
ÿÿ he requirement that the wave function should satisfy the 
Dirac equation follows from i ts  construction. By definition 
the wave function i s  obtained by multiplying the amplitudes * 
for the formation of the bound states,  A,, for given polariza- 
tion r ,  and sign of the energy (+) with the standard spinors 
u,P) and v,(P) : IC, = z A : p , +  Aiv,. 

'J. C. Pati and A. Salam, Phys. Rev. MO, 275 (1974). H. 
Terazawa, Y. Chikashige, and K. Akame, Phys. Rev. D15, 
480 (1977). Y. Ne'eman, Phys. Rev. Lett. 82B, 69 (1979). 
H. Harari ,  Phys. Rev. Lett. 86B, 83 (1979). M. A. Shupe, 
Phys. Lett. 86B, 87 ( 1979). R. Casalbuoni and R Gatto, 
Phys. Lett. 88B, 306 (1979); SOB, 81 (1980). E. J. 
Squires, R e p r i n t ,  University of Durham. March 1980. 

2 ~ .  A. Ansel'm, ZhETF Pis. Red. 31, 150 (1980) CJETP 
Lett. 31, 138 ( 1980)l; R e p r i n t  LNPI No. 546 (1980). 

3 ~ .  Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 
(1974). 

4 ~ .  Fri tzsch and P. Minkowski, Ann. Phys. (NY) 93, 193 
( 1975). H. Georgi, Particles and Fields,  1974 ( APS/DPF 
Williamsburg). Ed. C. E. Carlson, AIP, New York, 1975, 
p. 575. 

5 ~ .  G. Vaks, Zh. Eksp. Teor. Fiz. 40, 792 (1961 ) [Sov. 
Phys. J E T P  13, 556 (1961)l. 

6 ~ .  J. Buras.  J. Ellis, M. K. Gaillard, and D. V. Nanopou- 
10s. Nucl. Phys, B135, 66 (1978). 

Translated by Meinhard E. Mayer 

Theory of vibration-rotation excitation of diatomic 
molecules in a generalized eikonal method 

G. V. Dubrovskil and L. F. V'yunenko 

A. A. Zhdanov State University, Leningrad 
(Submitted 25 April 1980) 
Zh. Eksp. Teor. Fiz. 80,6679 (January 1981) 

A quasiclassical theory of vibration-rotation excitation of molecules is proposed on the basis of a general 
expression obtained earlier for the scattering amplitude in angle-action variables. For eikonal trajectories, it 
reduces to a generalized Glauber formula, taking into account internal motion of the target. If the Morse 
rotating oscillator model is used, the calculation of the differential cross sections reduces to quadratures. 
Various simplified expressions are derived for the cross sections, including, in particular, a Bessel 
approximation. This approximation is used to calculate the cross sections of vibrational transitions in the 
Li+-H, system and of rotational transitions in Hz-H, collisions; these cross sections are compared with the 
experimental values and calculations by the strong coupling method. The comparison indicates a good 
accuracy of the simplified analytic expressions. The proposed theory may be particularly effective for treating 
collisions with multiatomic molecules and also with the surface of a solid. 

PACS numbers: 34.10. + x 

The development of the theory of vibration-rotation 
excitation of molecules in collisions with various tar- 
gets (electron, atom, molecule, solid) is of great inter- 
est in connection with investigations with lasers ,' the 
study of rotational relaxation in freely expanding 
experiments on molecular beams: the solution of prob- 
lems concerning the structure of shock waves: etc. 
This explains the recent publication of many studies on 

resonance. Therefore, to go beyond perturbation the- 
ory in the solution of this problem, a number of authors 
have recently made very laborious numerical calcula- 
tions based on the approximation of strong channel cou- 
plings and the classical trajectory method7 The d i f f i -  
culties of carrying out and using such calculations for 
a large number of pairs in kinetic problems prompted 
an information-theory approachs aimed at establishing 

this question. simple approximate expressions (containing free pa- 
rameters) for the cross sections and transport coeffi-  

The main difficulties in calculations of the cross sec- cients. 
tions of vibration-rotation transitions are due to the 
multidimensional nature of the problems, and also the 
circumstance that under the most typical conditions one 
does not have fulfillment of the conditions of applicabil- 
ity of perturbation theory, c,= aorc/lt<< 1,  ~ , / f i =  (AE)-', 
or the Massey adiabatic criterion qo=7rc >> 1. On the 
other hand, the condition of the quasiclassical approxi- 
mation for the relative (a, = KRo >> 1)  and internal mo- 
tion of the molecules is frequently satisfied. Here, we 
have denoted by a, the mean value of the potential, b y  
R, the interaction range of the molecules, by j the 
characteristic frequency of the internal motion, by T ,  

the collision time, and b y  AE the mean defect of the 

Among the analytic approaches, the most popular has 
been the exponential approximation for the S matrix in 
its various  form^,^-'^ the basis being provided by the 
Magnus approximation for the nonstationary propagator. 
I t  should however be noted that a rigorous expression 
for the scattering amplitude in terms of such a propa- 
gator has not hitherto been given. Therefore, the 
heuristic method of introducing the exponential approx- 
imation in multidimensional problems leads to funda- 
mental difficulties associated with the use of approxi- 
mate classical trajectories, the fulfillment of the opti- 
cal theorem and the symmetry property of the ampli- 
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tude with respect to the initial and final states, and the 
treatment of zero-angle scattering and other classical- 
ly forbidden transitions. 

In the present paper, we propose a systematic and 
rigorous theory of vibration-rotation excitation of di- 
atomic molecules. It is based on the Morse rotating 
oscillator model14 and an exact representation for the T 
operator in angle-action variables obtained recently.'= 
The proposed theory simplifies Glauber theory16 in the 
sense that it uses a description of the internal motion 
of the molecules by means of angle-action variables, 
but at the same time generalizes Glauber theory to the 
case of lower energies of the relative motion and large 
scattering angles. On the other hand, it gives the most 
rigorous quasiclassical representation of the scattering 
amplitude in terms of a propagator of exponential form 
on approximate classical trajectories. These modifi- 
cations in Glauber theory a r e  particularly helpful for 
problems of gas dynamics and physical kinetics. The 
proposed theory can be used for problems involving 
more complicated objects (multiatomic molecules, 
crystal surfaces,17 clusters, nonspherical nuclei, etc.). 
For the simplest form of trajectory (eikonal approxi- 
mation), the problem is reduced to quadratures con- 
taining only the interaction potential, which is very im- 
portant for studying the influence of different regions 
of the potential surface on the probability of inelastic 
transitions. 

We obtain and discuss various approximate analytic 
expressions for the cross sections. We make calcula- 
tions of the differential cross sections of vibrational 
(Li' -Hz) and rotational (Hz -Hz) excitation, and com- 
pare these with experimental results and calculations 
by the strong coupling method. Comparison indicates 
good accuracy of the simplified variants of the theory 
in calculations of the cross sections of RT and VT tran- 
si t  ions. 

1. GENERAL THEORY 

To be specific, we shall consider the process of vi- 
bration-rotation excitation of diatomic molecules: 

where (njm) a r e  the vibrational, rotational, and mag- 
netic quantum numbers. We assume that the classical 
internal motion of each molecule can be described in 
terms of angle-action variables cp, -Is (s = l , 2 ) ,  the vec - 
tor  I, of the action variables being related to the vector 
n, of the quantum numbers by the Bohr-Sommerfeld 
quantization condition (8, i s  a constant vector which de- 
pends on the nature of the motion) 

I,=h(n.+$.). (2) 

The classical Hamilton function has the form 

where R, P, and L a r e  the coordinates, momenta, and 
angular momenta of the relative motion of the mole- 
cules, p is  their reduced mass, and V is the interac- 

FIG. 1. Collision of two vibrating rotators: p ~ ~ ,  p ~ l ,  and cp,i 
are the angular variables of the target in the fixed coordinate 
system XYZ, p is  the point of closest approach of the mole- 
cules, which lies in the XZ plane, Q is  the azimuthal angle, 
and yl and y2 are the angles between the radius vector R and 
the axes of the molecules. 

tion potential, which we shall assume consists of an 
isotropic and an anisotropic part (see Fig. 1) 

V=Vo(R)  [ l+Wl(R; rlyr;  rzyz) I ,  V,=V,W,, (4)  
where y, is the angle between r, and R. 

The equations of the classical trajectory connecting 
the asymptotic states ni- Pi and nf Pf must be 
found from the canonical Hamilton equations with 
corresponding boundary conditions.') These equa- 
tions can be conveniently expressed in dimension- 
less form by introducing the "slow" time 7 = t/to (to = 7, 
and F-', respectively, for fast and slow collisions): 

As can be seen from Eqs. (5), the classical theory 
contains all  three of the previously introduced param- 
e ters  for fast collisions (q* = q0 << 1) and only the two 
small parameters E and a for slow collisions (7,s: 1). 
As is pointed out in Ref. 18, the system (5) can be 
solved for fast collisions by canonical perturbation the- 
ory, and for slow collisions by the method of asymptot- 
ic averaging with respect to  the "fast" variable. Then 
in the f i rs t  approximation the theory contains the poten- 
tial V itself in the case of fast collisions and its peri- - - 
odic part T.'= V - V ( V i s  the averaged value of the po- 
tential) in the case of slow collisions. It is  because of 
this that one can ensure that the momentum of the per- 
turbation is small for slow collisions. 

It is quite clear that on the approximate trajectories 
one cannot satisfy the boundary conditions (6), and it is  
therefore important to obtain a representation for the 
T operator in terms of the solutions of the problem (5)- 
(6) in which the required increments A = P i  -Pf and An 
=Ii -If = A1 of the quantum numbers a r e  separated from 
the very beginning and a possibility exists for using ap- 
proximate trajectories in the calculation of the corre- 
sponding quantum transition. Such a representation, 
obtained in Ref. 15, has the form 
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The physical meaning of the expressions (7) and (8) 
is very simple. Because of the presence of the 6 func- 
tion, the integration in (7) is aver the hypersurface 
%. cpo orthogonal to the trajectories kolq,  which we 
shall call the dynamical plane of the impact param- 
eters. In (7)-(8), is the increment of the classical 
action in the "interaction repre~entation",'~ the pre-ex- 
ponential factors are  the Van Vleck determinants for 
the ingoing and outgoing branches of the trajectory, and 
Po and vo are  the values of the relative momentum and 
modulus of the frequency vector v on the dynamical 
plane of the impact parameters. The values of v(t) and 
v(t) a r e  to be taken from the exact solutions of Eqs. (5). 

The expression (7) has the following important advan- 
tages compared with Miller's S-matrix theorym: It 
introduces the dynamical plane of impact parameters, 
and it makes it possible to use approximate trajector- 
ies, study small-angle scattering, and investigate clas- 
sically forbidden transitions Pini - Pf nf. The problem 
with classically forbidden transitions reduces to the 
finding of the complex saddle points of R,,. p0, at which 
one joins the two branches of the trajectories on the 
dynamical plane of the impact parameters for the tran- 
sitions Pini - Pf nf, and to the calculation of their con- 
tribufions in the framework of the multidimensional 
method of stationary phase. 

In what follows, we shall restrict ourselves to the 
first order of classical perturbation theory, in the 
framework of which the ingoing and outgoing branches 
of a trajectory are characterized by constant values of 
V, V, and I, i.e., 

v ( t ) , v ( t ) , ~ ( t ) =  { Vi, Ye, xi, M O  

v,, v,, I , ,  t > o  

As the dynamical plane of the impact parameters, it is 
convenient to choose the plane perpendicular to the bi- 
sector of the angle between the vectors P i  and Pf. The 
expression (7) can then be reduced to a Glauber form 
for the scattering amplitude: 

In Eqs. (10)-(12), rninf is the "inelastic scattering pro- 
file", q is the number of dimensions of the space of the 
angular variables cp,, and V, = V and for fast and slow 
collisions. 

Note that the expressions (7) and (10) (representations 
of Glauber type) are an alternative to the quasiclassical 

representations for the T operator of Schiff type.''** 

Under quasiclassical conditions, the main contribution 
to the increment 4S of the action is made by the neigh- 
borhood of the turning point t = 0, where one can use the 
following approximation for the trajectory of the rela- 
tive motion (see Fig. I),  this being assumed to lie in the 
xy plane and described by the isotropic potential V, in 
(4): 

R=(x, Y ,  z ) ,  x ( t ) = p c o s  @+v,(t)t+w.t2l2, y ( t ) = v , t ;  (13) 
Z ( t )  =p sin '3, w = = - V / ( p ) / p ,  v,(O)=O. 

In the eikonal approximation, w,=O,v,=z~~,~sin 6/2, 
v , = v , , ~  cos 6/2. As v(t), ~ ( t ) ,  and I(t) in the eikonal 
formulas it is convenient to use the symmetrized ex- 
pressions 

Compared with Glauber theory used for problems of 
this kind,"*" the approximate theory based on Eqs. 
(10)-(12) takes into account the internal motion of the 
target (v, f 0), makes it possible to consider a wider 
range of variation of the parameters E and 17, and is 
simpler when applied to complicated systems. Com, 
pared with the parameteric method of Ref. 23, the pro- 
posed theory, which generalizes the results of Ref. 24 
to the three-dimensional case, gives a more correct 
description of diffraction scattering effects, which be- 
come particularly important in the case of the scatter- 
ing of molecules on a crystalline surface.17 

We give some simplified variants of Eq. (10). If in 
accordance with the splitting of the potential (4) we 
represent 4S in the form 

AS=AS. ( p )  +AS.(p; C ,  I ) .  Tmi .! =exp ( $ A S @ )  I..., (15) 

then the scattering amplitude can be expressed a s  

If the function rlninf depends weakly on the angle @ 
and the influence of inelastic transitions on the scatter- 
ing for 6 = 0 is unimportant, then (16) can be repre- 
sented a s  the convolution of the elastic scattering am- 
plitude and the inelastic scattering profile : 

ro ( p )  --exp (iASo) -1, 

where Jo(x) is a Bessel function of zeroth order. 

If the integral (16) is calculated by the method of sta- 
tionary phase and it is assumed that the stationarity 
point po[po(6), @=O] is determined by the argument of 
the elastic exponential, then we obtain the approximate 
representation 

f. ,., ( e )=f . ( e ) r , . ,  ., [ p 0 ( e ) ,  @ = o I ,  (18) 

where f,(B) is the classical elastic scattering amplitude. 
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Since the eikonal formulas for sufficiently high ener- 
gies satisfy the optical theorem to good accuracy,25 we 
can calculate the total cross sections for scattering of 
molecules in the state ni in accordance with the formu- 
la 

Note also that under the condition 2K>> 1 we can use the 
orthogonality of the Bessel functionsz5 and, integrating 
the square of the modulus of the expression (17) over 
the solid angle, obtain an expression for the total cross 
section of an inelastic transition in the form of the for- 
mula of the impact-parameter method: 

2. MODELS OF VIBRATION-ROTATION 
INTERACTION OF DIATOMIC MOLECULES 

For a diatomic molecule, a fairly accurate model is 
the Morse rotating oscillator model in the angle-action 
variables qN~JqM-NJM ,I4 for which 

where p,,p,,p, are  the momenta of the relative motion 
of the molecule in a spherical coordinate system; yo 
is the reduced mass of the molecule; (2, D, ro are  the 
parameters of the Morse potential; and F0,,,, are  quan- 
tities that can be expressed in terms of a, D, yo. 

Substituting (21a) in (21), we obtain the levels En, of 
the vibration-rotation spectrum, these agreeing well 
with the results of numerical calculation for not too 
large n. For small values of FlJ2 and F2J2, we obtain 

i.e., the vibrational spectrum of the Morse oscillator 
and the rotational spectrum of a rigid rotator. 

The unperturbed motion r(t) in the molecule is deter- 
mined by the relations 

-sin Y ( t )  sin 9 0 n r  i- h cos 'f' ( t )  COS ( P ~ M  

r ( t )  =ro-a-' In E(t ) ,  E(t) = ( -2a)  [ b +  (bZ--4ac)'" sin ( cpoN+ vat) 1; 
(24) 

Y ( t )  =v, t+lA[E(t)  I ,  a=E-FoJZ, b=W-F,P ,  c=-D+FzP. 

In Eqs. (23) and (24), we do not write out the explicit 
form of the functions pO=(qoN, qoJ, qM), v 
=(vNvJ; v M = O ) .  

The trajectories of the motion described by Eqs. (23) 
and (24) also agree well with the results of numerical 
calculations for not too large n. 

A s  a-- and vN-0, 

and we obtain the trajectories of a rigid rotator. For 
J= 0, we have the equation for the trajectory of a 
spherical Morse oscillator: 

r ( t )  =r0+a-' In If-'[ l+ ( 1 - ~ 1 ) ' ' '  sin (cpoN+vst) I).  (25) 

The further analysis of the problem is determined to 
a large degree by the models chosen for the isotropic 
and anisotropic parts of the potential. Whereas there is 
extensive theoretical and experimental material for an 
isotropic potential (see, for example, Ref. 26), the 
choice of the potential determining the inelastic transi- 
tion presents great difficulties. 

The problem is simplified if an inelastic, purely ro- 
tational trans ition is determined by the long-range 
multipole part of the potential (charge-dipole, charge- 
quadrupole, dipole -dipole, etc.), which has the form, 
respectively, 

v, = 
Q dPt (cos 7) QTPz (COS 

R2 I V1= R3 
[ 3 P ,  (cos y , ) P ,  (cos ~ 2 )  -Pi (cos 70) Id,dz 

(26) 
v,= - 

R3 

Here, y, and yo are, respectively, the angles between 
R,d,, and d,.d,; Q, d, and T are, respectively, the 
charge, dipole, and quadrupole moments; P,(x) are  
Legendre polynomials. 

A more general form of the potential energy surface 
is frequently expressed in the formn 

where j =  2K (A,=Bj) and j =  2K+1 (A,#Bj), respective- 
ly, for homo- and heteronuclear molecules. It is read- 
ily seen that for additive potentials of the form (27) the 
inelastic scattering profile rlninf factorizes, i.e., 

One can also use the additive scheme of two-body po- 
tentials, '%Which leads to (27) and additional crossed 
terms. The additive potentials (27) and the represen- 
tation (28) are not, in general, suitable for calculating 
quantum exchange cross sections ( VV and RR proces - 
ses). For such transitions, it is necessary to take into 
account the crossed terms. In addition, the accuracy 
of the approximation which uses angle-action variables 
for quantum exchange processes requires further in- 
vestigation. 

Even greater difficulty is presented by the choice of 
the potentials V,, which depend on r, and r,, in the cal- 
culation of vibration-rotation transitions (see, for ex- 
ample, Ref. 25). For the simpler problems of vibra- 
tional excitation, one frequently uses a "breathing 
sphere" potential of the form 

V=Vo(R)+W,(R)  (A1 exp [ - $ , ( r ~ - r , ~ )  l+BI exp [ - -~r ( r z - r ro ) ] ) .  (29) 

To express the potential V in angle-action variables, 
we use Eqs. (13) and (23), and also the relation 

The subsequent and more detailed analysis is made 
more conveniently for a number of concrete cases. 
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3. ROTATIONAL AND VIBRATIONAL EXCITATION 
OF DIATOMIC MOLECULES 

1. To describe rotational excitation of diatomic mol- 
ecules when the vibrational levels are not excited, we 
proceed from the model of a rigid rotator with interac- 
tion potential V, of one of the types (26) and (27). For 
the "rotational excitation profile" of one molecule, we 
then have the expression 

The integral (31) describes basically transitions be- 
tween different values of m; the integral (32) ,  transi- 
tions between different values of j. For C ,  we can ob- 
tain the general expression 

Y =C, cos (pcpo,+Eo), P S I ,  2, (33 )  

where, as is readily seen, C,  and to can be expressed 
in terms of integrals of the form 

In (33)-(34), p = 1,2, respectively, for hetero- and 
homonuclear molecules; W,(R) is the coefficient of 
cos y. 

Using the well-known integral representation for the 
Bessel  function^,^^ 

and also the arbitrariness in the choice of 7, (0 T,  
a n) and the integral nature of x ,  we readily obtain an 
explicit expression for I'if: 

i 

The Bessel approximation for the profile (36), which 
is used in one-dimensional problem~,3"-~~ gives in con- 
junction with (16)-(18) the most rigorous expression for 
the excitation amplitude in the first order of perturba- 
tion theory. The Bessel approximation is generalized 
to the three-dimensional case in Ref. 33, but the not 
entirely rigorous derivation of the basic expression for 
the amplitude leads to a different argument of the Bes- 
sel function, This difference between the basic ex- 
pressions for the T operator will also have an influence 
when the following orders of perturbqtion theory are 
taken into account. 

We introduce further the simplifying assumption that 
the main contribution to the cross section is made by 
planar configurations of the system, when the plane of 
the rotator lies in the scattering plane [ ~ ( t ) =  11. We 
shall also assume that the rotation frequency of the ro- 
tator is constant and equal to v,. Under these assump- 
tions, we obtain the approximate equations 

cos -y=cos 8 cos cp,, cpJ=v.t+cpJD, R ( t )  - (pz+e.'t')'; 

E.Z=W@ cos O+V. cosz (812), w.--av,(p)/ap. 
(37) 

the results 

For the case of a power-law dependence W,(R), we 
obtain explicit expressions for 2, and C,: 

n (2s-3) ! ! 
W , ( R )  =AR-'a Z,=- cos' Q w , ( p ) ,  

2(2s-2) !! e .  
4n cosP Q C ----- 

9- w9 ( P )  ~ X P  ( - c) 2 ( - I  p E .  

where K,(x) is a MacDonald function. One can write 
down more accurate expressions for cos y and the 
quantities 2, and C ,  associated with them by taking into 
account the variation of R near the turning point, but 
we shall not dwell on this. 

a). For the case of excitation of the rotational levels 
of a dipole molecule by a charged particle of charge 
Q we have ( s  = 1) 

Substituting (42) in (16), we find an explicit expression 
for the scattering amplitude as a double integral with 
respect to p and ih. In the expression for C,, we can 
ignore the dependence on ih (cos i h  1) and then use the 
expression (17). I f  we also assume that &,= v,, then 
the total scattering cross section for 2K>> 1 can be cal- 
culated in accordance with (20). 

b). For quadrupole potential ( s  = 1) 

c). For the additive scheme of the potential (27), the 
corresponding expressions for r,,i,f with p = 1,2 are 
obtained by using the expressions (40) and (41). 

d).  The most complicated expression for the inelas- 
tic scattering profile in nonfactorized form is obtained 
for the dipole-dipole interaction (27) or in the model 
with crossed terms. In the framework of the simplifi- 
cations formulated above, we can use the following ap- 
proximate equations in its calculation: 

COS rt=COS 0 COS ~ I I ,  COS rz=COS Q COS c p r z ,  COS yo=COS (vri-qra), 

cprl=vIt+cprlo, cp,2=vzt+cp,zo. 
(44) 

2. We  obtain a simple expression for the "vibration- 
al excitation profile" i f  we use the breathing sphere po- 
tential in the following form in the problem of vibra- 
tional excitation of a diatomic molecule by an atom: 

V ( R ,  r )  = V , ( R ) + W ( R )  exp [a ( r - r , )  1, W ( R )  =CR-". (45) 

Using ( 2 5 ) ,  we again obtain an expression for the pro- 
file in terms of a ~ e s s e l  function: The calculations then simplify considerably and lead to 
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Note that in the framework of the approximation (38) 
we obtain essentially the cross  section of the transition 
0- H. = ( j i  - jf I[u,,,(O)]. In the adiabatic approximation, 
the cross section of a transition between arbitrary ro- 
tational quantum numbers can be calculated in accord- 
ance with the f ~ r m u l a ~ ~ v ~ ~  

4. VIBRATIONAL EXCITATION IN T H E  Li+-Hz 
SYSTEM 

As an example of the use of the simple expressions 
(18) and (46), we calculated the differential cross sec- 
tion of vibrational excitation in the Li+-Hz system. For  
the parameters of the potential (45), we chose here the 
following values obtained by comparing (45) with other 
analytic representations of the potential energy sur -  
face3? 

s=2, C=4.7. lo-' a .  u., p=2d=1 a. u., 
D=0.15 a.u., r.=0.5 a.u., 

The values for the turning point for large scattering 
angles were calculated in accordance 

The results of the calculations together with the re -  
sults of the experimental measurements a r e  shown in 
Fig. 2. The experiment led to measurement of the 
quantity3' 

for the energy values E = 3.65, 5.54, and 8.8 eV in the 

Ii0' t4Ua t6D0 ti0' 
I , , , ,  

FIG. 2. I (%)= (do/&) (0-n) z:=o (du/dQ) (0 -v)  for LI+-H~ 
at  E = 3.65 eV (a), 5.54 eV (b), and 8.8 eV (c). The broken 
lines show the experimental data of Ref. 37, the continuous 
lines the calculations in accordance with (18) and (46). 

0" 4.5 " 90 ' 
e 

FIG. 3. (du/&) pp(00-~21%) for HzHz at  E =  0.1 eV (a) and 
0.3 eV (b). The broken curves show the calculation by the 
strong coupling method, the continuous curves the calculations 
in accordance with Eqs. (IS), (28), and (36). 

range of angles from 125 to 167". The e r ro r  of the 
measurements was i 2 a  and more and increased with 
increasing energy and decreasing angle. As can be 
seen in Fig. 2, the agreement between the calculation 
based on the simple analytic formula and the experi- 
ment can be regarded a s  satisfactory for all the transi- 
tions and considered energies. 

5. ROTATIONAL EXCITATION I N  THE Hz-H2 
SYSTEM 

To illustrate the method, we can also compare a cal- 
culation of the differential cross  section of rotational 
excitation in the Hz-Hz system on the basis of the sim- 
plified expressions (18), (28), and (36) with the results 

FIG. 4. (d~/dS;2)~~ (10 -- 121 8)  at E = 0.0929 eV and (du/&), 
(02 -241 8) a t  E = 0.55 eV for HZH2. The broken curves 
show the calculation by the strong coupling method, the contin- 
uous curves the calculation in accordance with Eqs. (IS), (28), 
and (36). 
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of calculation by the strong coupling method6 (see Figs. 
3 and 4). We took the potential modela 

V(R, Y I ~ Y Z )  

=Vo(R) {I+BIPz(cos Y~)+PZ(COS yr) I ) ,  
V,(R) =Ae-aR, A=2.168 a.u., 

(49) 

a=1.783 a.u., B=0.14, 

and consideredthe differential cross section for collisions 
of para-para (da/dSb)&, andortho-para, (do/dSb),,,, H, mole- 
cules. In both cases, the scattering amplitude was cal- 
culated by symmetrizing the original amplitudes (see 
Ref. 6) 

f(jij~+j~'ji le)  =f(j1j~+j~'j/l0)+f(j~j~+j/j~~n-O). (50) 
The turning points dB) were calculated on the basis of 
the following approximate formulas for the exponential 
potential: 

b b 
8=--AaK,(ab), p(8)=- 

E cos(8/2) ' (51) 

which ensure good accuracy for ec 30"-40". 

Finally, the cross sections were calculated in ac- 
cordance with a formula that takes into account the 
correction g (see Ref. 6), 

this being done for a number of transitions and ener- 
gies, which a r e  indicated in Figs. 3 and 4. 

As can be seen from Figs. 3 and 4, there is good 
agreement between the proposed simplified theory and 
the strong coupling method for all the considered cases 
of inelastic transitions not associated with exchange of 
quanta, when the potential (49) can be assumed to be a 
good approximation of the potential surface. 

It is interesting to note that the oscillation structure 
of the cross sections, explained in Ref. 6 by the phase 
difference between the direct and exchange amplitudes, 
is described here by the Bessel function, whose argu- 
ment is equal to the increment of the "inelastic action." 

The agreement with the calculation by the strong 
coupling method is better a t  small angles a d  somewhat 
less good at B =  r/2, which is due to the appraximation 
(51) and the approximate representation of the trajec- 
tories. The agreement obtained for all  the considered 
cases should be regarded a s  lending support to the Bes- 
sel approximation, which gives a fairly accurate de- 
scription of the probabilities of rotational transitions 
under conditions when perturbation theory fails. 

In this connection, it would be of considerable inter- 
est to consider more complicated problems and effects 
in the framework of the proposed theory, which admits 
numerous obvious generalizations. 
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