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A perturbation theory is constructed for the calculation of the radiation emitted by moving charges in 
inhomogeneous and nonstationary media. The general expressions obtained for the angular and spectral 
distributions of the radiated energy can be used to calculate the radiation from a charge on a diffuse interface 
of two media. 

PACS numbers: 03.65.Sq 

1. Electromagnetic radiation is produced when a 
charge moves in a medium whose permittivity varies 
in space and (or)  in time. Although the radiation from 
the charge in a nonstationary medium and "ordinaryJ' 
transition radiation a r e  related effects, there a r e  
substantial differences between them. A major cause 
of these differences is  that radiation can a r i se  in a 
nonstationary medium not only on account of the kinetic 
energy of the moving charge, but also on account of the 
energy of the source responsible for the nonstationarity. 
This leads, in particular, to the possibility of radiation 
by an immobile charge in a medium with time-varying 
anisotropy.' Radiation in nonstationary and inhomo- 
geneous media has been very little investigated because 
of the difficulty in solving Maxwell's equations with a 
permittivity &(r ,  t ) .  Principal attention has been paid to 
radiation in media whose permittivity has a traveling- 
wave We write down the generalized 
Poynting theorem for the case of nonstationary media 
(we assume the magnetic permeability to be unity): 

where E i s  the electric field, H i s  the magnetic field 
and j is the current density. Equation (1) admits of the 
following interpretation: the change of the electro- 
magnetic field energy density in a nonstationary medium 
[the second term of ( l ) ]  i s  due not only to the radiation 
and to the work of the field on the currents, but also 
to the energy density released o r  absorbed per unit 
time a s  a result of the action of the source that pro- 
duces the nonstationarity in the medium [third term of 
(I)]. Most perspicuous in this case is  the analogy with 
the vibrations of a weight on a spring whose rigidity K 
depends on the time. Indeed, at each instant of time 
the energy of the system (and its Hamiltonian) is 
mx2/2+~(t )x2/2 ,  and the energy change is determined 
by the expression (1/2)x2d~/dt.  

2. The perturbation theory developed below makes it 
relatively easy to calculate the energy radiated in non- 
stationary and inhomogeneous media. Let the varia- 
tion of the permittivity of the medium be given by 

e=eo+e, (r, t ) ,  e , a e , .  (2) 

We write the electromagnetic-field energy density in 
the form 

I 1 
W = -(e,Ea+ET) + - elEa. 

8n 8n 
(3) 

.-. 
Since El<< C,, the second term in (3) can be regarded as 
a perturbation and a rigorous perturbation theory can 
be constructed on the basis of the Hamiltonian 

which describes the "interaction" between the electric 
field and the permittivity that  varies in time and in 
space. 

We represent the electric field in the form E =Ea + E ~ ,  
where Ea i s  the field produced by external charges o r  
currents and E~ is the radiation field. For the field 
E~ we have the expansion 

where i s  the vector potential of the radiation field, 
eA is the polarization unit vector, a ; ~  and a,& a r e  
respectively the creation and annihilation operators of 
a photon with wave vector k and polarization h= 1 o r  2, 
and w = lkl~/&; '~;  the summation in (4) is over a l l  pos- 
sible values of k and A. 

It follows from (3) that the Hamiltonian H, i s  of the 
form 

The f i rs t  term in (5) determines the change of the 
energy of the "external" field. The second term, which 
contains bilinear combinations of a+ and a i s  responsible 
for the production and annihilation of the photon pairs, 
a s  well a s  for  the scattering (reflection and refraction) 
of light by regions with variable permittivity. The last 
term in (5) determines the emission and absorption of 
photons in the field of the charges and currents (transi- 
tion radiation, transition scattering, etc.). It i s  this 
last term of (5) which is of interest to us here. 

In first-order perturbation theory, the scattering 
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matrix is 
i i s"'=- --j dt H,=- -! dt dr el (r ,  t)EIREiq. 
A 4nA (6) 

We expand &,(r, t )  and El(r ,  t) in a Fourier integral of 
the form 

c l ( r ,  t )=J  d k o d o o e l ( t ,  oo)ei(LC-"fl, 

Elq(r, t ) =  j d k ,  d o l E I P ( k l ,  ~ ~ ) e * ( ~ ' ~ - ~ " ' .  

It follows then from (6) and (7) that the matrix element 
corresponding to emission of a photon with wave vector 
k, frequency w = kc/&AJ2, and polarization A is  of the 
form 

(2n) 'm'  jet dm, e. dw <k ,  o,blS'"lO>=-- 
(&heo)" 

X c?Enq(k,. a , )  el (koo0)6  (k,+ko-k) 6 (a ,+oo-o)  

- -- (2n)'a'h 
dk, dm, etAEtq(kl, a t )  el (k-kt ,  a - a t ) .  

(8nheo)" (8) 

The probability of photon emission is determined by 
the square of the modulus of the matrix element (8). 
To calculate the energy radiation in the interval d3k it 
is  necessary to multiply the radiation probability by 
ti wd=k/(Z~)~.  We obtain 

W,,,  d3k- - (2n)'m' l j  dk, dm, e ~ E , ~ ( k , a l ) e l ( k - k t ,  cu-a,) 12d3k. (9) 
4e. 

Formula (9) yields a general expression for the radia- 
tion energy in first-order perturbation theory. Planck's 
constant A drops out of the final expression and the 
result, a s  expected, i s  purely classical. If we a r e  in- 
terested in the emission of an unpolarized photon, then 
it is  necessary to sum in (9) over the polarization A. 

Formula (9) can be obtained classically by solving 
Maxwell's equations (see the Appendix). The method 
described above, however, has in our opinion a number 
of advantages, namely, it is simple to investigate the 
polarization as well a s  to calculate higher approxima- 
tions, and finally formula (9) i s  valid over a wider 
range. Indeed, since the perturbation theory is  con- 
structed on the basis of the Hamiltonian 

it follows that Eq. (9) is valid also if E l  is  not small, 
provided that the change of &, takes place in a suffi- 
ciently small  region. We note that application of Eq. 
(9) to transition radiation results in the same expres- 
sion for the intensity a s  obtained by Ginzburg and Tsy- 
t ~ v i c h . ~  

3. We now apply the formulas obtained above to 
calculate the transition radiation produced by a charge 
on a charge on a moving blurred boundary between two 
media. Let the permittivity vary like 

E = & o + ~ E e " " - " " / ( ~ + e = ( z - ~ ~ )  ). (10) 

At a specified value of the time t ,  the permittivity 
changes smoothly from &, a s  z - -- to Eo +A& a s  
z - +m . Thus, Eq. (10) for the variation of the permit- 
tivity describes a blurred boundary between two media 
travelling along the z axis with velocity u ,  l/a the 
characteristic width of the smeared zone. Radiation 
produced on an immobile smeared boundary between 
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two media5 and radiation in a smoothly nonstationary 
medium6 were investigated earl ier .  

Let the moving boundary be crossed at the instant of 
time t = O  by a particle with charge q, moving with 
velocity V along the z axis. We choose the origin a t  
the point where the charge crosses the boundary. The 
Fourier component of the electric field of the uniformly 
moving charge is 

We find now the Fourier component of the alternating 
part of the permittivity: 

A6 
el (k,,  an) = c----;. jdr dt el(*'-~" [ea"-")/ (l+ea('-ulJ 

(2n)  
1 1 .  (12) 

The substitution z -ut  = 5 leads to the expression 

Substituting eat  = 5 in the integral ( l3),  we get 

We ultimately have for c1(k,, w,) 

Substituting (11) and (15) in (8) we obtain an expression 
for the matrix element 

where x = (k,, k ,  , (k,u - w)/u - V)). To calculate the 
radiation energy of an unpolarized photon it is  neces- 
sary  to sum the square of expression (16) over the 
polarization A. This procedure reduces to a calcula- 
tion of the following sum: 

where 0 is the angle between the z axis and the direc- 
tion of the radiation. In the summation of (17) we have 
used the transversality condition eh/ki = O .  Now, taking 
(9), (16), and (17) into account we obtain ultimately for 
the energy radiated a t  the frequency u, = kc/~A'~ into the 
solid angle d S2 = 277 sinode (k, = k cos0): 

dW. q2Ae2 sin' 9eo'"m' (uc-'E,'" cos 0-1) V* (Vc-'eo'" cos 0 - 1) 
_..= I cz 

- 
d o  4a2 (u-  v)  'c3 eo I 
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APPENDIX We consider now the emission of frequencies at 
which the argument of the hyperbolic sign in (18) i s  
much less than unity. In this case we have 

dW. q z ~ e 2 e :  sina 0 
-= 

d o  4n2 (u- V )  'c' 

I ( U C - ~ E , "  cos 0-1) V2 (Vc-lea" cos 0-1) - 
t eo I 

(uc-'e," cos 0-1)" x ( [ + s i n z ~ +  

1 o2 
X ~ Q  I - - n E -  ( 1 - ~ E ; l s c o s 0  . [ 3 ,(a-V). )'I (19) 

The expression in the next-to-last line of (19) i s  the 
energy of the transition radiation of a charge on a 
moving "abrupt" boundary between two media. From 
(19) we obtain the criterion for the applicability of the 
abrupt-boundary approximation 

where L = l/a is the characteristic width of the transi- 
tion layer, Lf = (Cr/w)(l - VC-'&;'~ cos6)-' i s  the length 
over which radiation of frequency w is formed in a 
medium with permittivity Go. Thus, when a relativistic 
particle moves in a direction opposite to the moving 
boundary, the frequency spectrum, which can be cal- 
culated by assuming the boundary to be abrupt, broadens 
substantially in the short-wave direction. In the oppo- 
site case, if 

the radiation energy is  exponentially small. 

In the limit u -m  we obtain from (18) 

which coincides, a s  expected, with the expression for 
the energy radiated in a nonstationary medium when 
the permittivity i s  instantaneously changed from Go 

to zo + A t  (Ac << co).7 In the limit a s  u - 0 we obtain the 
transition radiation produced on an immobile blurred 
boundary between two media, f irst  calculated by 
Amatuni and K~rkhmazyan .~  

If the charge is  at res t  ( V  =O), the expression for the 
radiated energy is  

dW. - -- q1Ae2 sin' 0o'sh-' ( n o / ~ ~ )  d61 

d o  4a'cSeoK(u2c-'en-2uc-'eplh cos BCI)' ' 

As follows from (22), the radiated energy vanishes at 
u = O  and u -a. Let us  obtain the value of u at which 
the radiated energy is a maximum. We obtain it by 
solving the equation 

The solution of Eq. (23) for the case of an abrupt moving 
boundary is u = c / E ~ ' ~ .  Thus, the radiation from an 
immobile charge is maximal if the boundary velocity is 
equal to the phase velocity of light in the "unperturbed" 
medium. 

The author thanks B. M. ~olotovskii ,  S. N. Stolyarov, 
V. I. Grigor'ev, and V. E. Rok for valuable discussions 
and interest in the work. 

Classical derivation of equation (9)') 

Let the permittivity of the medium vary in accord 
with (2). We seek the solution of Maxwell's equations 
in the form E =Eo  +El and H =H,+Hl, where Eo and Ho 
a r e  the solutions of Maxwells equations with the per- 
mittivity Go while El and HI a r e  small  corrections to 
the field intensities, due to the alternating part of the 
permittivity. Then, discarding terms of order smaller 
than the first ,  we obtain from Maxwell's equations the 
following system for E, and HI: 

E~ div El=-div(e ,Eo) ,  divH,=O, 

The system (24) coincides formally with the system of 
Maxwells equations if we put 

I 1 a 
p= - - d i v ( ~ , E ~ ) ,  j=--(e,EO). 

4~ 4n at 

We note that the "charge and current densities" defined 
in this manner satisfy the continuity equation. 

To calculate the radiation, we use the method de- 
scribed in the book by Landau and Lifshitz (Ref. 8, 
066). The Fourier component of the vector potential of 
the radiation field at large distances is of the form 

Expanding ElE0 in a Fourier integral of the form 

we obtain from (26) 

From (28) we obtain the Fourier component of the mag- 
netic field intensity 

where n is the unit vector in the direction of k. We 
represent n in the form 

n=te,e21, (30) 

where el,, a r e  independent unit vectors of the polariza- 
tion. The energy radiated into a solid angle d n  in the 
frequency interval dw is determined by the square of 
the modulus of (29). Taking (30) into account we have 

which coincides with expression (9) summed over the 
polarizations, if we replace d3k in it by ~ ~ c - ~ & ~ ' ~ d w d S 2 .  

"~erformed with the author jointly with V. E. Rok. 
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