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Exact stochastic equations are obtained for a system interacting with a microscopic system (thermostat) whose 
variables fluctuate. New expressions are obtained for the fluctuation sources and their correlation functions 
are calculated. The general method is demonstrated with a two-level system interacting with a photon 
thermostat as the example. It is shown that there is no ultraviolet divergence in this method. 
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1. Much attention i s  being paid of late to microscopic 2. In a large number of physical problems i t  is con- 
derivation of simplified equations (in the form of sto- venient to separate in the system under consideration 
chastic Langevin equations) that describe simultaneous- two subsystem, one dynamic and the other a macro- 
ly the relaxation and the fluctuations in macroscopic scopic system interacting with the f i rs t  and arbitrarily 
systems. called a thermostat. An important feature of the dynam- 

The need for simultaneous study of the transport pro- 
cesses (relaxation) and of fluctuations is dictated by a 
number of physical phenomena that take place under 
nonstationary conditions at strong disequilibrium. At 
the same time, relaxation and fluctuations a r e  very 
closely related processes, a s  is directly manifest, in 
particular, in the so-called linear and nonlinear fluctu- 
ation-dissipation re1ati0ns.l'~ Efremov and ~ a z a k o v ' ' ~  
obtained stochastic equations for a dynamic system in- 
teracting with a thermostat, using the only physical 
assumption that the thermostat i s  little changed (since it 
is macroscopic) by the dynamic system. In contrast to 
the known s t ~ d i e s , ~ " ~  the equations obtained in Ref. 8 
contain the fluctuations of the parameters a s  well a s  the 
nonlinear terms due to the non-Gaussian character of 
the fluctuations of the thermostat variables. 

The purpose of the present paper is ,  f irst ,  to treat 
from a single point of view the kinetics and the fluctua- 
tions in nonlinear systems that a r e  either in thermody- 
namic equilibrium o r  in strong disequilibrium. Second, 
to go outside the framework of the customary approxi- 
mations wherein the interaction corstant i s  small and 
different relaxation times exist. The method i s  based 
on the assumption that the fluctuations of the (unper- 
turbed) variables of the thermostat interacting with the 
nonlinear dynamic system have Gaussian statistics. 
This case corresponds to a large number of physical 
problems, such as  electron-phonon interactions in sol- 
ids (in the case of small  anharmonicity of the lattice 
vibrations), the interaction of electrons with a quan- 
tized electromagnetic field (withan electromagnetic vacu- 
um o r  with the thermal radiation field of a medium), 
and others. To make things simpler and more perspicu- 
ous, the method is demonstrated by using a s  an example 
the interaction of a two-level system with a quantized 
electromagnetic field (a photon thermostat); this exam- 
ple i s  also of independent interest. We investigate in 
detail the case when the initial state of the thermostat 
is that of thermodynamic equilibrium. 

ic system is that i t  has a smal l  number of degrees of 
freedom compared with the large number of degrees of 
freedom of the thermostat. The subdivision of the sys- 
tem into a "large" and a "small" part, to separate the 
most significant variables, makes i t  possible above all 
to treat  dynamic-system states that a r e  in strong dis- 
equilibrium (impurity atoms, long-wave radiation field, 
and others), whereas the macroscopic part of the sys- 
tem can be in a state close to equilibrium. 

Let the dynamic system, defined by the Hamiltonian 
q, interact with a thermostat having a Hamiltonian F, 
and let it be acted upon by an external force f(t), s o  that 
the Hamiltonian of the entire system is 

&'8=&'8,+F-hQz-xf ( t )  , (1) 

where the term XQx describes the interaction between 
the dynamic system and the thermostat, while Q and x 
a r e  respectively the variables of the thermostat and of 
the dynamic system." 

We shall assume the behaviors of the dynamic system 
and of the thermostat to be known when they do not in- 
teract. The task of the theory is to determine the be- 
havior of the dynamic system that interacts with the 
thermostat. We assume further that at  a certain instant 
(for example, t = - 0 0 )  the state of the system is speci- 
fied and the interaction is turned on adiabatically. In 
this case the entire time evolution is contained in the 
operators (the Heisenberg representation). Following 
Ref. 8,  we take f i rs t  into account the change of the 
thermostat variables Q upon interaction with the dynam- 
ic system, and then substitute the obtained (perturbed) 
values QH( t )  in the equations for  the variables of the dy- 
namic system (solving by the same token the self-con- 
sistent problem). In the classical formulation of the 
problem, the quantity Ax can be regarded a s  a certain 
specified arbitrary force acting on the thermostat. By 
considering the behavior of the thermostat under the in- 
fluence of the perturbation V = -XQx in accord with non- 
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stationary perturbation theory, we obtain for the ther- 
mostat variable ~ " ( t )  the expansion8 

~ ~ ( t )  = ~ ( t )  +aJ dt,cp(t, t , )x( t i )  +h2 f dtl J atz 

xcp(t,t,, t , ) z ( t , )z ( t , ) f . .  .. (2) 

Here Q(t) i s  determined by the unperturbed behavior of 
the thermostat 

a r e  random functions of the reaction of the thermostat to 
the external force Xx(t). In quantum theory, the classi- 
cal Poisson brackets { ~ ( t ) ,  Q(tl)} in (3) a r e  replaced by 
the corresponding quantum Poisson brackets ( i%)- '[~(t) ,  
Q(tl)]_, and the expansion of the operator ~ ~ ( t )  differs 
from the corresponding classical expression (2) only in 
that the operators x a r e  symmetrized with the functions 
of the reaction (3) in a definite manner. In the general 
case the expansion (2) contains an infinite number of 
terms and is determined by an infinite number of func- 
tions cp. Therefore substitution of the expansion (2) in 
the Heisenberg equations of motion for the operators of 
the dynamic subsystem 

makes it possible to solve, without additional assump- 
tions, the problem of the behavior of the dynamic sys- 
tem. 

TO derive simpler stochastic equations that describe 
the behavior of a nonlinear dynamic system we make 
full use, when averaging over the initial state of the 
thermostat, of the assumption that the unperturbed var- 
iables Q(t) a r e  Gaussian. The thermostat variables a r e  
Gaussian in a large number of physical problems and i s  
a good approximation because the thermostat, which 
has an infinite number of degrees of freedom, is mac- 
roscopic. It is natural to expect in this case the statis- 
tical properties of the system to be describable by a 
smaller number of statistical parameters. 

3. Let us dwell very briefly on the properties of 
Gaussianvariables. A random classical process Q(t) i s  
Gaussian if a l l  the statistical properties of Q(t) 
(relative to a chosen statistical ensemble) a r e  deter- 
mined by the f i rs t  two moment functions (Q(t)) and 
( Q ( ~ ) Q ( ~ I ) ) . ~ )  

The main property of Gaussian variables Q(t) at  (Q(t)) 
= O  is that the mean value of any product of Guassian 
variable breaks up into a sum of products of all possi- 
ble paired mean values. F o r  example 

(Q(t)Q(tt )Q(tz)Q(ts))=P,u(Q(t)Q(tt )  )(Q(tz)Q(ts) ), 
where Plz, is the operator of the sum of cyclic permu- 
tation of the indices. 

In quantum theory, a random function Q(t) is se t  in 
correspondence with an operator Q(t), and operators 
Q(t) and Q(tl) taken at different instants of time do not 
commute in the general case. The noncommutativity of 
the operators calls  for a certain refinement of the very 
notion of a Guassian operator, a s  well a s  for a general- 

ization of the proofs of the main properties of Gaussian 
operators (see the Appendix). All the statistical prop- 
erties of Gaussian operators Q(t) a r e  determined by a 
mean value (Q(t)), which can be se t  equal to zero  with- 
out loss of generality, and by paired correlation func- 
tions (Q(t)Q(t,)). In place of the complex function (Q(t) 
Q(t,)) it is more convenient to specify two real  func- 
tions, namely the mean value of the symmetrized oper- 
ator product 

and the Poisson bracket 

The main property of Gaussian operators is that the 
mean product of operators over the initial state of the 
thermostat breaks up into a sum of products of all pos- 
sible paired mean values, with the sequence of the op- 
erators in the mean values preserved. This property 
leads, in particular, to the useful relation (see Sec. 9) 

It i s  important to note here that the commutator [Q(t)Q(t,)]- 
is ,  generally speaking not a C-number. 

4. We turn now to the initial equation (4), in which the 
Heisenberg operator ~ ~ ( t )  is represented in the form of 
an infinite se r i e s  (2) in the operators of the dynamic 
subsystem x(t). We imagine that an exact solution of 
Eqs. (4) was obtained for the operators x,(t) of the dy- 
namic system. According to the expansion (2), the sol- 
utions for the operators x,(t) (the dynamic system) a r e  
certain functions of the operators Q(t), cp" ' = q ( t ,  t i ) ,  
cp(2)=  cp(t, ti, t2), . . .: 

q ( t )  =F,{Q, q"', q(", . . .). 
All the statistical properties of the dynamic subsystem, 
for some specified initial state for it,  will be deter- 
mined by the meanvalues of the products of functionals 
over the initial state 

(F,{Q,  cp"', cp'", . . . )Fj{Q, q"', cp(", . . .)). (7') 
By virtue of the important property (6) of the Gaussian 

operators of the thermostat, the linear responses (3) in 
the mean values (7') will have a behavior "similar" to 
that of determined quantities. It i s  important here that 
the replacement of the commutators by their mean val- 
ues in the linear response functions (3), which consti- 
tute multiple commutators (Poisson brackets), causes 
them to vanish. 

Consequently, the mean values, over the state of the 
thermostat, of any product of the dynamic-system oper- 
ators obtained by exact solution of Eqs. (4), do not con- 
tain nonlinear response functions and depend only on the 
paired correlation function (5) and on the mean value of 
the linear response function (3) 

Returning now to expansion (21, we must thus discard 
the nonlinear terms and replace q( t ,  t,) by the mean val- 
ue 
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where Q(t) i s  determined by the unperturbed behavior of 
the thermostat, while the second term takes rigorously 
into account [in the case  of Gaussian functions Q(t)] the 
reaction of the thermostat to the action of the dynamic 
system. Taking expansion (8) into account, we obtain 
from Eqs. (4) exact stochastic equations for the opera- 
tors of the dynamic systems: 

Since the unperturbed operator Q(t) does not commute 
with the operators yj(t) of the dynamic subsystems, the 
brackets [ L  were used to symmetrize beforehand ~ " ( t )  
and y j(t). 

A distinguishing feature of the obtained equation is the 
presence of the parametric terms i [ ~ ( t ) , y ( t ) L ,  whose 
mean values over the initial state of the thermostat a r e  
given by 

where 

i s  the functional derivative of the mean value (Y j(t)) 
over the external force f(t); ~ ( t ,  t,) i s  the correlation 
function (5) of the thermostat variable Q(t). 

Let us prove Eq. (10). By virtue of the Gaussian prop- 
erties, we have 

Noticing now that f(t) and XQ(t) enter additively in (9), 
we can write 

<Gyj( t , )16Q(t i )  )=h<8y, ( t t ) /6 f  ( t z )  ). (1 3) 

By substituting (13) in (12) we arr ive  a t  expression (10). 
Using (101, we can rewrite (9) in the form 

where 

a r e  fluctuation sources with zero mean values over the 
state of the thermostat. Since the thermostat variable 
Q(t) i s  Gaussian, we can use (12) and (13) to calculate 
the correlation functions of the fluctuation sources of 
any order. For example, the correlations of the fluc- 

tuation sources (15) of second order take in the simpler 
classical case  the form 

Thus, the behavior of a dynamic system interactingwith 
a Gaussian thermostat is determined completely by the 
correlation function (5) and by the linear response of 
the thermostat to the external action (7"), quantities 
connected for the thermodynamic-equilibrium initial 
state of the thermostate by the fluctuation-dissipation 
theorem (FDT).''~ 

For linear dynamic systems, the equations of motion 
a r e  particularly simple. Thus, for  example, for a one- 
dimensional harmonic oscillator interacting with a 
Gaussian thermostat, the exact equations take the form 
of a linear stochastic equation8 

where the left-hand side of the equation determines the 
dynamics of the fluctuations, while XQ(t) is the fluctua- 
tion force. The f i rs t  to obtain an equation for an oscil- 
lator of type (1 7) under additional insufficiently rigor- 
ous assumptions was ~ e n i t z k ~ . '  However attempts to 
extend his theory to include nonlinear systems were un- 
successful.'0 Our use of the Gaussian properties of the 
thermostat variables Q(t) makes i t  possible to solve this 
problem. 

The nonlinearity of the stochastic equations for the 
operators of the dynamic subsystem can be due either 
to the nonlinearity of the dynamic system itself o r  to 
the character of the interaction of the dynamic system 
with the thermostat. Separation of the "dynamics" of 
the fluctuations and of the fluctuation force turns out, 
a s  follows from (14) and (151, more complicated in the 
nonlinear case. 

5. For  greater clarity and simplicity, we shall use in 
the exposition that follows an example wherein the 
thermostat interacts with a very simple nonlinear mod- 
el-a two-level system. At the same time, the two- 
level model i s  of independent interest for quantum ra- 
diophysics and for other fields. We write down the 
Hamiltonian of a two-level system in the form 

where the operators a and a' a r e  subject to the condi- 
tions 

Let the two-level system interact with the thermostat 
and be acted upon by an external force, s o  that the 
Hamiltonian of the entire system i s  

z=Aa+a-LQi(a+-a)  - f  ( t )  i4a'-a) +p. (19) 

The stochastic equations (14) for the operators of the 
two-level system then take the form & = l )  
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- 
6 n ( t )  

i ( t )  +Azx( t )  +2h2A $ d t , ~  ( t ,  t , )  - 
-- 6 f  ( t t )  

Using the spectral representation for the unit function 

where x =i(a' - a )  is the dipole moment of the two-level 
system; n =a'a-aa' i s  the operator of the population 
difference between the upper and lower level. The cor- 
relation and response functions M(t, t,) and ~ ( t ,  ti) a re  
given by (5) and ('7"). 

The equations for the fluctuation sources &(t) and 5,(t) 
a re  respectively - 

6 n ( t )  
f . ( t )=--hA[Q(t) ,  n ( t )  l++2h2A j d t , J f ( t ,  t , ) - ,  

- - sf  ( t l )  (22) 

h  2h2 a 6 i ( t )  
~ . ( t ) = ~ [ ~ ( t ) , i ( t ) ~ + - - l d t , ~ ( t , t , ) - .  A  

-- s f  (ti) (23) 

6. We assume further that at the initial instant of 
time (before the interaction is turned on) the thermostat 
is in thermodynamic equilibrium at a temperature T. 
In this case all  the statistical properties of the dynamic 
system (at given values of A and X) a r e  determined by 
the thermostat response function (6) o r  by the suscepti- 
bility 

Indeed, to calculate the spectral density of the fluctu- 
ations of the thermostat variable Q(t) 

we can use the Callen-Welton FDT,' according to which 
&= 1, T =P") the spectrum of the fluctuations (25) is 
determined by the imaginary part  of the susceptibility 
(24): 

S ( o )  = x n ( o )  cth ( p o / 2 ) .  (26) 
The terms with the functional derivatives in Eqs. (20) 

and (21) can be rewritten in a form more convenient for 
the subsequent approximations. To this end we move 
the unit function q(t - ti) from the functional derivative 

s n ( t ) l s f ( t r ) = i [ n ( t ) , z ( t , )  l - q ( t - t ~ )  

to the correlation function M(t - t,) - 
6 n ( t )  +- I d t , ~ ( t - t , ) - = j  d t , M ( t - t , ) i [ n ( t ) , z ( t ~ )  I-, (27) 

-- s f ( t1 )  -_ 

after which we write 

We introduce next the Fourier transform of the function 
(27) 

~ ( o ) =  f i z e r a r ~ ( z ) .  -- (29) 
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together with the operator identity 

we obtain3' from the definitions (25) and (29) 

- 
(31) 

To calculate in (31) the integral in the sense of the 
principal value, we use the analytic properties of the 
susceptibility ~ ( w )  in the upper complex w half-plane. It 
is easily seen that if ~ ( w )  is analytic in the upper w 
half-plane, then the function x(w)/(wo - w - i c )  has like- 
wise no poles in the upper w half-plane. Correspond- 
ingly 

ao-O-LE (32) 

is an analytic function in the upper w half-plane, with 
the exception of the points z ,  = 4?mi/~ on the imaginary 
axis, at which the function (31) has simple poles. In ac- 
cord with the residue theorem we have 

whence we obtain for (31) with the aid of the identity (30) 

where 

Equation (34) takes the simplest form in the limiting 
cases of low and high temperatures. In the limiting 
classical case (T >> w) we have 

Since the susceptibility is real  on the imaginary axis, 
we obtain for the limiting quantum case (T << w) from 
(34) 

The same formula can be obtained directly from the an- 
alytic properties of ~ ( w )  signw in the upper w half-lane, 
by defining the sign of the complex variable a s  
sign(Re w). 

The meaning of the obtained equations (34)-(36) is that 
the properties of the dynamic system can be expressed 
in terms of the susceptibility of the thermostat at the 
characteristic frequencies of the dynamic system, 
thereby eliminating the ultraviolet divergence. The re- 
sult is general and does not depend on the model chosen 
for the two-level atom. 

7. We shall show that Eqs. (20) and (21) do not con- 
tradict the condition of thermodynamic equilibrium be- 
tween the thermostat and the two-level system. TO this 
end we average (20) and (21) over the initial state of the 
system: 
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- 
6n (t) 

(*( t )>+ b 2 ( z ( t )  >+2k2A j dtlM ( t ,  t,) (-) 
-ce 

6f ( t l )  - 
1 

2  ,  ( t ) , t ) l + ) - 2 ~ t t )  (37) 
- rn 

2h2 - 
( r i ( t ) ) = -  A j d t ,M( t , t l )  (- 

-- 
2hZ - 1 +-- j d t , , ( t , t I )  (1 [ i ( t ) . x ( t , )  I*) + 2 ( i ( t ) ) f ( t ) .  
A 

- m  

(38) 

Assuming complete averaging over the states of the 
entire system in (37) and (381, we substitute in the 
right-hand side of (38) (at f =0) the expansions of the 
Fourier functions of the correlations and of the re- 
sponses 

Integrating with respect to t ,  and recognizing that S(w) 
and K ( w )  a r e  even with respect to reversal  of the sign 
of the frequency, we obtain 

This expression vanishes i f  the temperature of the en- 
tire system coincides with the temperature of the ther- 
mostat. Indeed, according to the FDT we have at the 
temperature T (T = 0-l' ti = 1) 

S(o)=x ' '  ( w )  cth ( P o / ? ) ,  K ( o )  = x "  ( a )  cth ( p o / 2 ) .  (44) 

By substituting these expressions in (31) we verify that 
( d ( t ) )  = 0. Thus, at an arbitrary coupling constant, 
statistical equilibrium is established in the entire sys- 
tem, with a temperature T equal to the initial tempera- 
ture of the thermostat. This result i s  a generalization, 
to the case of an arbitrary coupling constant, of Bogo- 
lyubov's proofi3 that a static equilibrium is established 
in the dynamic subsystem at  the thermostat tempera- 
ture if the interaction between the dynamic subsystem 
and the thermostat is  small  enough. It can also be 
shown that the obtained stochastic equations agree with 
the linear and nonlinear FDT.'-~ This means that the 
FDT for the variables of the dynamic system follow 
from the FDT for the variables of the thermostat. 

8. We consider now the mechanism of greatest im- 
portance in atom-fluctuation processes and due to their 
interaction with a quantized electromagnetic field (with 
a photon thermostat). Choosing the Coulomb gauge for 
the vector potential (divA = 0), we express the energy 
of the interaction between the electron and the field in 
the form 

If the initial state of the thermostat (prior to the turn- 
ing-on of the interaction) is a state of thermodynamic 
equiiibrium with temperature T, then a l l  the statistical 
properties of the atom a r e  determined by the retarded 
Green's functions for the potentials of the field @= 1): 

Djk(r ,  t ;  r r ,  t l ) = ( i l A , ( r ,  t ) ,  A t ( r t ,  t ~ )  l - )r l ( t - t r ) ;  k,j=O, 1,223. (46) 

In the chosen gauge (div A = 0) the Fourier transforms 
of the Green's functions for an isotropic medium a r e  of 
the formi4 l5 

where 
X ' = O ~ E  ( o ) / c 2 ,  r= 1 r,-r21. (49) 

We note that the interaction of the electrons with the 
scalar part of the field potential is responsible for the 
Coulomb interaction between the electrons, and leads a t  
the same time [by virtue of the singularity of the Green's 
function Doo(R, w) at  the point r =0] to an infinite con- 
stant shift of each of the levels (infrared d i ~ e r ~ e n c e ) . ~ '  
The interaction with the scalar  potential will therefore 
be omitted from now on. The singularity of the vector 
part of the Green's function (47) at zero  frequency at the 
point r = 0 also leads to infrared divergence. However, 
infrared divergences a r e  beyong the scope of the two- 
level approximation considered here. 

We proceed now to the two-level-atom approximation. 
We assume for the sake of argument that the wave func- 
tions of the upper and lower levels q2(5) and ql(r) a r e  
real. Taking into account the transitions due to the off- 
diagonal matrix element of the interaction operator (451, 
we arr ive  at a Hamiltonian of the type (19) with an in- 
teraction constant X=e/mc in with a thermostat vari- 
able 

The response function cp(t - t,) in Eqs. (20) and (21) is 
consequently determined for a two-level system 'by the 
photon retarded Green's function (471, and the expres- 
sion for the susceptibility (23) takes the form 

x ( o ) =  Jdartd3rz$2(r i )  ( V j $ i ( s ) ) $ 2 b )  (Vhg l ( rZ)  )Djh( ls-r , l ,  o). (51) 

All the statistical properties of a two-level atom (kin- 
etics and fluctuations) a r e  thus determined for an arbi- 
trary nonequilibrium state by the susceptibility (51). 

9. It is not our purpose here  to ca r ry  out a complete 
statistical investigation of the dynamic system for an 
arbitrary susceptibility dispersion law (51) and for an 
arbitrary coupling constant. We confine ourselves only 
to a number of limiting cases. The general formulas 
readily permit additional physical approximations. 

We dwell f i rs t  on the dipole approximation o r  a weak 
frequency dispersion for the susceptibility (511, assum- 
ing E(W) = 1. AS a result of the condition 1 wa/c 1 << 1 (a 
is the size of the atom) we can write for the Green's 
function (47) in (51) the expansion 
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after which we obtain for the susceptibility 
2 a  mAd,,  2 mAdIz 

x(")= 3-b(T) +w% (T) . ( 5 2 )  

where d12  is the matrix element of the dipole moment of 
the atom. The coefficient a is defined a s  

Equations (20 )  and ( 2 1 )  assume the simplest form in the 
.limiting classical case. It follows from ( 3 5 )  and ( 5 2 )  
that 

Taking the Fourier transforms of ( 5 2 )  and ( 5 3 )  

and substituting the resultant expressions for cp(t - t i )  
and fi(t - t , )  in (20 )  and (211, we obtain 

x ( t ) + y f ( t )  +A%(t)  +2An(t )  f ( t )  =&,( t ) ,  ( 5 4 )  

where y = 4(e/na~)~(2~/3c)(mAd~~/e)~ is the damping 
constant and (n)' = - A / ~ T  is the thermodynamic-equil- 
ibrium population difference. These equations a r e  valid 
at  any external forcef(t)  and for an arbitrary coupling 
constant. 

To calculate the correlation functions x and n i t  suf- 
fices to know the correlators of the fluctuation sources 
C;,(t) and C;,,(t). From ( 1 6 )  we obtain in our approxima- 
tion 

( & ( t )  Ex(t1) )=2yAP6 ( t - t , )  

Starting from the explicit form of the fluctuation 
sources, we can calculate the correlators of fluctuation 
forces of any order. We present the expressions for 
the third- and fourth-order correlators 

Equations ( 5 4 )  and ( 5 5 ) ,  obtained in the classical case  
for a weak frequency dispersion ~ ( w )  have thus a simple 
and physically lucid form. The left-hand sides of ( 5 4 )  
and (55 )  describe the fluctuation dynamics, which coin- 
cides with the dynamics of the mean values. The right- 
hand sides of ( 5 4 )  and ( 5 5 )  contain fluctuation sources 
whose correlation functions a r e  determined in accord 
with (56 ) .  

The quantum case at  smal l  frequency dispersion but 
arbitrary coupling constant is the most complicated. 
The dynamic part of the equations and the correlation 
functions of the fluctuation sources contain terms that 
a r e  nonlocal in time and whose analysis i s  outside the 
scope of the present article. 

We proceed next to the case of a small  coupling con- 
stant. Let now the thermostat temperature T  and the 
dispersion law of the thermostat variables be arbitrary,  
but to simplify Eqs. ( 2 0 )  and ( 2 1 )  we assume that the 
coupling constant X i s  small. This approximation is 
well satisfied in an interaction between a two-level sys- 
tem and a photon thermostat. We note that the expan- 
sion of a commutator such a s  [ n ( t ) ,  x ( t  - T ) ] ,  in powers 
of T is determined by coefficients 

[ n ( t ) ,  ( d /d t ) ' x ( t )  I-. ( 5 7 )  

Since X is small, we can assume that the operators x ( t )  
in the commutators ( 5 7 )  satisfy the equations of motion 
of a f ree  two-level system, Z ( t )  = - A 2 [ x ( t ) ] .  This means 
that we discard in ( 2 0 )  and ( 2 1 )  te rms of order h4 and 
assume the force f(t) to be small. 

B follows from this, in particular, that 

}, 
i [ i ( t ) ,  z ( t - T )  1-=-2An(t) cos (AT). 

As a result, the stochastic equations a t  a small  coupl- 
ing constant and a t  a small  force f ( t )  take the form 

where 

a r e  determined by the rea l  and imaginary parts  of the 
function ( 3 4 )  at  w = A .  In the limiting quantum case  (T 
< < A )  we obtain from ( 3 6 )  

7 ( A )  =2h2x" ( A )  sign A, ( 6 2 )  

In this case the damping coefficient y ( A )  and the shift of 
the line center a r e  determined respectively by the im- 
aginary and rea l  parts of the thermostat susceptibility 
( 5 1 )  at  the transition frequency A ,  and these parts a r e  
connected by virtue of the causality principle by the 
dispersion relation ' "2 xfT(a ) s ign  a.  x r ( A ) s i g n A = -  - ( 6 4 )  

-ca 

We note that expression (621, which determines the shift 
of the line center, does not contain, of course, the 
traditional logarithmic divergence. Substituting in (63 )  
the expression ( 5 2 )  for ~ ( w )  we can easily estimate the 
level shifts 2P (parameter a = q )  and 2 s  (a = 1 / 6 )  rela- 
tive to the lower 1 s  level. The difference of these shifts 
yields for the Lamb shift a value of the same order a s  
obtained from the experimental data. 

We would obtain the well known expression (with the 
logarithmic divergence) for  the Lamb shift of a two- 
level atomi6 if we were to use for the calculation of 
x l ( A )  from ( 6 4 )  the approximate relation x W ( w )  = w B ,  
which can be used at  high frequencies. To obtain a cor- 
rect  nondiverging result it is necessary to substitute in 
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(64) the total susceptibility ~ ( w ) ,  with x(w)-- 0 a s  w-- *. 
If the coupling constant is small  it is easy to calculate 
the correlators of the fluctuation forces for the quan- 
tum case. For  example, the correlator of the fluctua- 
tion forces 5+(t) and [%(ti) is given by 

c i l , t ~ ( t ) ,  & ( t l )  I+>=(ZAA)'{( ' /dQ(t) ,  Q ( t l )  l + ) ( ' h l n ( t ) ,  n ( t l )  I+) ) .  
(65) 

Since the coupling constant i s  small, n(t) is a slow func- 
tion of the time and the expression for the correlator 
(65) takes the simpler form (we neglect the terms "h4):  

<' / , [g . ( t ) ,  % ( t i ) ] + ) = ( 2 h A ) ' ( V z [ Q ( t ) ,  Q ( t i )  I+)- (66) 

In our approxlllldtion the correlator of the fluctuation 
forces i s  proportional to the correlation functions of the 
unperturbed variables of the thermostat. 

10. We discuss now the results  obtained in the pre- 
sent paper. 

Stochastic functional differential equations were de- 
rived for an arbitrary nonlinear dynamic system inter- 
acting with a Guassian thermostat and acted upon by an 
external force f( t) .  From the properties of the system 
itself we obtained the fluctuation sources (15) and their 
correlation functions subject to the single assumption 
that the unperturbed variables of the thermostat a r e  
Gaussian. In contrast to the papers of Lax, Haken and 
others,lL the fluctuation sources a r e  not introduced in 
the phenomenological Langevin equations, but a r e  ob- 
tained in natural fashion from the initial equations. 

It is shown that a t  an arbitrary coupling constant a 
statistical equilibrium i s  established between the dy- 
namic system and the thermostat at  a temperature 
equal to the initial thermostat temperature; this is a 
generalization of the Bogolyubov's result t3 for a small  
coupling constant. 

In the case of an initial thermostat state in thermo- 
dynamic equilibrium, it has been shown that the prop- 
ert ies of the dynamic system a r e  determined by the sus- 
ceptibility of the thermostat a t  the characteristic f re-  
quencies of the dynamic system. This circumstance 
makes it possible to exclude the ultraviolet divergence. 
The result is general and does not depend on the chosen 
model of the two-level system. The infrared divergence 
is preserved in this case. Equations have been derived 
that describe in unified manner the dynamics and fluc- 
tuations of a two-level atom interacting with a quantized 
electromagnetic field. The approximation of small  fre- 
quency dispersion of the susceptibility (51) (the dipole 
approximation) is considered. In the classical case  we 
have an example of a simple nonlinear stochastic model 
in which it is easy to calculate all the statistical char- 
acteristics in an arbitrary nonequilibrium state. The 
third- and fourth moments, which depend on the charac- 
teristics of the dynamic system itself, a r e  given. It is 
shown that by virtue of the nonlinearity of the dynamic 
system the fluctuation sources a r e  non-Gaussian, even 
though the thermostat itself is Gaussian. The quantum 
case (T = 0 at  small  frequency dispersion of the thermo- 
stat  but a t  an arbitrary coupling constant) is more  com- 
plicated. The dynamic part of the equations and the cor- 
relation function of the fluctuation sources contains 
terms that a r e  nonlocal in time. 

The behavior of a two-level system is investigated for 
a low coupling constant and a small  external force f(t). 
The damping and the finite shift of an emission line con- 
taining no logarithmic divergence a r e  obtained. The 
reasons why these divergences were obtained in other 
approaches a r e  analyzed. It is made c lear  in these two 
approximations that the relaxation a s  well a s  the fre- 
quency shift is due to the parametric action of the field 
on the dipole moment and on the population difference, 
whereas the equilibrium value of the population differ- 
ence is determined by the reaction of the radiation. 

APPENDIX 

We consider an arbitrary se t  of noncommuting opera- 
tors,  which we number in a certain specified order: 

AiAzAa . . . AaA=+,. (A.1) 
We a r e  interested in the moment functions of the opera- 
tors  in the established order (A.l). We introduce the 
operator-ordering symbol TA, the action of which on 
any product of operators arranges them in the selected 
order (A.1). We determine next the characteristic func- 
tion for the ordered product of the operators 

Q,,(u) = (Tn  exp ( iuA1)) .  (A.2) 
Then arbitrary ordered moments of the operators A can 
be obtained by differentiating (A.2) with respect the 
corresponding quantities u. For  example, 

In an analogy with the cumulants of classical theory,Ig 
we define the cumulants of the ordered operators Ka , 
KaO, KaBy, . . . in accord with 

( u )  =exp {Z$K. ,=  ,.. ,u..ua ,... ua. . 1 (A.3) 
8-1 

From the definition ( ~ . 3 )  follow the relations between 
the moments and the cumulants; these relations differ 
from the classical onesiB only in the ordering of the 
operators under the averaging signs. For  example, 

Ka=(A, ) ,  Kms=(TAA,AB)-(A,)(A,) .  (A.4) 

In analogy with the classical case we shall call the op- 
era tors  A, Gaussian if al l  the ordered cumulants of or- 
der above the second a r e  equal to zero. The character- 
istic function (A.2) in this case  is written at  Ka = O  in 
the form 

For  Gaussian operators it follows from the relations 
between the moments and the cumulants that the mean 
value of the product of the operators in a certain chosen 
sequence (A.1) breaks up into a sum of products of all 
possible paired averages, and the sequence of the oper- 
ators and of the averages remains the same. The pos- 
sible pairings in the mean value of the product (AtA,. . . 
Aa,iAaAa+i.. .) can be carried out stage by stage. 

One f i rs t  ca r r i e s  out a l l  possible pairings of a certain 
chosen operator A,: 
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This operation is then repeated in the product (A2 . .  . 
A,-,A,+,. . .) etc. Introducing the notation 

F[A]=AzAs.. . A,-IA,A=+I, 

aF[A]/aAa=A*A3.. . A,-IA=+I, 

we can rewrite (A.6) in the form 

This formula is valid for any function F  of Gaussian 
operators A,. It i s  easy to generalize (A.7) to include 
the case when the subscript a runs through a continuous 
set of values. Then F[A]  is a certain functional of A, 
and (A.7) takes the form 

where ~ F [ A ] / M ,  is a functional derivative. The formu- 
la obtained generalizes the well known Furuzi-Novikov 
formula to include the quantum case. 

In conclusion we obtain one more useful formula for  
Gaussian operator. We consider the mean value of a 
product of the form 

,([A,, A,]-F[Al). 

Using (A.61, we find 

whence we obtain by subtraction the second expression 
from the f i rs t  

( [ A ! ,  A2]-F[A])=([A,, A,]->(F[A]). (-4.9) 

"ln the genera l  c a s e  Q and x should b e  taken to mean the s e t s  
of var iab les  of t h e  thermosta t  and of the dynamic system. 

2 ' ~ n  other  words,  the random process  Q(t) i s  Gaussian if a l l  
the  cumulant functions of third and higher o r d e r  a r e  equal  
to zero.  

3 ) ~ e  a s s u m e  h e r e  that lim,,, M ( T ) =  0 ,  SO that a convolution of 
the  product M ( T ) ~ ) ( T )  exists .  

4 ) ~ h e  divergence due  to the  singulari ty of the photon Green ' s  
function at  low frequencies i s  called the infrared divergence.  
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