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The statistical properties of a one-dimensional acoustic turbulence (OAT) are considered for time intervals at 
which the formation and merging of the shock fronts are important. One- and two-point probability densities 
are found for an OAT with an infinite Reynolds number. It is shown that for times such that the external 
turbulence scale is much greater than the correlation radius of the initial field, these distributions are self- 
similar: the one-point OAT probability density is Gaussian, while the two-point density is substantially non- 
Gaussian. The law of growth of the external scale of the OAT due to the merging of the shock fronts is found 
for these times. The energy spectrum which follows from the two-point OAT probability density is discussed. 
The last stage of OAT degeneracy, for which OAT damping is due only to linear dissipation, is also 
considered. 

PACS numbers: 47.25. - c, 47.40.Nrn 

The problem of one-dimensional acoustic turbulence 
(OAT), which i s  described by the Burgers equation, i s  
important for  two reasons. F i rs t ,  the OAT i s  a simple 
hydrodynamic model turbulence that contains the basic 
features of any turbulence, namely the redistribution 
of the energy over the spectrum due to the nonlinear 
interaction, and the damping of the energy a t  small  

On the other hand, the Burgers equation ade- 
quately describes the one-dimensional acoustic waves 
in a compressible fluid3-' and, in particular, the s ta -  
tistics of an  intense acoustical noise field. There  a r e  
many papers in which the effect of nonlinearity and dis-  
sipation on the evolution of OAT has been investigated 
(see ,  for  example, Refs. 6-14). However, they involve 
hypotheses whose validity i s  not obvious, and which 
lead sometimes to physically incorrect conclusions, 
such a s  a negative energy spectrum. 

Along with this, the presence of an  exact solution of 
Burgers equation15r16 permits  us  to obtain some exact 
statistical results. On the basis of this solution, the 
statistical properties of the OAT have been found for  an 
infinite Reynolds number, both in the initial stage, when 
discontinuities of the acoustic wave a r e  a b ~ e n t , l ~ - ~ O  and 
in the limit t -  a ,  when the OAT has the form of a ran- 
dom sequence of triangular It i s  shown in 
Ref. 22 that a s  t - a  and a t  infinite Reynolds numbers, 
the correlation function and the energy spectrum of the 
OAT a r e  self-similar and depend only on I(t)-the av-  
erage distance between the discontinuities (on the ex- 
ternal scale of the turbulence). 

In the present work, the one- and two-point probabil- 
ity densities a r e  found on the basis of an  exact solution 
of the Burgers equation for  a OAT a t  infinite Reynolds 
number, and it i s  shown that a s  t - a they a r e  also self- 
similar. In contrast t o  Ref. 22, where the initial field 
was replaced by a s e r i e s  of discrete independent quan- 
tities, the method of the present work allows us to con- 
nect the asymptotic properties of the OAT with the 
scales of the initial field and to estimate the character-  
istic time when the OAT becomes self-similar. Also 
discussed here  i s  the effect of finite viscosity and, 
consequently, of a finite internal scale of the turbulence 

lo-the mean thickness of the shock front-on the en- 
ergy spectrum, and the ar r iva l  of the OAT a t  the final 
stage of the degeneracy in which the damping of the OAT 
i s  determined only by the linear dissipation, i s  traced. 

1. INITIAL EQUATIONS AND QUALITATIVE 
ANALYSIS OF THE OAT 

The Burgers equation which describes the OAT has 
the form 

a u  d u  a 2 u  
- f u  - =p - u ( x ,  t=O) =u0 ( x ) ,  a t  B X  axz '  (1.1) 

where p is  the coefficient of viscosity. It solution i s  
the following:15 

We consider the case  of infinite Reynolds numbers. 
At p- 0, the contribution to the integrals in (1.2) is 
made only by the smal l  neighborhood of the point y, 
where the function G(y,x, t) has an  absolute maximum 
and 

lim u ( x ,  t )  = ( x - y  ( x ,  t )  ) I t .  
"-0 

(1.4) 

Here y(x, t) is  the coordinate of the absolute maximum 
of G ( ~ , X ,  t ) . 1 6  As i s  seen from (1.3), y(x, t) i s  one of 
the roots of the equation 

U O ( Y )  = ( x - y ) / t ,  (1.5) 

and the solution (1.4) i s  identical with one of the 
branches of the Riemann ~ o l u t i o n : ~  

U ( X ,  t )  = u o ( x - U ( X ,  t ) t ) .  (1.6) 

We separate the basic stages of the development of 
OAT in time. If the curvature l / t  of the parabola in 
(1.3) i s  grea ter  than the characteristic curvature 
v(y) - a q  = [((u;)~)] '/~, then Eq. (1.5) has a single root 
and the wave is  described by the Riemann solution (1.6). 
Physically, the condition awlt < 1 means that the shift 
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FIG. 1. Profiie of the initial field  curve 1; integral of 
the initial field V(Y) = -IY uo(x)dx-curve 2, parabola kx - y ) 2 /  
et+H-curve 3; ?,-zero of uo(y); y,-zero of u(x, t)-the 
coordinate of the absolute maximum of G(y,x, t ) .  

of the wave because of the nonlinearity -ut(oZ= (ui)) is 
less than the scale of the initial field u,/u;- l/w,. 
Analysis of the statistics of the OAT at  this stage is  
given in Refs. 17 -20, where the probability densities 
and the energy spectra of the Riemann waves a re  found. 
It is also shown there that the one-dimensional proba- 
bility density of a statistically homogeneous OAT does 
not change a t  this stage, while the energy spectrum 
broadens because of the steepening of the wave. If the 
spectrum is maximal not a t  zero, then, because of the 
effect of self-detection, it is  shifted in the direction of 
lower wave numbers. 

At u q t  >> 1, there a r e  several roots of Eq. (1.51, the 
formal solution (1.6) is  multivalued, and discontinuities 
appear in the wave; this leads to dissipation of its en- 
ergy. At uw,t >> 1, the curvature of the parabola is  
much less than the characteristic curvature v(y) (Fig. 
1) and the coordinates of the absolute maxima of 
G(Y,x, t )  (1.3) a r e  close to the maxima of v ( ~ ) ,  i.e., to 
the points of vanishing of the initial field -$,[u,($,) = 0, 
u;(?,) > 01. Solving (1.5) by perturbation methods, we 
find that the deviation of the coordinate of the absolute 
maximum from nearest vanishing point is  equal to 

Therefore, the solution (1.4) outside the discontinuities 
is  an almost linear function of x. Here the function 
y(x, t) has theform of steps with jumps a t  the points of the 
discontinuities x = t,, where the transition from y, to 
y,, takes place. Here y, is  a subset of the set  of van- 
ishing points of the initial field ?,. Correspondingly, 
the field u(x, t )  has the form of a sequence of triangular 
pulses with slope l / t  and discontinuities a t  x =  5, (Fig. 
2). Thus, a t  p - 0, the width of the shock front 6 and 
the internal scale of turbulence lo= 6 tend to 0. The 
coordinates of the discontinuities a r e  found from the 
condition G(y,, 5,, t) = G(yk+,, 5,, t):" 

E h = ' / z ( y k + y k + t )  +J'AI*~, (1.8) 

Here q, is  the distance between the "zeros," V, is  the 
velocity of the discontinuity. 

We now discuss the possible cases of OAT develop- 
ment in the discontinuity stage. It can happen that V, 

FIG. 2. Field of the acoustic turbulence in the discontinuous 
stage: y,-coordinates of the "zeros"; (,-coordinates of the 
discontinuities. 

0 .  This situation is realized, for example, for an 
initial field of the form u, = a [ c o s ~ x ) ] & ,  where $(XI is  
a monotonic function of x. Here, the discontinuities 
a r e  immobile and do not merge, the form of the wave 
is  unchanged, its amplitude decreases as l(O)/t, while 
the energy does not depend on the initial energy and 
falls off a s  l70)/t2, where l(0) i s  the scale of the initial 
field. In the general case, Vk#O, and the discontinui- 
ties merge. For not very long times, the evolution of 
the OAT depends on the fine structure of the initial 
spectrum. Thus, in the case of a narrow-band initial 
field, when the "carrier frequency" k, (k,= q) is  much 
greater than the width of the spectrum ~k = at  
times 1 << uw,t <<( w1pc)' the discontinuities do not 
merge, since the velocities of the neighboring discon- 
tinuities a r e  strongly correlated and they move with - .  

practically identical velocities. In particular, a t  1 
<< u q t  << qp, ,  when we can neglect the motion of the 
discontinuities, the one-dimensional distribution is  
close to uniform, with boundaries *a/k,t, while the 
energy falls off a s  l/kit2.23-25 If, however the charac- 
teristic scale of the initial field is  - l /w  and its cor- 
relation length p, is  of the same order, then the merg- 
ing of the discontinuities begins even a t  awlt 2 1. 

Because of the merging, the distance between the 
discontinuities-the external scale of turbulence l(t)- 
increases. At l(t) >> p,, the statistics of the OAT no 
longer depend on the fine structure of the initial spec- 
trum. Setting q,- 1 in (1.9), we have in this case, for 
the dispersion of the discontinuity velocity, 

0 -- 
where S,(k) is  the spectrum of the energy of the initial 
field. The rates of merging of the discontinuities a t  
So(0) # 0 and So(0) = 0 a r e  different: a t  ~ ~ ( 0 )  + 0, the dis- 
continuity velocities fall off more slowly with increase 
in l ( t )  and the rate of merging i s  higher, which leads to 
a more rapid increase in l(t) and to a slower attenuation 
of the energy than a t  So(0) = 0. We estimate the law of 
growth of the external scale of the OAT by writing the 
kinetic equation for l(t). The increase of ~l in the 
interval ~t is  proportional to 1 and to the ratio of the 
distance traversed by the discontinuity ( (v2)) ' / '~ t  to the 
length 2: 
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Taking the limit as at - 0,  we obtain 

Thus, from (1.11) and (1.12) we have l ( t )  - ( [ ~ , ( 0 ) 1 ' l ~ t ) ~ / ~  
at So(0) * 0 and 

, ( t ,  - (( is. (k) k-2  d k )  t ) "' 

Everywhere below, we consider the case S,(k)-k", 
k - 0 ,  n 2 2. Here the field v (x )  (13) is statistically 
homogeneous with a variance - - 

o . ~  = J So ( k )  k-' dk  = oz/h2, o2 = So ( k )  d k ,  (1.13) -- -- 
where X is the characteristic scale of the initial field. 
In this case the times at which the external scale of 
turbulence l ( t )  >> p, can be estimated from the condition - 
Vt >> p,, where V is the average velocity of the discon- 
tinuity over the time 1. From (1.11) we have P- a/Xpc, 
meaning that l ( t )  >> p, at 

Let us estimate the external scale of the OAT, as- 
suming (1.14) to be satisfied. It is seen from (1.3) and 
(1.4) that u(x , t )  is determined by the coordinate of the 
absolute maximum of the function G(y, x ,  t ) ,  which is 
equal to the sum of the statistically homogeneous field 
u(y) with variance a: (1.13) and the decaying parabola 
-(x -y)Z/2t .  Under the condition (1.14) ( x  -y) ' /2t-  p,Z/ 
2t << a, the parabola is a smooth function in the scale p, 
and the absolute maximum of G(y,x ,  t )  coincides with 
one of the maxima v(y).  The only one of them that can 
be absolute for G(y ,x ,  t )  is the one which has not been 
displaced strongly downward by the decaying parabola. 
Assuming that the characteristic value of the maximum 
of v(y)  is of the order a,, we obtain from the condition 
( x  - y)'/2t- o, estimates for the external scale of  the 
OAT ~ ( 1 ) -  lx -y  1 and its energy: 

The growth of the scale of the field leads to a shift of 
the spectrum in the direction of small wave numbers. 
We now discuss the e f fect  of the external scale of the 
turbulence on the form of  the energy spectrum of the 
OAT. At g- 0,  when the width of the shock front 6 -  0 ,  
we have for the Fourier transform of  the field u(x,  t ) ,  
using the equality C,= C,,/ik, 

where qn = Y , + ~  - yn, q, is the distance between the 
"zeros" of the field u(x ,  t ) ,  5 ,  are the coordinates of the 
discontinuities, and k is the wave number. The sum in 
(1.16) is the sum of the Fourier transforms of  the in- 
dividual discontinuities. Correspondingly, the energy 
spectrum of the OAT is equal to  the energy spectrum 
of the discontinuities without account of their interfer- 
ence and of the infinite sum which describes their inter- 
ference. At k >> 1-'(t) the interferences can be neg- 
lected and the energy spectrum has a universal asymp- 
tote: 

S ( k ,  I )  =(q2>/2nk't- ,  (1.17) 

where (q2) is the average distance between the zeros 
per unit length. Thus, at b> 0 ,  because of the discon- 
tinuities, the energy spectrum has a power-law asymp- 
tote. In the case of  sufficiently large but finite Rey - 
nolds numbers, the OAT as before has the form of a 
random sawtooth wave, but with a finite width of the 
shock front 6 ,  = 4nt/qn. 22 The finiteness of 6 ,  leads to 
the result that the power-law decay of the energy spec- 
trum at k> l/6,-  1Ipt changes to exponential. 

2. ONE-POINT PROBABILITY DENSITY AND THE 
OAT ENERGY 

In this and the next sections, we find the one- 
and two-point OAT distributions, using the solution 
(1.4) and assuming u,(x) to be a Gaussian random field 
with energy spectrum So(k) - kn, k - 0,  n 2 2. 

W e  introduce the integral function and the probability 
density of the absolute maximum H of the function 
G(y , x, t )  in the interval [a,  b]: 

F ( H ; [ a , b ] ) = P  u ( y ) - -  ([ ( x - y ) 2 ]  < H ;  y ~ [ ~ ,  b ]  ) , 
2t  (2.1) 

Tv(H; [ a ,  b l ) = F H 1 ( H ;  [ a ,  b l ) .  (2.2) 

The probability that the absolute maximum has the val- 
ue Hl < H < Hl + AH, and that its coordinate y(x, t )  lies in 
the range L = [y, y + hy] is equal to the probability that 
the absolute maximum in L is located between Hl and 
Hl + A H ,  while in the remaining regions, L= (-a,, a)\ L ,  
the maxima are smaller than H. Let ~y >> p,; then the 
absolute maxima in L and are statistically indepen- 
dent and their joint probability defactorizes into a 
product. Integrating it over all H ,  we obtain for the 
probability of finding y(x,  t )  in the region L: 

w 

~ ( y ( x , t ) ~ [ y , y + ~ y l ) = ~  W ( H ; L ) F ( H ; z ) d H .  
- - (2.3) 

Thus, the probability density y(x,  t )  is expressed in 
terms of F ( H ; [ ~ ,  b]) (2.1), which is equal to  the proba- 
bility of the absence of interactions of the level H with 
the function G(y,x,  t )  in the interval [a, b]. We first  
find the average number of intersections of G(y,x,  t )  
(1.3) with the level H in this interval: N ( H ; [ a ,  b]).  
It follows from the Gaussian nature of v(y) that2'vn 

We consider the OAT over sufficiently long times, 
when the characteristic dimension Ix -y  1 -  2 ( t )   a at/^)'/^ 
of the region in which G(y, x, t )  has a maximum v(y) 
is much greater than p,  (1.14). Many local maxima 
compete here for the right to be the absolute maximum; 
therefore, the absolute maximum H>> o,. As is shown 
below, the integrand in (2.3) is concentrated at H>> a, 
and apparently this inequality is valid. At H >> a, and 

1 b - a  1 >> p,, the number of intersections m of the level 
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H in the interval [a ,  b] obeys the Poisson law 

Q , = ( N m / m ! ) e x p ( - N ( H ;  [a ,  b ] ) ) .  

In this case, we have for F(H; [a,  b ] )  

F ( H ;  [ a ,  b l ) = Q , = e x p { - N ( H ;  [ a ,  b ] ) } .  (2.6) 

Substituting (2.6) and (2.4) in (2.3) and integrating by 
parts, we get - 

P ( ~ ( z , t ) ~ [ y , y + A y I ) =  N ( H ;  [ y , y + A y l ) F - ' ( H ) d H .  (2.7) 
-- 

Here F,(H) = F [ H ;  ( - a ~ ;  w)] .  At aAt >> 1,  the quantity P 
is  substantially different from zero only in the region 

1 x - y  1 - ( 0 t h )  '" -o t / (ah i )  " c a t  

(1.15), which allows us to assume the expression in the 
square brackets in (2.4) to be equal to unity. Moreover, 
at H >> a, 

I t  i s  then seen that at y >> 1 the distribution W,(H) 
= I",(H) is  concentrated at H>> a,. Representing H in 
the form 

where Ho is the solution of the transcendental equation 

we find that the integral function of z is equal to F J z )  
= e~p( -e"~ ' } ,  meaning that the absolute maximum lies 
in the narrow range 

near 

therefore, 

I t  i s  taken into account here that Ix - y I - ( ~ , t ) ' / ~ .  
Under the condition ( l . l4) ,  the characteristic width of 
the distribution of the coordinate of the absolute maxi- 
mum w(y;x,  t )  is much greater than the correlation 
length p,, which allows us to go in (2.7) to the limit as 
~y - 0. Transforming to integration of (2.10) with re- 
spect to z ,  and taking into account (2.11) and (2.12), we 
get from (2.7) 

l z ( t )  =o.'t/H,=at/h (In y ( t )  ) ". (2.14) 
Here l ( t )  is the characteristic distance between the 
"zeros" of the field u(x, t )  and is,  in essence, the ex- 
ternal scale of the turbulence. I t  is seen from (1.4) 
that the one-dimensional distribution of u(x,  t )  is  also 
Gaussian: 

Thus, at long times, the energy of the OAT falls o f f  
according to the power law (uZ)-t-' with a logarithmic 
correction. The slower rate of energy decrease in 
comparison with the harmonic signal is due to the in- 
crease in the external scale of the turbulence because 
of the merging of the discontinuities. The rate of merg- 
ing becomes greater with increase in the energy of the 
initial field. Therefore, at fixed t and A ,  the energy of  
the wave increases with increase in the energy of the 
initial field. 

The Gaussian nature of the one-dimension distribu- 
tion of the OAT is a rather natural result, which is 
valid not only in the one-dimensional case., This is 
connected with the fact that the field at any point is due 
to the joint action of a large number of factors. Thus, 
in our case the field is determined by the values of the 
initial field from a region that is much greater than the 
initial correlation radius. We  note that the distribution 
(2.15) allows us to find immediately all the higher mo- 
ments of the field u(x,  t):  (u2") = (272 - I ) !  ! b'", the calcu- 
lation of which, within the framework of the method 
proposed in Ref. 22, is  a very cumbersome, almost 
unsolvable problem. 

3. TWO-POINT DISTRIBUTIONS AND THE ENERGY 
SPECTRUM OF OAT 

We begin by discussing some two-point-distribution 
properties, which follow from (1.4). Let 

Since y,,, is the coordinate of the absolute maximum, 
the inequalities 

are valid. Substituting y ,  and y, respectively in the le f t  
sides and adding, we get 

i.e., y(x, t )  is a nondecreasing function of x. As t -  m, 

as is shown in Sec. 1 ,  y(x, t )  is a step function of x with 
jumps at x = 5,. Two situations are possible: in the 
first ,  there can be no discontinuities in the interval 2x 
and y(-x, t )  = y(x, t ) ,  and in the second, there can be one 
or more discontinuities. For the two-point distribution 
of the coordinates of the absolute maxima w(y,,y,; &, t )  
and of the field W(u,,u,; 2x, t )  we have here 

where the first  term describes the statistical properties 
of the wave in the absence, and the second, in the pres- 
ence of discontinuities in the interval 2x, while, by 
virtue of (3.2) w,=O at y,<y,, and W,=O at u,-u,>&t. 

At finite but sufficiently large t(ao,t >> 1) the coordi- 
nates of the absolute maxima y, di f fer  from the points 
at which uo(x) - T n  vanish by a quantity ~ y ,  for which, 
by virtue of the estimate Ix - y  I  a at/^)^'^ (1.15), we 
have from (1.7): 

The difference of y, from 5,  is connected with the devia- 
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FIG. 3. Parabola a, ( y )  = ( x  + y)2/2t-curve 1 ; parabola f fz(y)  
= ( ~ - ~ ) ~ / 2 t + ~ ~ - c u r v e  2;  v ( y )  = -$"u,,k)d%-curve 3. yl and 
y2 are the coordinates of the absolute maxima of G ( y ,  -3 t )  
and G ( y ,  x ,  t ) ,  respectively. 

tion of the law of field growth from linear in the inter- 
vals between the discontinuities. As is seen from (3.5), 
~y is much smaller than the characteristic period l / w ,  
of the initial field and, in turn, is much less than p,. 
The difference of y, from 4,  leads to the result that the 
terms in (3.3) and (3.4) corresponding to the case in 
which there are no discontinuities in the interval 2x,  
are not delta functions. However the smearing of delta 
functions of the order of (3.5) is much less than the 
characteristic width w, of the order of l ( t )  - ( u t / ~ ) ' /  '. 

We find w,(y,, y,; a, t) .  Let H ,  and H z  by the values 
of the absolute maxima of G(y, -x, t )  and G(y,x, t ) ,  the 
coordinates of which are y, and y,, i.e., 

(see Fig. 3). The parabolas and intersect 
at the point y* = (H, - H I )  while, from the fact that the 
maxima are t/2x, located at different points, the con- 
dition y, < y* 6 y, are satisfied, or 

We now introduce the intervals L, = [ y,, y, + A ~ , ] ,  L,  
= [Y2 ,  Y 2  + hYz], such that ~ y , , ,  >> p,. Then the probabil- 
ity of finding y(-x, t )  and y(x, t )  in L,, L, with the max- 
ima in the intervals H,, H ,  + AH, and H z ,  Hz+  AH, is equal 
to the probability that in L,, L,  the values of the abso- 
lute maxima lie in the intervals H,, HI + AH, and H,, 
H z  + AH,, while the values of the absolute maxima out - 
side the intervals L,, L,  are less than H,, H,, i.e., 

According to the condition ~y,,,>> p,, these events are 
statistically independent. Moreover, at at/kp: >> 1 the 
condition H>> a is valid and the integral function of the 
absolute maximum is equal to (2.6). Integrating the 
probability of the absolute maxima and of their coordi- 
nates in the region L,, L,, H,, H, + AH, and Hz, Hz  + AH, 
over all possible values of H, and H z ,  with account of 
(3.6), we get for the probability of finding y( -x, t )  and 
y(x, t )  in L,, L,, 

I. X,+ZY~I/L 

P(Y (-X,  E ELI, Y (z, t)=L.)= J d H i  J dH&'n1(Hi; [Y*, Y~+AYII)  
0 H , + Z v , = / l  

As earlier, we now take the limit as ~y, . , -  0 and use 

the expression (2.8) for N ( H :  [ a ,  b ] ) .  As in the one-di- 
mensional distribution, the dasic contribution to the 
integral (3.7) is made by the regions near H, - H,- H ,  
>> a,. Transforming in (3.7) to integration over the 
variables u and v: 

and using (2.11) and (2.12), we obtain 

Here and below 2 = l ( t )  is the external scale of turbu- 
lence (2.14). Transforming to the dimensionless vari- 
ables s = x/l and z, , , = y,, ,/l, taking it into account that 
according to (2.11) and (2.14), 

(hI2n)' exp (-Ho1120.') =1/L2, 

making the change of variables u = u and z = (v  - u) / l ,  we 
get after integration over u 

2sdz 
[ O  (s+z) exp (sz)  +Q ( s -Z )  exp {-sz) 1%' 

I 

The discrete part of the distribution is found in similar 
fashion. Finally, for the two-point distribution of the 
coordinates of the absolute maxima we have 

6 (2,-z2) exp (-zt2/2-z,2/2) 
G(z, 2,; 2s) = 

Q (s+z,) exp {sz,)  + @ (s-2,) exp{-sz,) 

(3.10) 
Transforming from y( -x, t )  and ( x ,  t )  to u( -x, t )  and 
u(x, t )  (1.4), and introducing 

we obtain the expression for the dimensionless two- 
point probability density of the OAT 

I t  is seen from (3.12) that the two-point probability den- 
sity, as in the one-point case (2.15), depends at l ( t )  
>> p, only on the external scale of turbulence l ( t )  (2.14) 
and is self-similar. The first term in (3.12) describes 
the properties of *(U,, U,; 2s) in the absence of discon- 
tinuities in the interval 2x, and its normalization is 
equal to the probability that there are no discontinuities 
in the interval 2x. I t  is seen from (3.12) that as s - 0 
and s - the two-point distribution transforms into 
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i.e., it tends to become Gaussian. This is connected 
with the fact that as s - 0,  U2- U, and the two-point 
distribution degenerates into a one-dimensional one, 
while as s - 0 0 ,  the f i e l d s 4 ,  and U, become statistically 
independent and the two-point probability density fac- 
torizes into a product of one-dimensional probabilities. 
At s- 1, the distribution (3.12) is  essentially non-Gaus- 
sian. 

The distribution (3.12) determines all the two-point 
moments of the turbulence functions. In particular, we 
have for the correlation coefficient of the dimensionless 
fields U, and U, with the dimensionless spectrum from 
(1.4), (3.10) and (3.12), 

R (2s)  =<U,U2)=< (z,+s) (z,-s) > 
m 

a dz - X[ j- Q (s+z)  exp { ( S + Z ) ~ / ~ )  +Q ( s -Z)  exp { (8-Z) ' / 2 )  ] (3.14) 
-- 

(s>O), 

Correspondingly, the correlation function and the en- 
ergy spectrum of the OAT are 

These same formulas for the spectrum and correlation 
function of the OAT were found by another method in 
Ref. 22, where the initial conditions were approximated 
by a discrete sampling, so that it was impossible to 
connect the external scale of turbulence I(t) with the 
scales of the initial field in unambiguous fashion. From 
(3.14)-(3.16) it i s  not difficult to find the asymptotic 
behavior of the correlation function and of the energy 
spectrum of the OAT. By virtue of discontinuous char- 
acter of the OAT field, the correlation function is not 
analytic at s - 0 ,  while the energy spectrum decays ac- 
cording to a power law: 

21 
S ( k , t ) = - =  

2(0. /L)* 
4 kl> l .  - 

k2nq2t' (n t )  'lr ( ln  y ( t )  ) kz ' 

In the region of small wave numbers, we have for the 
spectrum 

According to (3.14) and (3.161, the maximum of the 
spectrum is displaced in the direction of small wave 
numbers in proportion to l / l ( t ) .  Physically, this pic- 
ture of the evolution of the spectrum is due to the fol- 
lowing: the appearance of discontinuities in the wave 
leads to dissipation of the energy of the wave and to the 
appearance of slowly decaying components of the spec- 
trum in the region of large wave numbers. The growth 
of the low-frequency components is connected with the 

growth of the external scale of turbulence because of 
the merging of the discontinuities. 

4. ACOUSTIC TURBULENCE AT FINITE REYNOLDS 
NUMBERS. FINAL STAGE OF DEGENERACY OF THE 
OAT 

At finite viscosity 1 ( in  the case of finite Reynolds 
numbers), the shock fronts of a sawtooth wave have 
finite duration, which leads to the appearance of a non- 
zero internal turbulence scale I,. Moreover, because 
of the growth in the width of the shock front and the dis- 
sipation of energy over rather long times, the wave 
propagation becomes linear, the nonlinear ef fects  are 
unimportant, and the degeneracy of the turbulence is  
due only to linear dissipation. 

We limit ourselves below to the case of sufficiently 
large Reynolds numbers, when the OAT at uw,t >> 1 has 
the form of a random sequence of sawtooth pulses with 
a shock-front width 6,=4/.~t/q,, with 6 ,  << q,.', In the 
analysis of the OAT characteristics associated with the 
finiteness of the internal scales, we need to know g(q)-  
the distribution of distances between neighboring 
"zeros" over a unit length. We  find the statistics of q,  
assuming that l(t)  >> p,, i.e., ut/hp2>> 1. Let H, and H, 
be values of the absolute maxima of U ( Y )  in the inter- 
vals y,, y, + ~ y ,  and y,, y ,  + ~ y , ,  and let w ( H ;  A )  be is  
their probability density, which, at H >> u,, is equal to 

Under the condition H,  - ( x  - y1)2/2t = H z  - ( x  - ,l2/2t = H 
the function G(y , x ,  1)  has two maxima, equal to H ,  
while x here is the coordinate of the discontinuity. 
Taking into account the independence of H, and H,,  
we have for the joint distribution of H and x 

Multiplying (4.2) by the probability that G < H in the re- 
maining regions, and integrating over H and x under the 
assumptions similar to those made in Secs. 2 and 3 ,  we 
obtain 

Obviously, the equality P (y ,  E A,, y, E A,) 

=g(y2  - y l ) ~ l ~ , ,  is valid, where g ( q ) ~ q  is the mean 
number of distances between the "zeros" per unit 
length in the range from q to q + ~ q .  Therefore, in ac- 
cord with (4.31, 

By definition, 

is the mean number of zeros per unit length, while 

j n r ( n ) d n = l  
0 

is the normalization condition. 
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For as analysis of the energy spectrum, it is  conven- 
ient to introduce the gradient of the acoustic field J 
=u:. From the fact that the shape of the shock front is  
identical with the shape of the stationary shock front, 
we obtain 

For the ratio of the shock front width 6, =4nt/qn to the 
distance q,, between zeros we have 

6.  4 p t  pt (In 7 ( t ) ) ' "  
-=_ .___,  , Re = (3 -: 

q qW2 lZ Re 

Here Re is the acoustic Reynolds number. At 6/1<< 1, 
which is satisfied a t  large Re and not very long times, 
the field J(x ,  t)  =u: constitutes a sequence of narrow, 
practically non-overlapping pulses, the amplitude of 
which is inversely proportional to the viscosity coeffi- 
cient p. The energy spectrum here has the form of the 
spectra of the individual discontinuities and of an in- 
finite sum describing their i n t e r f e r e n ~ e . ~ ~ ~ "  At k>> I - ' ,  
the interference can be neglected, and we have for the 
energy spectrum of the OAT 

Introducing the internal scale of turbulence in corre- 
spondence with (4.6), 

I (In 7 )  '" I , = I l - t = = p  
1 1' Kc 

we find that a t  k >> 22,' the viscosity does not affect the 
behavior of the spectrum even in the inertial interval 

which is identical with the asymptote obtained above for 
the spectrum (3.8) by a different method. At k >> I,', 
(4.7) transforms into 

Here the exponential factor describes the decay of the 
spectrum of a single discontinuity, while the averaging 
is carried out over the distance between the zeros q, 
which determines the width of the shock front and, 
consequently, the rate of falloff of the spectrum of a 
single discontinuity. At k>> 1,' we have from (4.4), 
(4.10)29 

16npZ -- - (n2,k) " exp (-3 (nl ,k)  ") . 
llb 

We note that in the dissipative interval'k >> 2i1, the en- 
ergy spectrum falls off more slowly than for a periodic 
wave, where the damping decrement i s  proportional to 
k. This is  connected with the fluctuations of the width 
of the shock front, which change the law of energy de- 
cay. 

As is seen from (4.8), at finite Reynolds numbers and 
(lny)lt << Re the internal lo and external I scales of 
turbulence a r e  substantially different and in this case 

there is  an inertial interval in the energy spectrum I-' 
<< k << I,', where the behavior of the spectrum is deter- 
mined only by the nonlinear effects and S(k, t)- k-'. 
However, a s  t increases, the relative width of the 
shock front (4.6) increases logarithmically and a t  
(1ny)'"-Re the characteristic width of the shock front 
becomes comparable with the external scale of the 
turbulence. Here the role of the nonlinear effects be- 
comes insignificant and the wave propagation becomes 
linear with its damping due only to linear dissipation. 
An estimate of the time at  which the OAT enters the 
linear regime can be obtained from the condition lo= 1, 
which leads to the following estimate: 

i t. - - exp {Rea). 
oA 

(4.12) 

The entry of the wave into the linear regime changes 
qualitatively the picture of the degeneracy of the turbu- 
lence in the final stage. At t >  t,, the evolution of the 
energy spectrum of the wave i s  determined only by the 
factor exp{-2pk2t}, which, in accord with ( l . l ) ,  de- 
scribes the linear damping of the energy of the wave. 
Since the damping in the linear stage does not change 
the behavior of the spectrum a t  k - 0, the slope of the 
energy spectrum as k - 0 and t>  t* i s  an invariant. For 
an estimate of the behavior of the spectrum as k - 0, 
we can use the expression (3.19), assuming that a t  t 
> t* the nonlinear effects a re  no longer significant and, 
setting t = t* in (3.19), 

k2Z6(t.) kap2 exp {Rea/2) 
S ( k ,  t>t.)  - - =, 

r-a t.l Re% 

A more rigorous analysis of the final stage of the de- 
generacy of the OAT, given in Ref. 30 on the basis of 
the exact Hopf solution (1.2) of the Burgers equation, 
shows that the estimate (4.13) i s  qualitatively correct. 
Namely, in the concluding stage we have, for the en- 
ergy spectrum and for the energy of theOAT itself3' 

S ( k ,  t )  =4pZkZC exp { -2pkZt ) ,  (uz> = (npi2)'"Ct-", 

1 " exp (Rea)  

-- 
where Re = u / 2 p ~ .  The exponential increase in the 
slope of the spectrum a s  k - 0 with increase in Re is 
due to the multiple merging of the shock fronts and to 
the growth of the external scale during the nonlinear 
stage of development of the OAT. 

The authors a r e  grateful to A. N. Malakhov for useful 
discussion of the research. 
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