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The small-angle scattering of fast (short-wavelength) particles by a harmonic scatterer (one whose interaction 
potential satisfies Laplace's equation), including the scattering of charged particles by electric and magnetic 
fields, is considered in the eikonal approximation. On introducing the complex impact parameter (b) and the 
complex momentum transfer @), the variables in the eikonal integral separate and the scattering amplitude is 
expressed as a sum, each term of which is the product of two contour integrals, of which one depends o n p  
and the other onp'. Scattering by a set of charges, by two charges, and by two like and two opposite charges 
are examined, as well as the limiting cases of scattering by a point dipole and by a charge and a dipole at the 
same point. In all these cases the amplitude is expressed in terms of generalized and confluent hypergeometric 
functions and Bessel functions of various types. The behavior of the scattering amplitude near focal points is 
also examined. The limiting case of small momentum transfers, in which the scattering reduces to scattering 
by the total charge (or by the dipole moment if the total charge vanishes) is considered, as well as the case of 
relatively large momentum transfers, in which the scattering reduces to the sum of the scatterings by the 
separate charges. In the classical limit, harmonic scattering generates a local conformal mapping of the 
impact-parameter plane onto the momentum-transfer plane, so the nonlocal transformation of the eikonal for 
harmonic scattering may be regarded as a quantum generalization of the conformal mapping of a plane. The 
results may be applied to electron optics, to the scattering of ions by molecules, crystals, and nonspherical 
nuclei, and to the scattering of electromagnetic and acoustic waves. 

PACS numbers: 11.80.Fv, 03.80. + r 

1. INTRODUCTlON of two charges, equal in magnitude and opposite in sign, 

The eikonal a p p r o ~ i m a t i o n ' ~  for small  angle scatter- 
ing of fast (short-wave) particles not only makes it 
possible to  express the scattering amplitude as  an inte- 
gral, but also preserves many important properties 
of the exact solution-for example, it preserves the 
unitarity relation, which the cruder Born approxima- 
tion does not do. In limiting cases the eikonal approxi- 
mation reduces to the Born and classical approximations 
for small-angle scattering. The classical approximation 
has been discussed in Ref. 3 for the case of harmonic 
scattering (in which the interaction potential satisfies 
Lap laceY~qua t ion) ,  and it was shown that if the impact 
parameter b and the transverse momentum transfer p 
a re  treated as  complex variables, the problem simpli- 
fies greatly and reduces to a conformal mapping. 

Here we shall show that the same basic simplification 
of the harmonic-scattering problem also ar ises  in the 
quantum case-in the eikonal approximation. On intro- 
ducing the same complex variables b and p, the integra- 
tion variables separate and the scattering amplitude fac- 
tors ,  i.e., it can be expressed a s  a sum, each term of 
which is the product of two functions that depend on p 
and p*, respectively, and can be expressed as  contour 
integrals; this is very convenient both for general 
studies and for numerical calculations. 

In Sec. 2 we examine the separation of variables in the 
eikonal integral, using the fairly general example of the 
scattering of a charged particle by a se t  of charges. In 
addition to  the factoring of the integrand noted in Ref. 3, 
it is important that one can also ensure separation of the 
variables by deforming the integration surface. 

In Sec. 3 we examine the following special cases, some 
of which involve passage to a limit: scattering by a set  

located at different points; scattering by a point dipole; 
and scattering by a charged dipole (i.e., by a charge and 
a dipole at the same point). For the first time we obtain 
explicit expressions for the eikonal amplitude in terms 
of confluent hypergeometric functions and Bessel func- 
tions of various types for all  these problems. 

In Sec. 4 we investigate the focal points, where the 
classical scattering amplitude becomes infinite, which 
play an important part in the general theory of diffrac- 
tion and in catastrophe theory. The diffraction structure 
of the scattering intensity in the vicinity of such points 
is the same for all possible harmonic scatterers and can 
be easily investigated by the methods under discussion. 

In Sec. 5 we examine the limiting case of very small 
momentum transfers, in which the principal part is 
played by large impact parameters and the scattering 
is determined by the first  nonvanishing mul t ip le  of the 
se t  of scattering charges, a s  well as  the case of rela- 
tively large momentum transfers in which the total scat- 
tering amplitude is the result of interference between 
the amplitudes for scattering by the individual charges. 

The fact that passing to the classical limit leads t o  a 
local conformal mapping of the b plane onto the p plane 
permits us to say that the eikonal integral for harmonic 
scattering provides a nonlocal quantum generalization 
of an arbitrary conformal mapping of the plane. 

Physical problems involving harmonic scattering 
a r e  discussed in Ref. 3. If the angular resolution ~ p / k  
is such that the condition RAP/ES 1 is satisfied (R is 
the transverse size of the scatterer), a wave treatment 
must be used and the diffraction structure of the scat- 
tering, which is considerably simpler for a harmonic 
scatterer than for a general scatterer,  can be observed. 
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2. FACTORIZATION OF THE EIKONAL AMPLITUDE 

We shall take the charge and mass of the incident par- 
ticle, as well as Planck's constant ti, equal to unity. 
Let IS consider N Coulomb centers with charges qj  at 
the points rj =(x,, yj, zj), j =  l ,2 , .  . . , N and introduce 
the screened Coulomb interaction potential 

where k is the wave number of the incident particle and 
the dimensionless screening parameter CY is ultimately 
t o  be made t o  approach zero. 

Then the eikonal approximation2 the scattering ampli- 
tude can be expressed as a double integral over the 
impact-parameter plane [b = (x, y) being the impact 
parameter]: 

where we have dropped the a-dependent phase factor 

which usually ar ises  in this procedurea but is not impor- 
tant in the present problem. The displacement of the 
ends of the y-integration contour into the complex plane 
(c - +O for p, > 0 and & - -0 for py< 0) ensures conver- 
gence of the integral at infinity, p=(P,,py) is the trans- 
verse momentum transfer, and the two-dimensional 
potential V(x,y) is the electrostatic potential of a se t  of 
uniform line charges parallel to the direction of motion: 

v ( x , y ) = ~ q j l n { ~ [ ( x  
I 

-xI) '+(Y-Y~)~~),  (3) 
xj and yj  being the projections of the coordinates of the 
Coulomb centers onto the impact-parameter plane. 

T o  pass to the classical limit one may t reat  the argu- 
ment of the exponential in (2) a s  large as  evaluate the 
integral by the saddle point method. Then one obtains 
the classical small-angle scattering amplitude discussed 
in Ref. 3. The phase of this amplitude is determined by 
the value of Vat  the saddle point. 

Because the potential V(x, y) is a harmonic function, 
it can be expressed as  a sum of functions of the variables 
b =x+iy  (the complex impact parameter) and b* = x -  iy, 
which a re  complex conjugates when x and y a r e  real: 

The integrand in (2) is therefore a product of func- 
tions of b and b*. To separate the variables in the 
integral we transform to an integration over a surface 
on which b and b* a re  real  variables that vary in inde- 
pendent intervals, and continue the integrand analytically 
into the complex y plane containing the vertical cuts 
[yj+iIx-xjI ,yj+im) and [y j - i Ix -x j l ,y j - i~ ) .  

FIG. 1 .  Integration surface for one of the Coulomb centers. 
After deformation, the surface is reminiscent of a "pillow- 
case  corner "covering the hatched quadrant, which represents 
the  surface of the cut. When the integration variables a r e  
separated one of the integrations ( e. g. the one over b* - b f )  
may be  taken along the loops shown in the figure, while the 
other integration (over  b - bj )  i s  taken from zero  to infinity. 

Assuming for definiteness that P, is positive, we 
deform the y integration contour in the lower half plane 
and reduce it to a sum of contours that go around the 
lower cuts f y j  - i 1 x-  xj I ,  yj - im) in the clockwise direc- 
tion. Then the double integral (2) reduces to a sum of 
integrals over surfaces that can be conveniently imaged 
in the three-dimensional space whose coordinates a r e  
Re(x), Re(y), and Im(y). (In what follows we shall 
virtually always consider only real  values of x.) In Fig. 
1, the hatched sectors on the plane Re(y) =y, a re  the cuts 
corresponding to the charge q,; on the lower cut, the 
value of the integrand at the left edge of the cut is equal 
to its value a t  the right edge multiplied by exp(-21rq,/k). 
The integral for the Coulomb center q j  is taken over a 
surface that encompasses the lower cut, a s  shown in the 
figure. On this surface the shifted variables b - bj and 
b* - bf  vary in independent rea l  intervals (b- b, E [O, w) 

and b* - bf E (--, O]), SO the transformation from x and 
y t o  b and b* leads to factorization of the integral for 
the corresponding center q, and to an expression of the 
following form for the eikonal amplitude for scattering 
by a se t  of Coulomb centers: 

where I ,  is the product of a function of the complex mo- 
mentum p =p, +iP, by a function of the conjugate momen- 
tum P* =P, - ip,: 

1 .  1 
I ,  = cb 5 .* eXP [- 2b.p + ; V* (b*)] db* Cbj 5 exp [-; i b p  + V ( ) ) I  db .  

(6) 
The cuts in the complex impact-parameter plane (the 

b plane) and in the conjugate plane (the b* plane) a r e  
drawn parallel t o  the real  axis from -m to each of the 
points bj and bf. For p,> 0, the contour C * oes from 

bj. 
-.o along the upper edge of the j cut and, going clock- 
wise around the point bf, returns to -- along the lower 
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edge; the contour C,, goes from the point b, to +-. 
For p,< 0 the contour C,: goes from bT to +-, while 
C, goes around the cut in the clockwise direction. All 

I 
the logarithms in (4) take their principal values on the 
integration path. 

For a single charge q located at b = x  +iy, Eqs. (5) 
and (6) lead to the exact value of the eikonal Coulomb 
amplitude with the phase factor exp[-i~e(bp*)] associa- 
ted with the displacement of the origin of coordinates: 

29 2k 2'qfk 

f - ( )  exp{2i8.-i Re(bp'))-p exp{-I  Re(bpP)}, 

&--arg r . ( l + i q  I k ) .  (7) 

In this case the substitution Ipl=2k. sin(8/2), where 0 
is the scattering angle, reduces the eikonal amplitude 
to  the exact one. 

In the general case of N Coulomb centers the integrals 
in (6) can be expressed in t e rms  of confluent hypergeo- 
metric functions of N - 1  variable^.^ The expression 
for the amplitude for scattering by a s e t  of mul t ip les  
can be obtained from Eqs. (5) and (6) by passing to  the 
appropriate limit. 

The above described simplification of the general 
problem of scattering by an electric field remains valid, 
just as  in the classical approximation: even when a 
weak magnetic field is applied. If the gauge is s o  chosen 
that the divergence of the vector potential A vanishes 
and the quadratic term in A is neglected, the Hamilton- 
ian for a particle with unit mass and charge moving in 
an electromagnetic field with the vector potential A and 
scalar potential U takes the form 

In the eikonal approximation, the wave function for a 
particle with initial momentum k can be expressed2 as  
the product of a rapidly oscillating exponential by a 
slowly varying function F(r): 

Since I kF(>> I V F I ,  acting on (I with the operator zAv/c 
is equivalent to  multiplying by -A. k/c = -A&/c. In 
this case, therefore, the application of a magnetic field 
is equivalent to adding the term - q k / c  to  the scalar 
potential, and as  the added term also satisfies Laplace's 
equation, one can separate the variables just as before. 
The choice of the integration contours, however, will 
depend on the specific forms of A and U. 

Integrals closely related to  (2) a r e  encountered in 
optics, and the same methods can be used to  calculate 
them. Thus, the authors of Ref. 6, in describing the 
elliptical umbilical catastrophe in diffraction theory 
(see below), actually factor integral (2) with V(x, y) = 
k x ( 2  - 3y2), using much the same method a s  we did. 
The variables can also be separated in this case since 
V(x, y) is a harmonic function. Since the behavior at 
infinity of the potential V(x, y) used in Ref. 6 differs 
substantially from that of the potential for a set  of 
charges that we considered, the integration contours 
used in Ref. 6 differ considerably from ours. 

We note that in the case of a harmonic scatterer the 

variables can be separated even when the problem is 
treated in the first  Born approximation, since then the 
integrand in the expression for the amplitude reduces to 
a sum, each t e rm of which is the product of a function 
of b by a function of b*. 

3. SPECIAL CASES 

The method presented above makes it relatively simple 
t o  calculate the amplitude for scattering by two Coulomb 
centers in the eikonal approximation. Let the complex 
numbers b, and b2 represent the projections of the 
charges q, and q, onto the impact-parameter plane in 
accordance with formulas (4). Introducing the notation 

and performing some calculations, we obtain the follow- 
ing expression for the scattering amplitude in t e rms  of 
the Whittaker function M , , , ( z ) :  

where the second term in the curly brackets is obtained 
from the first  one by the substitution p -  -p. The ob- 
vious symmetry of the problem-the symmetry of the 
scattering pattern with respect to  the projection of the 
segment joining the scattering centers onto the impact- 
parameter plane-is reflected in the invariance (up to 
a phase factor) of formula (9) under the substitution 
7- -7*. 

The formula for the eikonal amplitude for scattering 
by two identical Coulomb centers (q, =q2 =q,x  =0, and 
p = $ +iq/k) simplifies to 

in which Z,(z) is the modified Bessel function.' This 
expression is invariant under the substitutions 7- -7 

and T -  T*; this reflects the symmetry of the scattering 
pattern with respect to the projection of the segment 
joining the centers and its perpendicular bisector. 

Formulas '(9) and (10) can also be obtained by inte- 
grating in the complex momentum-transfer plane, 
rather than in the complex impact-parameter plane, as  
was done above. Since according to formula (2) the ei- 
konal amplitude (with the appropriate regularization) is 
the Fourier transform of the function exp[iv(x, y)/k], 
which reduces to  the product of two factors when the 
argument is the sum of the potentials, we can use the 
convolution theorem to express the amplitude for scat- 
tering by two centers in the form 

where f, and f2 a r e  the eikonal amplitudes for scattering 
by the f i rs t  and second centers, respectively. For 
Coulomb centers, f, and f, a r e  known and a re  power 
functions of the magnitude of the momentum transfer 
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alone [see Eq. (711. From this it follows that the 
Coulomb scattering amplitude can be expressed as an 
exponential with a harmonic function of p, and p, in the 
argument (with a complexquasicharge).l~ On introducing 
the complex momentum transfer and the complex im- 
pact parameter in accordance with formulas (4), there- 
fore, the integrand in (11) takes the form of the product 
of a function of the complex variables p and p' by a 
function of the complex conjugates p* and p'*. By 
regularizing the integral (11) at the points P' SO, p (this 
can be done, for example, by adding small  imaginary 
quantities to  the charges) and carrying through a pro- 
cedure analogous to  the one described in the preceding 
section, we succeed in separating the integration 
variables and finally reach formulas (9) and (10). 

We see  that the use of the convolution formula to 
calculate the eikonal amplitude for the case of two 
Coulomb centers leads to the same  results as the 
method presented in this paper and that the calculations 
required by the two methods a r e  about equally difficult. 
In the case of many Coulomb centers, however, the 
convolution formula leads to an integration over many 
(four, six,. . . ) variables, whereas in our method we 
sti l l  have to integrate over only two variables, and the 
variables can be separated at once. 

For a finite dipole (q, = -9, = q) formula (9) yields 
iq' i 2k " 

f ( p ,  bl,  )A= - - X - e x ~ { - l ~ e ~  ( b . + b . ) ~ . l  )(rn) 

where W, ,=(z) is the second Whittaker f u n c t i ~ n . ~  

It is evident from Eq. (12) that if b, =-b, the eikonal 
amplitude for scattering by the field of a finite dipole 
will be purely imaginary. The eikonal amplitude for 
scattering by any potential that is antisymmetric under 
the inversion x- -x, y -  -y has this property, a s  is 
immediately evident from the initial formula (2). 

For a finite dipole, just a s  for any system whose 
total charge is zero, the integrand is not altered by 
passing around all the cuts. The integration surface 
may therefore be closed with respect to one of the 
variables and may be given the shape of a "tube" encom- 
passing the edge of all the quadrants. In the case of a 
finite dipole, the integration surface should be a "gable 
roof" having endless gables at 45" angles and whose 
"ridge" is equal in length to  the distance between the 
centers. Such a deformation of the contour is useful 
in passing to the limiting case of a point multipole. 

Let us write 

qi='Ia(Qo+2 101 1 I R ) ,  qr-'lr(QO-2 lQi I 1 R ) ,  bI=Reiv, ba=O. 

in the two-center problem. Then by taking the limit as' 
R -  0 of formula (9) we obtain the answer for an impor- 
tant special case-the eikonal amplitude for scattering 
by the field due to a point charge Q, and a point dipole 
Q1 = I Ql/ei', both lying at the same point. The result 
is obtained a s  a sum of produds of Bessel functions: 

FIG. 2. Contours of the quantity Ipf(p )/4QI 1 for scattering by 
a point dipole. The zero  contours a r e  drawn heavy. The 
dashed curves a r e  the zero  contours in the semiclassical 
approximation. 

where g = 1 +iQ,/k. Taking the limit of this formula a s  
Q, - 0, we obtain the eikonal amplitude (7) for scattering 
by a single Coulomb center of charge Q,. 

The expression for the eikonal-approximation ampli- 
tude for scattering by a point follows at once from 
formula (13). Setting Q, =0, we have 

where Kl(z) is the Macdonald function. 

Figure 2 shows contour lines for I pf f(P)/4Q1 in the 
plane of the complex variable 2 p ~ f / k ,  which is the only 
parameter in the problem. The pattern is symmetric 
about the real  axis, s o  only the upper half plane is 
shown; however, the axial symmetry of the classical 
differential cross section for scattering by a multipole3 
is clearly broken here. 

When l2p~:/kI >> 1, we reach the quasiclassical 
region where 

f ( p )  =-i12kQ1 Ip' 1 "  cos (2Re[2pQIa I k ] " ) .  

The quasiclassical amplitude for scattering by a point 
dipole vanishes on the parabolas 

which a r e  shown in Fig. 2 by dashed curves. The t rue  
null contours approach these parabolas for large values 
of 2p~:/k. 

It follows from Eq. (14) that as  p- 0, we have f(p) - 2iRe (pQ:)/(@l2, and this is j&t the Born-approxima- 
tion amplitude7 for scattering by the field of a point di- 
pole. 

The formulas obtained a r e  directly related to the 
eikonal amplitudea for the spherically symmetric poten- 
tial a/?, which also factors.' Then by calculating 
V ( x , y )  for this potential, choosing the y axis in (2) in 
the direction of the momentum transfer (this is possible 
because of the axial symmetry of the problem), and 
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adding a term that is odd in x and therefore vanishes 
on integration, we obtain 

Making the change of variable x = (u2 - y2)/2u, we reach 
the integral 

which determines the eikonal amplitude for scattering by 
a point dipole in the special case in which the momentum 
transfer is perpendicular to  the dipole axis (for classi- 
cal scattering this corresponds to a 45' angle between 
the dipole axis and the impact p r a m e t e r  b); in this 
case, however, the integration is taken over a half 
plane. After transforming to  the variables b and b*, 
therefore, the integration region is no longer two tubes, 
but is a single tube surrounding the line singularity 
u - iy =O. We obtain 

in agreement with the result obtained earl ier  in Ref. 8.') 

4. FOCAL POINTS 

The classical differential cross section for the small- 
angle scattering of a classical particle by a se t  of 
Coulomb centers has s i r~gu la r i t i e s~ .~ :  it diverges at 
certain values of the momentum transfer p (we shall 
denote these values by p f ) .  A quantum mechanical treat- 
ment removes the divergences of the differential 
cross section, and in the small-angle region the eikonal 
approximation is a quantum mechanical treatment. 
Under quasiclassical conditions, however, the ampli- 
tude, although it remains finite, has prominent maxima 
near the rainbow and focal singularities, and these 
maxima a re  the more prominent, the more nearly clas- 
sical  a r e  the scattering conditions. It turns out that the 
harmonic character of the scattering potential and the 
consequent possibility of factoring the eikonal amplitude 
substantially simplify the interference pattern near the 
singular it ies. 

It has been shown3 that in the case of N Coulomb 
centers, the mapping of the complex impact-parameter 
plane (the b plane) onto the complex momentum transfer 
plane (the p plane) given by the classical equations of 
motion in the small-angle approximation is a conformal 
mapping of N sheets. Then the classical differential 
cross section has only point singularities (at the focal 
points d) ,  and this is the case for any harmonic poten- 
tial. 

T o  the focal points in the p plane there correspond 
points d in the impact-parameter plane; these a r e  
points at which two o r  more values of the impact param- 
eter a re  confluent, leading to scattering with the given 
momentum transfer p. 

Near such paints the quasiclassical asymptotic be- 
havior of the amplitude (2) can no longer be obtained 
by the usual stationary phase method, but it can be 
described with the aid of canonical integrals. The 

Airy function is such a canonical integral in the case of 
rainbow scattering by a spherically symmetric poten- 
tial." More complicated canonical integrals arise in 
more complicated situations. 

The confluence of two values of the impact parameter 
in the case of N 2- 2 Coulomb centers is typical, and there 
may be 2N - 2 such points.' In the vicinity of such a 
point the complex potential (4) behaves a s  V(b) - (b  - d)', 
and the scattering amplitude near the corresponding 
momentum transfer fl is described by the canonical 
integral discussed in Ref. 6. From the point of view 
of catastrophe theory,"*" this singularity of the ampli- 
tude has come to be called an "elliptic umbilicus." The 
intensity pattern for this diffraction catastrophe" is 
shown schematically in Fig. 3. The central maximum 
is the point where three straight ridges come together 
at 120" angles, while the valleys (shown by heavy bands 
on Fig. 3) and the curved ridges that they separate a re  
cubic hyperbolas. Thus, the elliptic u m W u s  is a 
typical s ingularity of the amplitude for small-angle 
scattering by a se t  of Coulomb centers. 

The confluence of three o r  more values of the impact 
parameter takes place only when the scattering centers 
a r e  disposed special ways. One such disposition of the 
scattering centers was discussed in Ref. 3: N identical 
Coulomb centers lying in a plane at the vertices of a 
regular polygon. The center of the polygon is the point 
of confluence of N - 2 values of the impact parameter. 

Let us  examine the "elliptic umbilical" singularity of 
the amplitude in more detail, using the scattering by 
the field of two identical charges q at the points b =a 
as  an example. The values of the momentum transfer 
corresponding to the rainbow singularities are3-' fl 
= i 2 i q / k ~ .  The condition kR>> 1 that the scattering be 
quasiclassical means that the wavelength of the particle 
is much smaller than the characteristic size of the 
scatterer.  In addition, for the focal singularity to be 
observed, the focal angle o f =  lfl I /k must be much 
larger than the quantum mechanical indeterminancy of 
the s tattering angle, and this yields q / k 2 ~  = 0(1), o r  
q/k >> 1. 

Thus, in order to distinguish the characteristic be- 
havior of the scattering amplitude in the vicinity of 
the singularity, we must examine the asymptotic be- 
havior of the function I,(z) in formula (10) in the limits 
( p  1- m and 121- a. The following asymptotic formulas 
a r e  valid1' for constant z and large 1 p 1 :  

FIG. 3. Qualitative pattern 
of the intensity in the vi- 
cinity of the simplest third- 
order focal point, or the 
focal plane of an "elliptic 
umbilical" catastrophe. 
The zero contours are  
drawn heavy. The maxi- 
mum occurs at the center, 
and from it there radiate 
three "spurs. " 
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FIG. 4. Qualitative depic- 
20 tion of the diffraction pat- 

tern. The in-phase con- 
tours (ridges ) are shown 
by full curves, and the out- 
of-phase contours (valleys), 
by dashed curves. The 
pattern is symmetric about 
thep, axis. One of the two 
focal points can be seen. 

O--10 -5 0 5 1 
P' 

where Ai(z) and Bi(z) a re  Airy f ~ n c t i o n s . ~  

Going to the limit mentioned above in Eq. (10) with the 
aid of these expressions, we obtain the following formula, 
valid in the vicinity of fl =i2q/kR: 

where L = +e'"~e(2k/q)11S~(P - d )  and 6, = a r g r ( l  +iq/k). 
This formula contains a characteristic expression in- 
volving a sum of products of Airy functions which coin- 
cides with formula (3.4) of Ref. 6 and yields the diffrac- 
tion pattern illustrated in Fig. 3. 

Far from the focal points one can use the ordinary 
quasiclassical approximation in which 

where a, ,,(P) a r e  the classical cross sections and S,, 
a re  the increments of the classical action on the t ra-  
jectories with the impact parameters b, and b, that 
lead to scattering with the given momentum transfer 
p. On approaching a focal point we have a, = a, - and 
this approximation is no longer valid. However, the 
phase shift S, - S, between the amplitudes provides a 
qualitatively correct description of the diffraction 
pattern near the singularity. Figure 4 shows contour 
lines on which the amplitudes have the same phase (full 
curves) and opposite phases (dashed curves) for the 
case R = 1 and q/k = 5, when the singularity has the co- 
ordinates d, = O  and d, = * lo. At this point three lines 
of equal phase, te. ,  three ridges, come together at 
120' angles, as  is characteristic of elliptic umbilical 
singularities. The entire pattern is symmetric about 
the p, axis. As p -  0, these lines approximate concen- 
t r i c  circles which, becoming smaller,  contract to a 
point, a s  is characteristic of scattering by a single 
Coulomb center. 

In the harmonic character of the potential V(x, y) is 
disturbed, for example by adding the term a(2 +g) to 
the cubic form V(x,  y) =x3 - 3xy2 (which is a harmonic 
function? o r  by screening the Coulomb centers ,g then in 
the classical approximation the focal point f l  becomes 
a rainbow line having the form of a triangular hypocy- 
cloid, while the interference pattern becomes sub- 
stantially more complicated. 

5. LARGE AND SMALL MOMENTUM TRANSFERS 

If we denote the transverse dimension of the scat- 
tered by R ,  the characteristic charge of a single center 

by q, the distance at which the potential energy in the 
field of the center q is equal to the total energy by 
a(a=2q/#), and the wavelength of the incident particle 
by A, then it is evident from Eqs. (2) and (6) that the 
amplitude depends on the dimensionless parameters 
R/X = kR and a/h =2q/k, on the product H Ip I= kR6 (6 is 
the scattering angle), and on the parameters xj/R, 
y,/R, and q,/q, which a r e  of the order of unity. For 
large o r  small  momentum transfers,  formula (6) for 
the amplitude can be simplified by calculating the cor- 
responding asymptotic behaviors in the parameters X/R, 
X/a, and 6. 

We shall examine two cases for large momentum 
transfer when 0 is fixed (and small) while k- m: 1) X/a 
=0(1) and X/R- 0; and 2) X/a- and X/R- 0. In case 
1) the wavelength of the incident particle is much smaller 
than the distance between any two centers, but it is 
not excessively small: q/k = O(1). Because of the pres- 
ence of the rapidly decreasing exponential exp(-lbp*/2) 
[exp(-ib*p/2)], the main contribution to the integrals 
(6) determining the functions I, comes from the vicinity 
of the complex coordinates b, (bf ) of the centers. 
These integrals can be calculated by the usual asymp- 
totic methods.13 As a result we obtain an answer 
whose principal term is the sum of the Coulomb ampli- 
tudes f; a s  given by Eq. (7) for scattering by the indivi- 
dual centers with phase factors that take account of the 
position of the center and the effect of the other centers: 

On averaging the differential cross section over the 
azimuthal angle cp (the argument of the momentum 
transfer p), the principal term contains the sum of the 
cross sections for all the centers and the interference 
t e rms  a r e  of the following order in the small  param- 
e ter  X/R: 

As the incident-particle energy increases, the character- 
istic length a=2q/# tends to  zero more rapidly than 
does X = l/k, and we come to case 2); here the leading 
term of the amplitude is the well-known Born approxi- 
mation 

The formula for the averaged differential cross section 
then becomes 

For small  momentum transfers one must calculate 
the amplitude in the limit 6 - 0, the remaining param- 
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eters being of the order of unity. This can be easily 
done by starting with the double integral (2) and ex- 
panding for small  Ip (. The main contribution to the 
integral comes from the region of large impact param- 
eters,  where the multipole expansion of the potential 
is valid; then the leading t e rms  of the multipole expan- 
sion determine the asymptotic behavior a s  I- 0. 
The calculations lead to the result 

f-f[i- (ilQ.) Re (pQ,') + o ( p )  1, 

where Q, = Zqj is the total charge, and Q, = Zqjb, is the 
total complex dipole moment of the target. Here the 
leading term is the Coulomb amplitude for the total 
charge Q,; if Q o  =0, the second term,  the eikonal 
amplitude for scattering by a dipole, becomes the 
leading term. 

6. CONCLUSION 

The approach to  harmonic scattering considered here 
opens up broad prospects for further research and gen- 
eralization. Here, for example, we have examined 
only elastic scattering. In the case of a fast incident 
charged particle, however, an atom or a molecule can 
be treated a s  a se t  of stationary Coulomb centers, pro- 
vided the velocity of the incident particle is high a s  com- 
pared with those of the particles in the atom. Then by 
integrating the resulting amplitude over the configura- 
tions, weighted as  determined by the wave function of 
the target; we can calculate elastic and inelastic scat- 
tering by an atom in the eikonal approximation Such 
calculations have been carried through by other 
methods1* for the scattering of electrons by hydrogen. 

The results of the present work, together with t h w e  
of Ref. 3, permit us to speak of the discovery of a new 
class of small-angle harmonic-scattering problems that 
a re  close to realistic physical problems, have unique 
properties, and will permit us to make great progress 
in the analytic study of the scattering amplitude. 

')we note that i P ,  the logarithm of the exact Coulomb scattering 
amplitude, satisfies the Poisson equation with a constant on 
the right: v2@ = const; the property i s  apparently associated 
with the Fock symmetry of the Coulomb field. 

2 v h e r e  is a misprint in formula ( 22) of Ref. 8; the angle 0 
was omitted from the denominator on the right. 
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