a s  a reso- 
nance. This is not surprising, since the variable cor- 
responding to the solution (3.6) is of the phonon type, 
and with i t  is already associated a weakly damped pho- 
non mode. 

We (as well a s  the authors of Refs. 4, 6, and 7) did 
not consider the case of nonzero k. It is clear that at 
small k the energy E(k) remains complex. 

wolfle5 and Tewordt et al. considered the case of 
small  k Ill. The zero-sound absorption at which zero- 
phonon modes can be excited9 become noticeable only 
when the orientations of k and 1 a r e  differenL5 Just  a s  
in the B-phase, experiments aimed at observing zero- 
phonon modes can yield detailed information on the tem- 
perature dependence of the gap A. =a0(T). 

We take the opportunity to thank V. S. Pekhov and 
A. A. Sukhanov for help with the numerical calculations. 
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APPENDIX 

INFLUENCE OF CLOSE COUPLING AND OF A 
MAGNETIC FIELD ON THE STRUCTURE OF THE 
BOSE SPECTRUM 

We shall show that allowance for the close coupling 
effects decreases the number of phonon modes from 9 
to 5, and that turning-on a magnetic field decreases the 
number of phonon modes from 9 to 6 for weak coupling 
and from 5 to 4 when close-coupling effects a r e  taken 
into account. 

We consider, in the Ginzburg-Landau region I T - T, I 
<< T,, that part fl of the action which is independent of 
the gradients. In the weak coupling model we havei 

a=- t rAAC+v  tr A+AP+(tr AA+)?+trAA4AA+ 
+tr AA+A'Ar-tr AATA'A+-'/,tr AAT tr A+A', (A. 1) 

where A (the order parameter) is a complex matrix 
with elements A ,. The A-phase in the weak coupling is 
described by the order parameter 

and the phonon variables a re  

U Z ~ - U I I ,  U ~ Z +  ~ z z ,  U I J + U Z ~ ,  U S * ,  US , ,  Usr, U s r ,  ~ s s ,  U S J ,  (A. 3) 

where u, = ReA, and v, =ImA ,,. These variables 
correspond to the branches of the spectrum not only in 
the Ginzburg-Landau region, but also at  all  T < To. In 
the limit a s  T - 0, the f i rs t  three of the variables in 
(A. 3) correspond to sound waves with c F k / a ,  and the 
six remaining to orbital waves cFkll. The phonon spec- 
trum is thus degenerate in the spin index. 

To take into account the close-coupling effects, we 
consider II with arbitrary coefficients of the fourth-or- 
der terms: 

n=-tr  A+A+ v tr A+AP+a(tr A+A)'+b tr AA+AA+ 
+c t r  AA+A'AT+d tr  AATA'A++e tr AAT tr  A+A'. (A. 4) 

The condition 6fl = O  yields in the A-phase an order 
parameter in the form 

To find the phonon variables, we calculate the second 
variation 62 

6'II=-tr AA++v tr A+AP+a tr  [ (A+C)2+ 
+2A+AC+C+2A+CC+A]+ b tr [2AA+CC++2A+ACCC 

+AC+ACC+A+CA+C]+c tr  [AA+C'CT+A+A'CTC 
+A'ATCC++ATdC+C'+AC+A'CT+ATCA+C'] 

+d tr [AATC'C++ATA'C'C+A'A+CC++A+ACTC']+4e 1 t r  P I z ,  (A. 6) 

where C is the matrix (A. 5), and A is a variable ma- 
trix. Substituting the values of C, C+, c*, and CT we 
get 

6zII=v(a+b+d) ( ~ , ~ ~ + u , ~ ~ + u , ~ + u , , Z + u , , ~ + u ~ ~ )  
+4a(uSl+ uZ,)'+2b[2(u,,+u,,)Z- ( ~ n - ~ z a ) '  

- ( ~ i z - ~ z z ) ' -  ( U ~ ~ + U ~ ~ ) ~ -  ( u ~ ~ + v ~ ~ ) , ~ - ~  ( u ~ ~ + v J ?  
+u,,'+,,') ] + 2 ~ [ 2 ( ~ , , - ~ ~ , ) ~ + 2 ( u ~ , + u ' , ) ~  

+ ( u ~ , - u ~ ~ ) = + ( u ~ ~ + u , ~ ) ~ + ( ~ , ~ - ~ ~ ~ ) ~ + ( u * ~ + u , ~ ) ~ ]  
+2d[2  ( U ~ ~ + U ~ , ) ~ -  ( U ~ ~ - U ~ ~ ) ' -  ( u ~ J - u ~ ~ ) ~ - ( u z ~ + u ~ ~ ) ~  
-2 ( u ~ ~ - u ~ ~ ) ~ - ~ ( u ~ ~ - u ~ ~ ) ~ -  ( ~ 2 3 f  U I S ) ' - ~  ( U ~ ~ + U S Z ~  

+uSs2+ussZ) 1+4e[ (u i , - v z , ) z+ (u2 i+v i i ) z l .  (A. 7) 
We consider first the system in a zero magnetic field 

(v=O). Then (A. 7) is the sum of five quadratic forms 
multiplied by the independent coefficients a, b, c, d, 
and e. The variables 

do not enter in  any of these forms, and corresponding 
to them a r e  therefore phonon modes. Thus, allowance 
for the close-coupling effects decreases the number of 
phonon branches from 9 to 5. The modes ~ 3 2 ,  v3*, ~ 3 3 ,  

and v33, which correspond in the weak-coupling approx- 
imation to orbital waves, become zero-phonon modes 
when the close-coupling effects a r e  taken into account. 

Expression (A. 7) a t  v +  0 describes the system in a 
magnetic field. In the weak binding approximation the 
number of phonon modes decreases from 9 to 6, and the 
variables ui3 + vz3, u ~ ~ ,  and v 3 ~  become zero-phonon be- 
cause of the appearance of the gap -pH in the spectrum. 
In a system with close-coupling the mode that becomes 
zero-phonon upon application of a magnetic field is ui3 
+ vz2 (the modes us3 and v 3 ~  in the case of close-coupling 
zero-phonon also at  v=O), and the number of phonon 
modes decreases from 5 to 4. 

To gain an idea of the total Bose spectrum (including 
the zero-phonon branches) when close-coupling effects 
a re  taken into account, we rewrite (A. 7) at  H = 0 (v = 0) 
in the form 

VII=4(a+b+d)  (ul i+vrl )2+ 4(c+e)  [ ( U , , - U ~ , ) ~  
+ ( u , t + ~ , t ) ~ 1 + 2 l c - b - d )  [ ( U I ~ - U ~ ) ~ +  (~1%-LIZ:)" 

+ ( u n + ~ i r ) ~ +  (urt+vtr)2]-4d[ (urs-ui,)' + ( U ~ ~ - V , ~ ) ~ ]  -4 (b+d) ~ ~ ~ ~ + u ~ ~ ~ ) ,  (A. 9) 

For comparison, we write down 6'II in the weak coupling 
approximation, putting in (A. 9) a = b = c = -d = - 2e = 1: 

6'lT=4[ (~ir+u:i)'+ [ U I ~ - V I I ) ' +  ( ~ z t - u ~ t )  '1 
+ 2 [  (u,l-vz1)2+(uZI+vii)Z+ ( u I ~ - L . ~ $ ) ~ + ( ~ ~ Z - U ~ Z ) ~  

( U ~ . + V , ~ ) ~ +  +Oo [ u ~ ~ + u ~ ~ + v ~ ~ + u ~ ] .  (A. 10) 

The form (A. 10) has three eigenvalues 4, correspond- 
ing to the variables uii + v21, uz2 - v12, and uz3 - vi3. It 
is just to these variables that the branches El corre- 
spond a s  T -0. The other nonzero eigenvalue 2 corre- 
spond to six variables: u2i + vii, ui2 - vz2, U i 3  - vz3, uii - vzi, U23 + vi3, and six E2 branches a s  T -- 0. 

The calculation of the Bose spectrum in Ref. 6 yields 
5 spin modes and three 2Ao modes, i. e., a s  many a s  in 
the weak binding case considered here. Formula (A. 9) 
shows that in the general case allowance for the close- 
coupling effects leads to splitting. The spin modes 
break up into two groups-two branches corresponds to 
the eigenvalue 4(c + e)  and four correspond to the num- 
ber 2(c - b - d). The three 2A0 branches also break up 
into one branch with eigenvalue 4(a + b +d)  and two 
branches with eigenvalue -4d. We note that no conclu- 
sion can be drawn from the data of Ref. 5 concerning 
the splitting of the branches. 

The branches ~ 3 2 ,  u ~ ~ ,  va2, and v33, which in the weak- 
binding approximation a r e  orbital waves, go over into 
the normal flapping mode and the super-flapping mode 
when account is taken of the close-coupling effects, a s  
shown by comparison with the data of Ref. 5. 
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Dynamics of laser damage in KDP crystals 
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Photoresponse investigation has revealed the dynamics of laser damage in KDP crystals. It is established that 
in sufficiently pure crystals the damage develops in the volume at the speed of sound and terminates in 
formation of cracks characterized by a substantial surface-charge density. Characteristics of the damaged 
region, such as pressure, temperature, absorbed-energy density, and absorption coefficient are determined. 
The role played by the pressure wave in the process of damage to dielectrics by nanosecond laser pulses is 
discussed. 

PACS numbers: 79.20.Ds, 62.30. + d, 62.20.Mk 

1. INTRODUCTION the damage dynamics by using the photoelectric r e -  

The mechanisms whereby materials are  optically 
damaged have been intensively studied for more than a 
decade, and it has been established by now that the de- 
velopment of sizeable (10-3-10-2 cm) damage in pure 
substances i s  not the direct consequence of heating of 
the absorbing inhomogeneities, but is due to the absorp- 
tion by the medium itself under the influence of the la- 
s e r  radiation. [A substance is regarded i s  here a s  
pure if the absorbing inclusions a re  small enough and 
their heating cannot cause directly any noticeable dam- 
age in the medium, the distance between the inclusion 
being lo>> (T,~)"~,  where T, i s  the duration of the la- 
s e r  pulse and x i s  the thermal diffusivity of the medi- 
um.] The nature of this absorption and the mechanisms 
of i t s  onset in real crystals a re  still the subjects of 
debates. Many papers have dealt with absorption of la- 
s e r  by free carr iers ,  whose appearance i s  attributed, 
for example, to  a thermal absorption wave1 o r  to ultra- 
violet preionization of the matrix. ' These mechanisms 
differ substantially both in the values of the parameters 
(e.g., the matrix temperature) needed for their realiza- 
tions, and in the rate of propagation of the absorption 
produced by them. One should therefore expect an 
analysis of the dynamics of damage development to 
cast light on the roles of the different mechanisms in 
the breakdown. 

Most frequently, attempts to track the dynamics of 
the damage a re  made by studying the emission that ac- 
companies the damage, and the scattering of the light 
from the damaged region (see, e.g., Refs. 3 and 4). 
Experiments have shown, however, that both the light 
and the scattering appear during later stages of the 
damage, frequently after the termination of the laser 
pulse." It seems promising therefore to investigate 

sponse. In fact, the large amount of information pro- 
vided by this method has been well demonstrated with 
photoelectric spectroscopy of semiconductors a s  the 
example, but the methods developed for semiconduc- 
tors  cannot be directly applied to dielectrics. Owing 
to the low volume conductivity, the surface and contact 
phenomena in dielectrics a re  relatively strong and im- 
pede seriously the interpretation of the results, espe- 
cially in the study of damage. This may be the reason 
why hardly any investigations of photoconductivity in 
transparent have been made until now, while Belikova 
et a1.' attributed the damage in corundum, whose 
strength i s  10" w/cm2, to the formation of an electron 
avalanche, an assumption that does not seem to be 
reliable enough. 

We report below the results of an investigation of 
the dynamics of the photoresponse in damage of KDP 
crystals, which were used a s  an example to develop a 
techniques that eliminated the influence of contact and 
surface phenomena. It was established with the aid of 
this technique that the generation of free carr iers  and 
nonstationary heating of the crystal lattice produce 
photoresponses of opposite polarity, J, and Jc, respec- 
tively. The current 

I ,  - j a ( t , r )av  
vs 

(o is the light-induced conductivity in the volume Vo)  
corresponds to an increase of the sample conductivity, 
while the thermoelectric current 

(P,, is the radiation power absorbed in the sample, c 
is the low-frequency permittivity of the crystal, and T 
is the lattice temperature) decreases the conductivity. 
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