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It is shown that in the limit as n +a, at space dimensionalities 2 < d < 4, a phase transition into spin glass 
takes place in a magnet with random anisotropic exchange. This transition corresponds to Bose condensation 
into the first localized state of the random exchange-interaction matrix. The local frozen magnetization in the 
low-temperature phase is determined by the wave function of this state. The order parameter, the field 
conjugate to it, and two generalized susceptibilities, which become infinite in the low-temperature phase, are 
determined. This fact attests to the presence of a soft mode in the system. The behavior of various 
thermodynamic quantities in a constant magnetic field and in a random one is investigated. The correlator of 
the local frozen-in magnetization is calculated. 

PACS numbers: 75 .30.K~ 75.30.Cr, 75.30.Sg 

1. INTRODUCTION tion obtained by us ,  a t  space dimensionalities 2 <  d 

Many recent papers deal with phase transitions in 
strongly disordered magnetics of the spin-glass type 
(see, e. g., the reviewsly2). In almost a l l  the papers, 
the theory i s  passed on the Edwards-Anderson order 
parameter. There is  a t  present, however, no suf - 
ficient understanding of the stability of this order pa- 
rameter to fluctuations (see, e. g. , Refs. 4-61. 

Hertz, Fleishman, and Anderson (HFA)? have de- 
veloped in this connection an alternate approach to 
spin-glass theory. In this approach the paramagnet- 
spin glass phase transition i s  associated with the mob- 
ility edge, and the frozen local magnetization in the 
spin-glass phase corresponds to the first  delocalized 
eigenstate of the random exchange-interaction matrix. 
What takes place here is, in essence, a transition of 
the type of Bose condensation in this state. 

However, the model with random Heisenberg ex- 
change interaction, investigated by HFA, i s  too com- 
plicated, and it was therefore impossible to obtain a 
consistent solution of the problem. HFA could advance 
only intuitive ideas concerning the character of the sol- 
ution. In particular, it has turned out that for magnets 
with random exchange with n 2 2 (n i s  the number of the 
spin components) there is no phase transition into spin 
glass at  any dimensionality of space. 

We consider in this paper an exactly solvable spin- 
glass model, namely a problem with random anisotrop- 
ic exchange in the limit a s  n - a. It turns out that a 
transition into the spin-glass phase takes place in such 
a system. This transition is analogous in many re- 
spects to the phase transition in an ordered magnet a s  
n- a, which i s  known to be equivalent to a phase tran- 
sition of the Bose-condensation type in an ideal Bose 
gas in terms of the variables N and T. Therefore in 
our case this transition turns out to be equivalent to 
Bose condensation into the first delocalized state of a 
disordered system, while the frozen magnetization is  
determined by the wave function of the first delocalized 
state of a random exchange-interaction matrix. 

Thus, the situation investigated by use corresponds 
fully to the HFA approach, except that the solution i s  
carried through to conclusion. The frozen magnetiza- 

< 4 has a l l  the properties typical of spin glass. In 
particular, the correlator of this local magnetization 
is calculated. The order parameter is  the quantity M, 
with the Edwards-Anderson parameter q = M playing 
the role of the Bose-condensate density (just a s  in or- 
dinary Bose condensation the order parameter i s  ($) 
and not p,= 1($}12) .  We investigate the behavior of such 
a system in a constant magnetic field, in a random mag- 
netic field, and in the field conjugate to the order pa- 
rameter M. We calculate the usual susceptibility, the 
susceptibility connected with the parameter q ,  and two 
susceptibilities connected with the order parameter M. 
The last two become infinite below the Curie point, thus 
attesting to the presence of a soft mode in the system. 
We note that since the initial Hamiltonian is not invar- 
iant to the O(n) rotation group, this soft mode i s  not 
connected with rotation of the local magnetization, but 
is  apparently connected with the usual invariance of the 
order parameter with respect to the group U(1) in Bose 
condensation. This means that the system contains a 
certain hidden symmetry. 

It i s  important to note that in our model there a r e  no 
localized states of the random-exchange matrix. This 
makes the model greatly different from real systems. 
It seems to us, however, that the study of such a sim- 
plified model i s  nevertheless of definite interest. Of 
fundamental interest, in our opinion, is the possibility 
of correctly defining in the spin-glass problem the ord- 
e r  parameter, the conjugate magnetic field, and the 
susceptibility corresponding to this order parameter, 
inasmuch a s  these questions a r e  the most important 
from the point of view of the theory. 

We note, however, that a l l  our results pertain only 
to the case n -  a. At finite n it i s  perfectly possible for 
the situation to change completely already in first  order 
in l/n. It is possible, in particular, that the lowest 
critical dimensionality for the spin-glass phase, which 
in our case i s  two, will become equal to four. 

We indicate now two possible realizations of our mod- 
el. We note first  that a particular case of our prob- 
lem is a magnet with randomly rotating anisotropy (this 
case is obtained by putting qp= 6,,JaB in Eq. (1) and 
bearing in mind that in our case the fluctuations of J ,B  
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a r e  Gaussian, which differs somewhat from the usual 
random anisotropy). Random anisotropy i s  realized in 
many amorphous magnets. It is  interesting to note that 
the expression obtained in the last section for the cor- 
relation radius coincides with the estimate of Irnry and 
Ma8 (although they have considered random fields, it i s  
easy to show that their estimate i s  valid also for random 
anisotropy 1. 

The second possible realization likewise involves 
amorphous magnets. It sometimes happens that in such 
magnets a random rotating anisotropy acts directly on 
magnetic atoms that effect an indirect exchange between 
other atoms. It is easily shown that random anisotropic 
exchange takes place in this case. 

2. DERIVATION OF BASIC EQUATIONS 

We choose the Hamiltonian in the form 

Here rn? a r e  the spin variables (i and 0 number the sites 
and the components, respectively ),.vi, i s  the exchange 
ferromagnetic integral, Jy: i s  the random anisotropic 
exchange integral, T i s  the temperature, A i s  the in- 
teraction constant, h i s  the external magnetic field, 
and a i s  a constant. We assume that the random ma- 
trix J:: has a Gaussian distribution and 

We a re  considering thus a system with a nonrandom 
ferromagnetic interaction vik and with a random aniso- 
tropic exchange q:. We shall assume hereafter that 
n -  and confine ourselves to the zeroth approximation 
in l/n. For convenience in the calculations we assume 
the magnetic field to be diagonally directed, with I h 1 
=hn'l2. 

We note that a Hamiltonian of the form (1) with the 
usual random exchange i s  usually investigated (see, 
e. g., Ref. 7). We, however, investigate a system with 
random anisotropic exchange, and this problem can be 
solved exactly a s  n - m. The Green's function i s  in this 
case 

dL 
G (r) =df j- G (k) eik', 

( 2 ~ ) '  

Here dS i s  the volume of the unit cell and I; is the self- 
energy part. As n - m ,  C i s  determined by three diag- 
rams (see a and c in Fig. 1). The block shown in Fig. 
c i s  interpreted in Fig. d. A straight line corresponds 
to  a complete Green's function, a dashed one to the in- 
teraction A, a wavy line to the correlator I(r), and the 
arrows represent the external magnetic field. 

FIG. I. 

Calculating these diagrams, we obtain the following 
expression for C . 

We note first  the following. As seen from Figs. a and 
c, 

Po=<(rnia)". (5) 

If we take this fact into account, then Eq. (4) can be 
easily obtained by splitting the fourth-power term of the 
Hamiltonian (1): 

x (mia)'(mIP)'-2n( (m,')') x (mia)'-2n~, z (mia)'. 
1s ia 

(6) 
lo@ 

This makes the Hamiltonian (1) quadratic, and we obtain 
from it directly our needed expressions, particularly 
the one for 6 ,  and use next (5) as the self-consistency 
condition. This is the usual method of taking the fourth- 
power term into account a s  n--, and we shall use it 
hereafter. 

From (3) and (4) we get 

This formula contains two parameters this must be 
determined, Po and Go. To take the term with Go into 
account, we consider the problem of the spectrum of the 
random-exchange matrix JgB+ ~ , , b , ~  TO this end we 
write down the Schrodinger equation 

C ( ~ ~ ~ + v , ~ 6 . ~ ) a 1 1 8 = o a ~ ~  (8) 
ko 

and obtain the correlator R(w, k) of the operators a and 
a+ and the state density p(w) .  In the limit as n - 
these functions a r e  calculated exactly from the simple 
equation (corresponding to diagram b). 

[R(o ,  k)  1-'=a-~(k)-IoRo, 

p(o) =-Im R o ( o ) l n .  

TreatingP, in (7) a s  a parameter, it is easy to connect the 
Green's functions of our problem withthe Green's functions 
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We have thus replaced the problem of determining the 
parameter Go in (7) by a solution of the problem of the 
spectrum and the Green's function of the random-ex- 
change matrix. To close the system of equations we 
must write down a self-consistency equation for Po. 
To this end we introduce the quantity 

The last equation is easily obta~ned from (9), and is 
valid only in the forbidden band, but this is  precisely 
the case of interest to us. From ( 4 )  and (9)-(11)  we 
obtain the following equation for Po: 

P ( a )  d o  Ah2 P ( a )  do 
I /a+Wo/2-2u/T + F ( l / ~ + h p o ~ 2 - 2 o / ~ ) '  ' 

Ga (k=O) R2[Il2T ( l /a+hP0/2) ,  k=O] . (12) 
A = =  

no II, ['/,T ( l /a+hPo/2)  ] 

Since the functions R(w, k), Ro(w), and n,(o) can be re-  
garded as given, Eqs. (10) and (12) comprise a closed 
system of equations for the Green's function. We shall 
investigate them in detail below. At present, however, 
we note the main consequences of these equations. It i s  
seen from (12) that a t  h=O this equation is equivalent 
to the Bose-condensation problem in terms of the var- 
iables Nand T, in a system with a specified state den- 
sity p(w). The phase transition will take place a t  a 
temperature Tc determined from the equation 

where wo i s  the edge of the band in the problem of the 
spectrum of the random exchange matrix (it is knowng 
that in this problem there i s  no region of localized 
states a s  n - 00 ,  therefore wo separates the forbidden 
and conduction bands). Bose condensation takes place 
in a state Ct, corresponding to the energy w,, and this 
results, a s  will be shown below, in local quenched mo- 
ments M q whose statistical properties a r e  determined 
by the correlator K(r). These quantities a r e  equal to 

where . ), and (. . .),,, denote averaging over the 
temperature and over the configurations, N i s  the num- 
ber of si tes in the crystals, and M i s  the order param- 
eter. We shall show below that K(r) decreases expon- 
entially a t  large distances, i. e. ,  there is a finite cor- 
relation radius in which MY i s  completely turned, and 
obviously (A4 ;),,, = 0. This means that the Bose con- 
densation took place into the spin-glass state. 

We note also the following fact. If the system con- 
tains in place of a constant magnetic field a random 
magnetic field with a Gaussian distribution and with a 

correlator 

(hph,!)=bg6i$, 

then we get in place of the diagram c the diagram e, 
where the cross  denotes the correlator of the random 
fields. Carrying the same calculations as before, we 
obtain again Eq. (12), but with A = 1. It is of interest 
to note that in a constant field a t  v(k)= 0 we also have 
A= 1. On the other hand it turns out that A i s  finite 
near the Curie temperature, and therefore we can re -  
gard it in (12) a s  an inessential constant (of course, only 
in weak fields). Physically this means that the constant 
field acts on our system in the same way as the ran- 
dom field. This i s  easily understood. Actually, for  
random frozen magnetization the only thing that mat- 
t e r s  i s  whether the magnetic field i s  directed along M i  
or  not. Therefore both types of field act on our system 
in the same way. The situation i s  different if the ex- 
ternal magnetic field is correlated with M ,. In this 
case it will act entirely differently, since such a field 
is conjugate to our order parameter. The equation for 
Po in such a field i s  the equation of state for our sys- 
tem. Let us  derive this equation. The term corre- 
sponding to this field in the Hamiltonian i s  of the form 

Substituting (15) in (1) in place of the last term, uncoup- 
ling the fourth-order term in accordance with (61, and 
diagonalizing the Hamiltonian, we obtain 

where cfi and w, a r e  the eigenfunction and eigenener- 
gies corresponding to the states h of the random-ex- 
change matrix. From (16) we easily obtain 

Recognizing that the sum over h goes over into an in- 
tegral with respect to w with weight p(w), we obtain 
from (17) the following equation of state: 

Equation (18) i s  completely analogous to the equation 
of state of an n-vector model in an ordered system as 
n-  m (Ref. lo),  and is equivalent to the problem of 
Bose condensation in the variables Nand  T. " The 
quantity M is the order parameter and analogous to 
magnetization in a n  ordered system. It follows from 
(18) that in our problem the role of the transverse sus- 
ceptibility X, and of the longitudinal susceptibility X,, 
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a r e  assumed by the quantities 

It follows from (19) that a t  T <  T, the susceptibility i s  
Xl - hi1 a s  h, - 0. As will be seen below, x,, - l/h:I2, 
i. e., x,, also diverges at T < T c ,  just as in the ordered 
case. It follows therefore that a soft mode i s  indeed 
present in the problem. 

3. CALCULATION OF THE CORRELATOR R(w,k) AND 
OF THE STATE DENSITY 

As seen from the result of the preceding section, to 
solve the problem we must know the correlator R(w,k) 
and the state density p(w). These quantities a r e  defined 
in Eq. (9). In the general case this equation cannot be 
solved analytically. We shall therefore solve it in two 
particular cases: f irst ,  at v(k) = 0, and second in the 
case of weak disorder, i. e. , a t  v(0) >> near the edge 
of the band, and confine ourselves in the latter case to 
space dimensionalities 2 < d< 4. In the first  case we 
have from (9) (Ref. 9) 

R (o, k) =[a- (az-41,) '"]/21,, 

p (o )  = (4Zo-~')".B.(41~-o')/2nI,. 

We see that in this case R(w, k) does not depend on k. 

We consider now the much more interesting second 
case. In the case of weak disorder, i.e., a t  Io<<v2(0), 
the main singular contribution i s  made by small  k. 
Separating in (9) the contribution of the small k ,  we 
obtain for w, from (9) the following equation, which i s  
simply related to R,: 

dk 1 
Ro ,..-d8 J - 

( 2 r ~ ) ~  v (0) -v (k) ' 

As seen from (21), the state density becomes differ- 
ent from zero where w,(w) has a branch point. The en- 
ergy w, a t  which this takes place i s  the edge of the 
band. At this energy, however, the equality w,(w)=O 
i s  not a t  all  obligatory, and then R(w,, k =  0) does not 
become infinite. It i s  seen, however, from (11) that 
the two-particle Green's function becomes infinite at 
this energy if p(w) - wa with a! < 1. This means that a t  
w = w, there i s  produced also conductivity, i. e. , there 
i s  no region of localized states in this model. 

Solving the equation for w, in (21), we obtain near o, 

It is seen from (22) that actually w,(w,) does not vanish. 
Near the edge of the band 

which leads to  a finite correlation radius of the mag- 
netization correlator below T,. 

At d # 3  dimensions, Eq. (21) takes the form 

The integral that determines 5 in (21) then diverges a t  
d = 2 and d = 4. It is clear therefore that these a r e  the 
borderline dimensionalities. Obviously, d = 2 i s  the 
lower critical dimensionality, and a t  d = 4  the charac- 
ter of the solution for weak interaction simply changes. 
In the interval 2 <  d< 4 the solution (24) retains a s  be- 
fore the features of the solution (22), i. e., w,(w,) i s  
finite and the state density p(w)- (w - u,)'/~ near the 
band edge. As seen from (20), in the case of strong 
disorder the picture is  the same, and it i s  therefore 
clear that a t  I,-v2(0) the qualitative character of the sol- 
ution i s  preserved. Since only the form of the state den- 
sity near the band edge is of importance for the study 
of the phase transition, it can be assumed that a t  2 < d 
< 4 the square-root state density exists at any degree 
of disorder. Inasmuch as in this dimensionality range 
only the case d = 3 i s  of interest, we shall consider 
hereafter only the three-dimensional case. The main 
results connected with the square-root singularity of 
p(w) will remain in force in the interval 2 < d <  4. 

We parametrize p(w) near the edge of the band in the 
following manner : 

where w, and e, a r e  certain parameters that can be cal- 
culated in the particular cases (20) and (22). 

4. SOLUTION OF THE EQUATION OF STATE 

We proceed now to solve the equation of state (18). 
From (18) we have the following equation for the quan- 
tity c , which is simply related to Po and to the general- 
ized magnetization M: 

T AT' p(o)do 7=--ma+- -. 
2a 8 J roo-o 

In the derivation of (26), a subtraction was made from 
(18), therefore the integral in (26) i s  determined a t  
small E by small w, - w and we can use p(w) from (25). 
We then obtain 

e+pe"'-ahOz/8'=r, (27) 

a=AT/16, p=nhTa/8e2. 

In the zeroth order in the parameter h, 17 the solu- 
tion of (27) i s  
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In the derivation of (28) we cannot simply put h, = 0 in 
(27), but must assume h, to be a sufficiently small but 
finite quantity. Since (27) has been derived a t  c <( w, 
-To, Eq. (28) is also valid under these very same con- 
ditions, which hold t rue  a t  all ?- p2 if A << 1, and only 
a t  ?<< p2 if A - 1 .  In the latter case only the last asymp- 
totic formula for E (7)  is valid. 

It is seen from (28) that & has a kink a t  7 = 0. This 
means that the phase transition takes place at E = 7 

=O. The condition c = O  coincides with Eq. (13). The 
condition r= 0 yields an explicit expression for T,: 

If A -  0, then 52 >> woa2 and T, = 2aw,, corresponding to 
perturbat ion theory. 

We calculate now c ,  M, X*, and x,, below Tc in first  
order in h, 17 1 -5 /2.  From (27) we obtain readily 

It i s  seen from (30) that the susceptibilities below Tc 
a r e  X, - l/h, and XI, - l/hAJ2, just a s  for an ordered sys- 
tem. 

At T > 0, naturally, the two susceptibilities a r e  equal 

From (30) and (31) we determine the critical exponents 

corresponding to a phase transition in an ideal Bose gas 
in terms of the variables N and T. 

5. SUSCEPTIBILITY AND THE EDWARDS-ANDERSON 
PARAMETER 

The usual physical susceptibility x and the Edwards- 
Anderson parameter q a r e  obviously given by 

q=Po-Go. 

We now connect q2 with M. We calculate below the 
function K(r) that enters in (14), and see  that K(r = 0) 
= 1. It follows then from (14) and from the definition of 
q that 

q=< (M,.) '>,,,,=W. (34) 

To calculate x and q a t  finite h we consider the Eq. (12). 
Since i t  can be readily seen that A i s  finite a t  the tran- 
sition point, it follows that in the calculation of the 
principal singularity a t  small h we must regard A as 
a constant. We then obtain from (12) an equation simi- 
lar to (27): 

We solve this equation near T,. In this region, the first  
term is small, and we have 

eZ"=[r+ ( ~ ~ + 4 p ~ h ~ ) " ' l / 2 p .  (36) 

As h - 0 we obtain the asymptotic form of (28) at small 
T.  We calculate now the susceptibility. From the de- 
finition of c in (261, it i s  seen from (211, (22), and (33) 
that near T, 

It follows from (37) that at h=  0 the susceptibility has a 
kink that becomes smoothed out in a magnetic field. 
Thus, a constant magnetic field eliminates the phase 
transition. We note that this fact, generally speaking, 
is not obvious, since the constant magnetic field is not 
the field conjugate to the order parameter. A random 
magnetic field acts in exactly the same manner (we re -  
call that in this case  we need merely put A= 1). We 
have next from (12), (33), and (36) 

The second formula in (38) agrees with (30) and (34). 
It i s  seen from (38) that the indices corresponding to the 
parameter q coincide with their classical values: 

6. CALCULATION OF THE CORRELATOR OF A 
LOCAL FROZEN MAGNETIZATION 

We calculate now the function K(r) that enters in ex- 
pression (14) for the correlator of the magnetizations: 

Using the spectral representation for the correlator 
R(w,r): 

and assuming that the eigenfunction corresponding to 
w, i s  nondegenerate, since p(w) - 0 as w - w,, we ob- 
tain 

Im R(o, r )  
K ( r ) = -  lim .-, np(o) ' 

If u(k) =0, then, a s  seen from (20), ImR(w, r) 
= -*p(w)b, and we have 

K (r) =bra 

Thus, in the case  of strong disorder, M: does not cor- 
relate even a t  neighboring sites. In the case of weak 
disorder we obtain from (21)-(23) 

K (r) =e-"', (44) 

where x is defined in (23). 

If I,  - 0, then also x - 0 and we obtain in place of spin 
glass an ordinary ferromagnet. 

For an arbitrary space dimensionality we easily ob- 
tain from (24), in lieu of (23), the following expression 
for x: 

%=p-" (E (d-2)/2)'"4-d'. (45) 
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Investigation of the spatial distribution of acoustic 
radiation resulting from emergence of a dislocation pile-up 
on a surface 
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Measurements are reported of the ipatial distribution of the various components of the stress tensor in the 
field of transition acoustic radiation generated on emergence of a pile-up of dislocations on the surface of a 
crystal or on formation of such a pile-up near the surface and its subsequent penetration into the crystal. 
Theoretical relationships are obtained for the emission of transition sound as a result of emergence of a planar 
dislocation pile-up and of a Peierls dislocation on the surface. Allowance for the finite width of the dislocation 
core makes it possible to remove consistently the divergence of the radiation fields and to relate the 
characteristics of the leading edge of an acoustic radiation pulse to the core width. The components of the 
stress tensor and of the vector describing the velocity of elements of the medium in the leading edge of an 
acoustic pulse are inversely proportional to the square root of the width of a dislocation core. A comparison 
of the experimental and theoretical results made allowing for the influence of the crystal anisotropy 
demonstrates validity of the theory of transition radiation in describing the spatial distribution of acoustic 
emission when a pile-up of dislocations emerges on the surface of a crystal. 

PACS numbers: 62.65. + k, 61.70.Le 

1. INTRODUCTION 

~ a t s i k '  used  the physical analogy between two field 
theories-electrodynamics and theory of elasticity-to 
consider theoretically the  t ransi t ion emiss ion  of sound 
by a dislocation emerg ing  on  the sur face  of a c rys ta l ,  in 
the  s a m e  way as the  t ransi t ion emiss ion  of electromag- 
netic waves has  been considered earlier.2 T h e  f i r s t  ex- 
perimental  investigation of the  t ransi t ion emiss ion  of 
sound w a s  repor ted  in Ref. 3. Among the latter inves- 
tigations it i s  worth noting Ref. 4 report ing the  f i r s t  
experimental  identification of t h e  t ransi t ion acoust ic  
radiation in its pure  form. Investigation of the  t rans i -  
tion emission of sound i s  of genera l  physical in te res t  
because it demons t ra tes  t h e  exis tence of t ransi t ion ra- 
diation f o r  waves of different origin. Moreover ,  such 
investigation provides a physical basis for  one of t h e  
promising nondestructive test ing methods, which is t h e  
method of acoust ic  emission.  

Comparison of var ious  mechanisms of the  emission 
of sound by  moving dislocations, d i scussed  by Natsik 

et  a l .  in  developing a theory of acoust ic  emission (for 
detai ls  see the  review in Ref. 6), shows that  under the 
conditions usually encountered in plast ic  deformation 
the grea tes t  contribution to t h e  acoust ic  emiss ion  is 
made not by the  acce le ra ted  motion of dislocations but 
by the p r o c e s s  assoc ia ted  with t h e  appearance or dis- 
appearance  of dislocations. Formation of dislocations 
n e a r  a n  interface followed by penetration into t h e  med- 
ium is also accompanied by t ransi t ion radiation. The 
appearance  of dislocations inside a c r y s t a l ,  which-in 
accordance with the  law of conservation of the  Burgers  
vector-is possible  only in  the  f o r m  of p a i r s  of disloca- 
t ions of opposite s igns ,  is accompanied by annihilation 
radiation. The disappearance of dislocations by e m e r -  
gence on a sur face  or by annihilation inside a c rys ta l  is 
also accompanied by t ransi t ion o r  annihilation radiation, 
respectively. In an earlier paper7 we  repor ted  a n  ex- 
perimental  investigation of the  annihilation radiation, 
whereas  in t h e  p resen t  paper  (which i s  a direct  contin- 
uation of the  investigations repor ted  in Refs. 4 and  7) 
we shall give t h e  experimental  results obtained in a 
study of the  t ransi t ion radiation. 
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