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A study is made of the influence of an electric field on the character of the electronic states in a one- 
dimensional system with randomly distributed centers. The existence of an electric field threshold is 
demonstrated: E, = w e l ( ~ , )  = 2mcV(2p0)eff (c is the impurity density and V(q )  is the Fourier component 
of the potential of an individual impurity). At E < E, the electronic states are localized, just as in the absence 
of a field, but the character of the localization is changed. A particle emitted from a point x '  at an instant of 
time t = 0 undergoes an average displacement along the field, and is distributed at t-tm with a density that 
decreases as Ix 1-m not exponentially but in power-law fashion, with an exponent that depends on the field. 
If E+Ee, then K - t l .  At E > E, the electronic states are expected to be delocalized. 

PACS numbers: 7 1 .SO. + t 

1. INTRODUCTION 

It is known that in a one-dimensional disordered sys- 
tem all  the electronic states a r e  localized. This asser-  
tion is due to Mott and ~ w o s e '  and was confirmed by a 
number of  calculation^.'^ The asymptotic form of the 
electron density for the localized state a s  Ix 1 -m is in 
the main e ~ ~ o n e n t i a l . ~  Its explicit form was determined 
by Gogolin. 

Starting from the assertion of Mott and Twose, one 
can expect the static conductivity to vanish a t  zero tem- 
perature. This result was proved by direct calculation 
by ~ e r e z i n s k g . ~  The same result was later obtained by 
a somewhat different method by Abrikosov and ~ ~ z h k i n . '  
In the last two references, however, the conductivity 
was calculated from the Kubo formula, in which it is 
assumed that the applied electric field is infinitely 
weak. It can therefore turn out actually that in the 
case of a weak but finite field the conductivity differs 
nonetheless from zero. The result of Refs. 2 and 4 
would in this case mean a strong nonlinearity of the 
conductivity a s  a function of the field, for example u 
= u,, exp(- Eo/E). 

In the three-dimensional case, the electric field mix- 
e s  the localized and delocalized states, and it is this 
which causes a finite conductivity in an electric field. 
This takes place, of course, if there exists a mecha- 
nism that ensures energy relaxation in the system. 
Otherwise the conductivity is infinite. In the one-di- 
mensional case the localization is complete-all states 
a r e  localized regardless of energy. Nonetheless in 
the one-dimensional case, where the localization, un- 
like in the three-dimensional case, takes place, a t  any 
degree of disorder, and is the result of strong inter- 
ference effects in impurity scattering, the electric field 
causes a strong rearrangement of the electronic states, 
inasmuch a s  the very character of the electron motion 
changes in an external field. The present paper deals 
with precisely the question d the influence of an elec- 
tr ic field on the character of the electronic states in a 
one-dimensional dis2rdered system. The method pro- 
posed by Berezinskii2 is  followed in the main. 

We consider an electron situated in the field of ran- 
domly distributed centers and a constant electric field. 
To investigate the character of the electronic states i t  

is necessary to calculate the density correlator.' For  
an electron with a given energy c i t  can be defined a s  

where p(x) = B(2 - x) is the density operator and 1 c) is 
the eigenfunction of the particle in an external field with 
energy c. The curly brackets {. . .) in (1) denote aver- 
aging over a l l  the realizations of the random potential. 
The normalization factor in (1) is chosen such that 

There exists for Eq. (1) the following spectral rep- 
resentation: 

S.(z,x'1o)- {$. (2) $A. (2) $.+. (2') $..(zl)). (4) 
{$z (5') $. (51)}* 

If we include in (4) unity in the form 

and then make in (3) the change of vaiiable E" = c + w' ,  
then we obtain for (1) the expression 

In the subsequent averaging with respect to energy in 
(61, only the f i rs t  term makes a contribution. We shall 
therefore take hereafter Xcto mean just XE. The func- 
tion 

-cc 

has the meaning of the conditional probability function. 
It is used to describe the spreading-out of a particle 
placed a t  the point x' a t  the instant t =+O. The func- 
tion 

p.. (xlx') =X.(x, xlI t *m)  (10) 

specifies the distribution of the electron density of a 
particle with energy c. From the behavior of p,(x lx'), 
(6), and (9) we can assess  the character of the elec- 
tronic states? 
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2. ELECTRON GREEN'S FUNCTION IN AN 
EXTERNAL FIELD 

The initial object in the calculation of ( 7 )  a r e  the 
Green's functions. We obtain them in the presence of 
an external field. Assume the presence of a uniform 
field U(x) =-Fx.  The force F =eE acting on the elec- 
tron is directed along the x axis. In such a field, the 
electron wave function corresponding to the energy c 
takes in the p-representation the form" 

with normalization to a 6 function of the energy ( R =  1 ) .  
Substituting this equation in (8)  and integrating with re- 
spect to w ,  we obtain for the quantum-mechanical 
Green's functions 

Wechange over in (12) to the x-representation. We 
make the substitutions 

f = ( 2 m / P ) ' h ( e + F x ) ,  f '=(2m/F)"'(e+Fz'),  

c=p+p', z = i ( 1 / 2 m F )  " ( p - p r )  . 
(13)  

The integral with respect to S in (12) is now Gaussian. 
As a result we have 

(14) 
where the contours r, and r- pass along the positive 
and negative imaginary axes, respectively. The inte- 
gral in (14) can be calculated by the saddle-point meth- 
od. At 5 >> 1 and 5' >> 1 the saddle point a r e  

z,*=f i l f l"+f"l+O(  ( f ' f ) - ' h ) ,  z,*=f iIf"h-f" I + O ( ( f r E ) - " ) .  (15) 
- 

Shifting the integration contour r+ in the manner shown 
in Fig. 1 and performing the calculation we obtain for 
G+, and similarly for G-, 

G o * ( x , z i ~ c ) =  {exp(* : I ~ , % - ~ S ~ )  - 
2F"IE'fI" 

* i  exp (* $ I ~ ~ ~ + ~ S \  )}. (16) 

The Green's function in the classically accessible re- 
gion ([ < 0 )  can be obtained in similar fashion. The 
electron motion here, however, is certainly limited, 
so that the region [ < 0 is of no importance for the sub- 
sequent calculations. 

The first term in (16)  corresponds to the amplitude of 
a direct transition of a particle from a point x' to a 
point x. The second term1) in (16) describes the ampli- , 

FIG. 1. Position of the contour r+ in ( 14 ) in integration by 
the saddle-point method. 

tude of the transition when the electron first  moves to 
the left, is reflected from the potential barrier ( 5 = 0 ) ,  
and arrives only then at  the point x .  The two process- 
es  a r e  illustrated in Fig. 2 .  Taking into account the 
explicit form of the Green's function (16) ,  we note that 
the contribution of the second process can be obtained 
from the first  term in (16)  in accord with Fig. 2 .  Thus, 
in a graphic construction we can use the following 
Green's function 

where v ( x )  = [ 2 ( c  + ~x)/m.]"~ is the particle velocity a t  
the point x .  It is then necessary to take into account 
the particle reflection from the boundary of the classi- 
cally inaccessible region. The turning point corre- 
sponds to the factor *i. 

An important factor in the entire construction that 
follows is that the Green's function (17)  breaks up into 
two factors pertaining to the points x and x': 

This makes it possible, just a s  in the absence of a 
field, to shift the entire x-dependence to the impurity 
vertices. 

3. DERIVATION OF BASIC EQUATIONS 

Electron scattering in the field of randomly distribu- 
ted impurities will be considered in the Born approxi- 
mation. Assume that the correlator that character- 
izes the impurity potential is narrow enough, so that 

Including now factors of the form (18) in the impurity 
vertices and integrating with respect to the difference 
x - x', we can obtain for the impurity lines the expres- 
sions 

1 2  dz' 
(20) 

1 (21) 

E=(2m/FZ)'"(e+Fz) ,  c= ( 2 m / ~ ) ' " ( e + ~ ( x + y ) ) .  (22) 

The quantities l+(x) and I -&)  have here the meaning of 
the mean free path with respect to forward and back- 
ward scattering. Using (19) ,  we obtain for l,(x) 

1 ,  ( x )  =I ,"( l+Fxle) ,  l,"=eUolm, (23) 

where 1; corresponds to a particle with energy c in the 
absence of a field. 

The contribution of formulas (21) and (22) to the im- 
purity vertex be multiplied by an oscfilatory fac- 
tor that depends on the form of the attached electron 

FIG. 2. Diagrammatic representation of various contributions 
to the Green's function (16). 
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we rewrite (25) and (26) in the form 

FIG. 3.  Impurity vertices that form essential diagrams. Ver- 
tices a', b', and c' d i f fer  from a ,  b ,  and c in that the single 
lines are replaced by double ones. The vertices correspond 
to the following'factors: a) -1/21-(x)-  1/21+(x)  - i /21(x) ,  a') 
-1/21.(x) - 1/22,(x) + i / 2 1 k ) ,  b,  b') - l / l + ( x ) ,  c ,  c') - 1 / L ( x ) ,  
d) l / l +  ( x ) ,  e )  [exp(2iw~)l/LCr).  

lines. The choice of the essential diagrams can be 
based on neglect of the contributions of diagrams con- 
taining rapidly oscillating factors such a s  exp(* itSn/3) 
compared with diagrams containing slowly varying fac- 
tors  such a s  exp[% %iw~(x)],  where 

If we forget for the time being the reflection from the 
boundary, then the structure of the diagrams chosen in 
this manner is the same a s  in ~ e r e z i n s k i r s  paper and 
we can use his results directly. Figures 3 and 4 show 
the impurity and external vertices that make up the 
essential diagrams. A single line corresponds to G.. 
and thye double to G + .  We put x > x r .  Following Bere- 
zinskii, we divide each of the diagrams into three 
parts: right (to the right of x) ,  central, and left. The 
following equations hold for the left and central parts2": 

where the subscript nz indicates that 2m double lines 
and 2m single lines enter the point x. The point x in 
the central part Z., has incoming 2m + 1 double lines 
and 2m + 1 single lines. 

Equations (25) and (26) constitute the initial equations 
for the analysis of our problem. They differ from the 
corresponding equations of Refs. 2 and 3 in that the 
coefficients in the right part depend on x. In addition, 
i t  is necessary also to take into account in (25) and (26) 
the effects of reflection from the boundary of the clzs- 
sically accessible region. Changing from x to a new 
variable s given by 

ds/dz=lll- ( x )  (2 7) 

and introducing 

a b c d  

FIG. 4 ,  External vertices that enter in the essential diagrams: 
they correspond to the following factors: a )  exp ( i w A  ( x r ) / v  
( x ' ) .  b )  exp(iWAk')) /v  b'), C )  e x p ( i w ~ @ ) ) / v  @),  

exp ( - ~ W A ( X  ) ) / v ( x ) .  

(-imv (s)  + d / d s ) ~ ~ = m ~ ( R , , - , + ~ ~ - ~ ~ - ~ ~ ~ , ) ,  (29) 
(-i(m+'/,)v(s)+d/ds)Z,=((m+ 1)' (Z,,+,-Zm)-m'(z.m-z.v~-~) 1, (30) 

d 
v ($1 =20 - A  ( s )  . 

ds (31) 

The correlator X ( x ,  x' I w), after summation over all  
types of external vertices and after allowance for the 
normalization factor in (7), is expressed in terms of 
the quantities defined above in the following manner: 

2 x.(z, z ' I o ) - - C  prn~(~Oz~*rn(~' ,  s ) P , ( s ) ,  
~ ( 5 )  _,,,, (32) 

where 2, is the right-hand side. The equation for %, 
differs from (29) in the sign of the derivative with re- 
spect to s. 

Using (23) and (271, we can connect explicitly the 
variables 

2as=ln (1+2a~/1-~) ,  a=F1L0/2e, (34) 

where a is the principal dimensionless parameter of 
the problem and characterizes the external-field 
strength. The external frequency w enters in (29) and 
(30) in the following dimensionless fashion: 

v=pena, p = 2 0 ~ ~ ,  T ~ = z - ~ / v ~ .  (35) 

We investigate now the influence of the effects of re- 
flection from the boundary of the classically accessible 
region. For the diagrams selected above it is express- 
ed by a boundary condition that must be imposed on Eq. 
(29). According to the preceding section, the bound- 
ary condition for R, can be written in the form 

In the absence of an external field, the boundary condi- 
tion for R, takes the form4 

Rm(x+-m) ~ 6 . ~ .  (37) 

The condition (36) should actually be imposed far  from 
the turning point, where the quasiclassical approxima- 
tion used above is valid. It is natural to expect, how- 
ever, the initial condition to influence the character 
of the dependence of R on m only in a small vicinity of 
s,. F a r  from s,, R as a function of m and s should 
assume a universal character. 

Another manifestation of the reflection effects may be 
the appearance of external vertices of a new type, 
shown in Fig. 5. They did not occur a t  F = 0, since a 
particle moving off to the left was unable to return to 
the point x. All the essential impurity vertices change 
the number of aparticles in the cross section only in 
even fashion. At F+ 0 the particle can return to x af- 
ter reflection from the boundary (see Fig. 2). To this 
end, however, it must reach the point x,. The proba- 
bility of this process decreases with the difference (x 
- x,) quite rapidly. To verify this, let us  calculate the 
left-hand side with participation of the indicated ver- 
tices, for example for the case when there is only for- 
ward scattering [l,(x)=O]. The numbers ml and m2 
of the single and double lines contained in Rmlm2 is then 
m, =mz* 2. Following the same principles which were 
used in the derivation of (25) and (261, we can obtain 
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It will be shown below that this limit is exponential in 
S. 

The behavior of the correlator (32) a t  long times is 
determined by the low frequencies. In the limit a s  v 
-0, the main contribution to (32) comes from dia- 
grams with large rn -l/v. In accord with (40), they 
correspond to A(u, s )  a s  u--". We introduce therefore 
the variable y =-iv(u + 1) and rewrite (42) in the form 

FIG. 5. Type of external vertices due to effects of reflection 
from the potential barrier. the vertices correspond to the 
factors: a)  e~p(2i t ;~ /~/3) /v(x' ) ,  b) e ~ ~ ( - 2 i ( ~ / ~ / 3 ) / v ( x ) .  

for R the following equation: 

- - 
The coefficient in the-right-hand side of (38) is deter- 
mined by the number of methods of joining the impurity 
vertices shown in Fig. 3(a), 3(a1), 3(b), 3(b') and 3(d). 

The prime denotes here the partial derivative with re-  
spect to y. The solution of (45) in the region y > yo(u 
> uo), where yo is chosen such that v<< yo<<l (1 <<uo<<l/ 
v) can be sought in the form of an expansion in powers 
of v: 

1 

To obtain the asymptotic form of (32) a s  v-0 it suf- 
fices to retain in (46) the first  term of the expansion. 
We represent it, in accord with (44) in the form 

A ~ ( Y ,  s )=A, (y )+a1(y ,  8 ) .  (47) 

It follows from (38) that 

and at x >> P+ >> x, 

From (45) we have 

Consequently, far  from the boundary we can neglect 
diagrams containing the vertices shown in Fig. 5. 

ayA,'=(yaA1')'-(yZA,)', 

ayall+aa,/as= (y2a,l) '- (y'a,) '. 
We note that Eqs. (25)-(29) admit of a transition to 

F-0. 
Equation (48) can be integrated directly: 

4. ASYMPTOTIC SOLUTION OF EQUATIONS AS 
0 - 0  

Equations (29)-(32) can be analyzed with the aid of the 
generating function formalism. We denote by R without 
a subscript the generating function for R,: 

The integration constant cl above must be set equal to 
zero by virtue of the condition that A, be regular a t  
infinity. The constant cz is obtained from the condition 
that (51) must be matched with the region u < uo ( y < yo). 
Here vu<<l, therefore in the right-hand side of (42) we 
can neglect the last term 

The solution of (51) is represented in the form 
and define the function A a s  

where Ao(u), which is the solution of (51) that is regu- 
lar a t  zero, is of the form 

A , = l / ( i + u )  =-iv/y. (53) 

From (29) we can obtain the equation 

We must kdd'to in initial conditions, which in the case 
of total reflection (36) take the form Consequently, the boundary condition for (51) is writ- 

ten in the form 

A,(y+O)=l /y .  (54) 
where sc - * . 

From this we find that cz = 1 + a, and the solution (50) 
can be rewritten a s  The dependence of A on s stems from the initial con- 

ditions and from the dependence of v on s in (42). It 
can consequently be represented in the form 

A (n. s) = A  (u, v) +A (u,  v, s ) .  (44) 
where \k is a confluent hypergeometric function. 

Since we expect the dependence on the initial condition 
to hold only near so, we have at  I s - sc I >>I We determine now ao(u, s)  and al( y, s). In accordance 

with Ref. 4 we can obtain for ao(u, s )  in the region u 
< uo 
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- 
a,(u, s )=8J  hdh tll2nh.F 

where F is a hypergeometric function. It follows from 
(56) that ao(u, s )  -0 a s  s, -a, and hence the solution 
(51) a t  (s  - s, ( >> 1 does not depend on the initial condi- 
tions. In the case (431, according to (53), A h ,  so) is 
equal to Ao(u) and consequently ao(u, s) s 0. 

We carry  out in (49) the Laplace transformation: 
* 

a , ( y )  = exp[-o(s-s , )  l a ,  (Y ,  s-s.)d(s--s,) ,  

Here f =-al( y, so) is obtained by expanding the initial 
conditions in powers of v, and in the case of (43) we 
have 

f= - i / y+A, - - -gay  (1, I-a; y ) .  (58) 

Substituting a,, = yhw, we reduce (57) to the form 

The solution of (59) can be obtained with the aid of the 
confluent hypergeometric functions @(Y, 6; y), which is 
regular a t  zero, and * ( Y ,  6; y), which is regular a t  in- 
finity. We have 

To obtain the inverse Laplace transform of (57) we 
must calculate an integral of the type 

I  '- I=-J d G erp[o(s-s . )  ] ( z y )  ",' 
2ni -,- 

At any finite value of y and z, the only singularity of 
the integrand in the left half-plane is the branch point 
a=-(1 + &/4. Shifting the integration contour so that 
i t  follows the edges of the cut drawn from -(a +112/4 
to -00, we obtain for  I, after changing over to the vari- 
able A, 

We have used above the following identity for con- 
fluent hypergeometric functions [see formula (6.7) (6) 
of Ref. 81: 

a+3-iA 

The expression in the curly brackets under the inte- 
gral  sign in (62) can be  rewritten by using the proper- 
t ies  of the r functions in the form 

The expression in the curly brackets is equivalent, 
according to [6.5(7)] of Ref. 8, to @[(a -t- 3 + i ~ ) / 2 ;  1 
+iX; z]. 

Gatheringnow everythingtogether, we obtainultirnate- 

ly 
(s-s 

a , (Y,  ' 1 -  jh ah rh nh exp [ - - (12+(f+a)z)  4 ] 
o 

YO 

It follows hence that a,(y, s )  decreases exponentially 
a s  s, ---m and consequently Al( y, s )  does not depend on 
the initial conditions and is equal to Al(y) from (55). 
In the case (581, the parameter yo in (63) can tend to 
zero; the resultant integral with respect to z in (63) 
remains converging. 

This property is possessed also by the succeeding 
terms of the expansion (47), since the corresponding 
equations have the same structure a s  (48) and (49). 
Let us  obtain, in particular, Az( y): 

When c2 = 1 + a is chosen in (50), the singularity l/y in 
cp is cancelled and the solution of (64), which is inte- 
grable a t  zero, takes the form 

where p = (3a  + 1)/2. We note that A, = 0 in the ab- 
sence of a field (cp' = 0). 

An expression for the left-hand side can be obtained 
from the following considerations. It was shown that 
far from the boundary the left-hand side depends on s 
via v, i. e., A = A(y, v, a). The dependence of A on cr 
is  due to the presence in the equation for Aof a deriva- 
tive with respect to s (vr= av). The equation for the 
right-hand side of differs from the corresponding 
equation for the left-hand side only in the sip of the 
derivative with respect to s ,  and therefore A =A(y, v, 
- a )  and, in particular 

We note that the boundary condition (54) for 3 from 
(66) will be satisfied only a t  a < 1. The solution (501, 
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which satisfies expression (54) in the case cr > 1, is of 
the form 

Formula (67), however, is a solution that increases ex- 
ponentially a s  y - (A, = l?(cy)eY/yu), and this leads to 
diverging terms of the expansion for the correlator 
(32). Similar divergences appear in (32) a t  a > 1 also 
on account of the right-hand side of A,. Thus, the ex- 
pansion (47) becomes meaningless a t  cy > 1. 

We turn now to the central part of Z. We rewrite 
f i rs t  expression (32) in the form 

Equation (30) for Z can then be directly rewritten for 
Q,. The initial condition for  Z was 

Zm.mI.-.-+0=8-. 

and consequently 

We introduce the generating function 

To determine B we obtain from (30) and (69) the follow- 
ing equations: 

We seek the solution of (70) a t  v<<1 in the form of a 
series in powers of v, retaining only the zeroth term of 
the expansion [ B  = @ + O(v)]. Denoting the Laplace 
transform of @ by @,( y), we obtain from (70) [see (5711 

y2@,"+y(-y+2-a) @/+ (-y-a) @,--(l+a) Y ( I ,  -a, y) ,  (72) 

where the right-hand side is the zeroth term of the ex- 
pansion of (71) in powers of v. 

Equation (72) is similar to (57) and therefore its solu- 
tion can be obtain in similar fashion. We write down 
the result [cf. (6311 

- 
N= ( i fa )  j d z z - ( a + 1 - i ~ ~ ~ 2  - ( ; - t i  z Y I a . (74) ) 
Here yodO. The integral (74) remains converging in 
this case if cr < 1. 

To calculate (74) we use the integral representation 
{formula [6.5(12)] of Ref. 8): 

i " 
'1' (LL, 1 , :  z) = - ,.(,,, j p-:-;"- ' (l+c)L-"-'df.  (75) 

Substituting it in (74) and integrating with respect to z ,  
we get 

The integral with respect to f l  reduces to a confluent 
hypergeometric function {see [2.1(12)] from Ref. 8): 

Making in (76) the substituting (1 + 5 )  = (1 - I;)-', we 
rewrite N in the form 

The resultant integral with respect to 5 can be calcu- 
lated exactly {see Ref. 9, formula [7.512(4)]): 

- - - 

i+a-ik xr (T+ I )  n a ( ( l + a ) a + ~ 2 )  
(77) 

2F ( i+a)  r (2+a)  (ch nh+cos nu) ' 

We turn now to the correlator (68) and express it in 
terms of the generating functions A and B. Following 
Abrikosov and ~ ~ z h k i n , '  we have 

where p = exp(irp) and r = exp(- irp). Substituting (78) in 
(68) and changing from R and Q to and B, and to the 
variable 

u=T/ (i-T) =(I-elq)-' 

we express the function X(s, s') a t  s > s f  in the form 

where the contour r is the straight line Reu=-$. 

The asymptotic form of (79) is v - -0  can be obtained 
by using the first  terms of the expansions of 2 and B 
in terms of v: 

The function Bo(u) = @[- iv(u + I)]  is, in accord with the 
definition (77), regular in the right half-plane from the 
straight line Reu =- 2. Consequently the contour r in 
(80) can be turned to the right (Fig. 6). A contribution 
will then be made by integration along the upper and 
lower edges of the cut drawn from zero to u = 5, and 
integration along a circle with radius p - 0 and with a 
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Gathering now everything together and using the pro- 
perties of the r functions, we obtain for Eq. (82)  

FIG. 6. Integration contour r that ensures contributions to 
expressions (80) and (81 ). 

center a t  the point a = f .  The result is 

Rotating now the contour of integration with respect 
to f along the imaginary axis and making the change of 
variable b = y/v, we reduce (81 )  to the form 

4e-"* sin na  
X.(s,s'Io)= 

du d " 
(-tv)nv. 

0 

where &(y) is given by (73) .  Substitution of (73 )  in 
(82) results in an integral of the form 

, t+a; t -u )  . 
2 

We have used in i ts  calculation the integral representa- 
tion (75) .  

The next integral in (82 )  is with respect to u. Making 
the substitution u = 1 - q, we have 

I f a  " +A((,, 

In the calculation of the derivative of the confluent hy- 
pergeometric function above, we used the identity (2 .17)  
of Ref. 8 .  

The integrals in (83)  can be calculated exactly {see 
Ref. 9, formula [7.512(3)]}:  

a-l-zh 
J = -  

l-a+ ch l-a-ih 
2 r ( i + a ) r ( a ) r  ( T ) r  (--) 

l+a+zh 

1 3-a+lh l-a-lh 
t ((?I?+ (2%)') x r ( 2 + a ) ~ ( a ) r  (+) r 

3+a+A l+ a-zh -' ~ ( r ( ~ ) ) - ' (  r (-y)) = - r ( a ) r ( l + a ) r  

l-a-th l +a+ zh I+ a-ih I r a  ' " 

x ( )  - - ( (  ;-) 

- 
(l+aV-ha) '-4a" (S-5') bZ 

~ J h s h n h - - ~ ~ ~ [ - -  (ch n>.+cos na)' (84)  
4 

] dl.  
0 

It follows therefore that the asymptotic behavior of the 
density correlator a t  long times is indeed determined 
by the singularity a t  w = 0, and the form of the singu- 
larity corresponds to localized states.' For  the dis- 
tribution function of the electronic density of these 
states we obtain from (84)  

" sinm j hdl .I, nk p..(xlx')= - 
I6al- ( x )  

((4-a) '+V) ( ( I + ~ ) ' + I ' )  I e+Fxf I "'-e'-Y~18a (85)  
X 

(ch nh+cos nu)" E+FX 

We recall that here x > x' and the point x' corresponds 
to the position of the particle a t  the instant when the 
electric field is applied. 

The form of p ,  a t  x < x' can be determined from the 
symmetry of the problem 

From this we obtain for p ,  an expression suitable for 
any ratio of x and x': 

n sin na  I+a2 
P- ( t l x ' )  = --- 

IGal- ( x )  
" 

(l+a'+hz)1-4a' 
~ J h e h n h  

Irlh' 
(ch nh+cos nu)' (- -b) dh, 

0 

The function f~ ,(x ( x ' )  should satisfy, according to (2 )  
the normalization condition 

-- -- 
Substituting here Eq. (86 )  and integrating, we verify 
this equality. 

5. CONCLUSION 

It is of interest to study the dependences of (84)-(86) , 

on the electric field. We note f i rs t  that a t  F +  0 the 
problem is homogeneous in energy space, and there- 
fore the dependence on the energy and on the coordi- 
nate can enter only in the form E +Fx.  This property 
indeed holds for Eqs. (84) - (86) ,  since 1-(x) can be ex- 
pressed, according to (23) ,  in the form 

and the parameter LY can be expressed in a form with 
c excluded: 

a=I?lL"l?~=F/2mUo. (88)  

Turning on the electric field alters substantially the 
form of the distribution function of the localized states. 
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We calculate the asymptotic form of (86) at large 17 1 
>> 1: 

We see therefore that the decrease of p, at large posi- 
tive x (the field i s  directed along x )  is not exponential 
a s  in the absence of a field, but follows the slower pow- 
er  law: 

In the direction counter to the field, the decrease of 
p, is faster, so that p ,  vanishes a t  finite x :  

where x, =-1!/2a. 

This difference in the behavior of p, means the ap- 
pearance of an average displacement of the electron, 
or of an induced dipole moment: 

Substituting here (861, we find that? exists only at CY 

s or, = 5 - 2\r6= 0.11 and is equal to 
f =24n sin nal, l-(z) ,  

(92) 

where Za is a slowly varying function of a and can be 
approximately written a s  Za =lo = 5(3)/2n. It is seen 
from (92) that the average displacement increases with 
increasing distance from the boundary of the classical- 
ly accessible region, and remains finite a t  & = at be- 
cause of the additional logarithmic factor ?? in (90). 

The higher moments of p,(x 1x1) can be determined in 
similar fashion. The power-law rather than exponen- 
tial decrease of p, a s  Ix I -cQ causes then all the mo- 
ments above a certain order to diverge. Further, a s  
follows from (901, a s  a-1 all the moments will di- 
verge. Therefore the localization length c, defined 
a s  

diverges for an n > 0 a s  a -- 1. 

It was indicated above that the presented analysis 
procedure is not valid in the region a > 1. The solution 
of the initial equations should have in this case a sub- 
stantially different character, which we have not 
succeeded in establishing. Nevertheless, when ac- 
count is taken of the results obtained for p,(x Ixl) a s  
a-1 we can conclude that the electronic states will be 
delocalized. To investigate correctly this problem at 
a, 1, we must introduce a mechanism that ensures 
the electron energy relaxation. 

We now present a physical interpretation of the re- 
sults. As indicated by ~erez insk5 ,  the reason for the 
localization of the electrons in a one-dimensional dis- 
ordered system is the multiple interference of the elec- 
trons when they are scattered by impurity centers. In 
the one-dimensional case the electron returning to a 
given point after a number of scattering events has a 
zero phase shift, since the phase of the electron wave 
function can be defined a t  each point of a one-dimen- 
sional filament.' Since the electric field is irrotation- 
al, the interference effects remain in force when it is 
applied. The additional phase shift that the electron 
acquires a s  i t  moves along the field is cancelled out on 
the return trip counter to the field. However, since the 
electric field influences the electron motion, the scat- 
tering characteristics themselves a r e  altered. The 
electron moving along the field acquires an additional 
velocity. Therefore, if  it is now scattered by an im- 
purity, the corresponding scattering amplitude is al- 
ready smaller. The farther the electrons move away 
to the right of the given point, the weaker the scatter- 
ing [see (8711. At a certain field value, the mean free 
path decreases rapidly enough, so that the electron can 
go off to infinity. 

For impurity scattering, the parameter Uo in (19) 
can be written in the form 

where c is the density of the scattering centers and V(q) 
is the Fourier transform of the potential of an indivi- 
dual center. For a short-range potential we have V(q) 
= Vo = const. When (94) is taken into account, the 
parameter (Y in (88) can be written in the form 

a=F/2mcVo2=FIFimr, 

where F,,, has the meaning of the force exerted on the 
electron by the impurities. In fact, F,,, can be rep- 
resented in the form 

where Ap is the characteristic change of the electron 
momentum during the time At between two collision 
events, and w is the backscattering probability. De- 
localization takes place when F > F,,,. 

In conclusion, the author thanks Yu. A. Firsov for 
interest in the work. 

''we note that it remains also as F-0 (free motion) 

-- -- 1." , 
The turning point x,-- and the form of (16) correspond to 
stationary states of the standing-wave type. 
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Statistical features of avalanche ionization of wide-gap 
insulators by laser radiation under conditions of shortage 
of initiating electrons 
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A theoretical investigation is made of the characteristics of the process of laser damage to transparent 
insulators as a result of development of an electron avalanche when this avalanche is retarded by a shortage of 
initiating electrons. The process of simultaneous formation of initiating electrons and of an avalanche is 
considered from the statistical point of view. The expected dependence of the breakdown threshold on the 
volume of the interaction zone is analyzed. 

PACS numbers: 79.20.Ds, 79.70. + q, 79.60.Eq 

There a r e  several mechanisms of photoconductivity ization, although in both cases the damage threshold i s  
in wide-gap solid insulators. F ree  carr iers  may ap- governed by the photoionization rate. In fact, in the 
pear a s  a result of interband transitions involving the case under discussion, we have 
absorption of one o r  more photons (photoionization of 
the matrix), a s  a result of ionization of impurities and r>w, 
defects, and also because of development of impact 
avalanche ionization. This last mechanism has a num- 
ber of important features. Firstly, an avalanche-like 
increase in the number of free carr iers  practically al-  
ways results in optical breakdown of an insulator. 
Secondly, this mechanism requires the presence of a 
certain initial number of f ree  carr iers  in the zone of 
interaction of radiation with matter. These carr iers  
may form in wide-gap insulators a t  reasonable tem- 
peratures only a s  a result of photoionization of the ma- 
trix or defects. 

The process of impact avalanche ionization is usually 
considered beginning from a certain initial density No 
= lo7 - 10'' ~ m - ~ ,  the actual value depending on the laser  
radiation frequency. It is found that the breakdown 
threshold field depends very weakly on No (Refs. 1 and 
2). However, it is obvious that this conclusion can only 
be valid if a sufficient number of initiating carr iers  is  
present in the interaction zone of volume V. Since in 
many laser damage experiments3'* the size of the in- 
teraction region is very small, V s 10'1° cm3, there may 
be a situation when the threshold field is governed not 
so much by the rate of development of an avalanche but 
by the rate of creation of initiating electrons. However, 
it should be stressed particularly that the situation un- 
der discussion here is radically different from the 
usual case of breakdown a s  a result of. multiphoton ion- 

where y is the avalanche growth constant and W is the 
frequency of formation of carr iers  a s  a result of photo- 
ionization, whereas in the case of damage a s  a result of 
multiphoton ionization the opposite inequality i s  satis- 
fied. 

We shall consider the influence of an insufficient num- 
ber of initiating electrons on the threshold (critical) 
damage field and the associated statistical features of 
the optical breakdown process. In particular, we shall 
discuss the temperature and size dependences of the 
breakdown threshold under these conditions. 

1. ELECTRON AVALANCHE I N  THE PRESENCE OF A 
SMALL NUMBER OF INITIATING ELECTRONS 

Let us assume that a sequence of impact ionizations 
by some specific electron is a Poisson process, namely 
that the probability of a certain electron making k ion- 
izations in a time t is 

(t/.c)* 
P,(t)=-erp -- , 

k! ( 3 
where 7;: y-'. An analysis of the usual conditions for 
the process to be of the Poisson type leads to the con- 
clusion that this is a reasonable assumption if 

.rB I/\., 

where v is the frequency of electron-phonon collisions. 
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