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the particles with the gravitational field. It is shown that these wlutions do not contain mathematical 
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The cosmological evolution of the isotropic Universe 
in the framework of gravitational theory with vacuum 
quantum effects has been discussed by Gurovich and 
Starobinskii.' In our paper, one of the vacuum effects 
(vacuum polarization) is not considered, i.e., the 
geometrical part of the gravitational equations is as- 
sumed to be as in Einstein's theory. The model investi- 
gated here is of interest in enabling one to obtain exact 
analytic solutions that take into account other quantum 
and dissipative processes, namely, spontaneous particle 
production, interaction of the particles with the self - 
consistent field, and bulk viscosity. These processes 
change the form of the energy-momentum tensor com- 
pared with the standard hydrodynamic expression; they 
lead to a growth of the conformal temperature and 
entropy of the medium. 

The main contribution to quantum phenomena in an 
isotropic gravitational field is made by nonconformal 
particles.') It is shown in Ref. 2 that longitudinally 
polarized vector particles a r e  of this kind. Interest in 
them is justified from the point of view of modern 
theories of gauge fields with spontaneously broken inter- 
nal symmetries. In addition, it is possible that scalar 
(in gauge theories, Higgs) particles a r e  also noncon- 
formal. 

The energy-momentum tensor and equation for the 
entropy increase for vector particles were owained in 
Ref. 2. For scalar nonconformal particles, the calcula- 
tions lead to a similar result differing from that given 

T is the physical temperature of the medium, o is the 
entropy density of the system, u' is the 4-velocity, 
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is the volume s t ra in  tensor of the velocity field, 
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g, is the number of independent polarizations of a par- 
ticle of spin s, N, is the number of species of particles 
of spin s (the particles and antiparticles a r e  counted 
separately), and 5 is the dimensionless numerical coef- 
ficient of bulk viscosity of the matter. For the consid- 
ered types of fundamental fields, the numerical coefficients 
6 ,  (spontaneous production from vacuum of real  par- 
ticles) and c, (interaction of rea l  particles with the self- 
consistent gravitational field) have the values 

$ 0 ~ 1 ,  ~0=1/108,  

1. PROPERTIES OF THE SYSTEM OF GRAVITATIONAL 
EQUATIONS IN A HOMOGENEOUS ISOTROPIC SPACE. 
SPECIAL (STEADY-STATE) SOLUTION 

In the Friedmann metric 

in Ref. 2 by numerical coefficients. This circumstance the system of gravitational equations formulated in the 
makes it possible, using the method of Ref. 2,  to formu- Introduction takes the 
late a svstem of gravitational ecluations that take into - 
account local quantum gravitational effects in an ultra- l,-za'=k,8'+k,82d-2a-2, 

relativistic medium of real  fundamental particles in a 
state of local thermodynamic equilibrium: s / ( 3 x  bSN.) = 8 z ~ = a l ~ z a - ~ + a a 8 a d a a - ~  

R:-$RIZ=~T:, I 3 Ni+& 
= b kg - ccN, - - (1.1) 

T:='/, C~ .N.T~ (4u.uk-6, ) + ' / * C  c . ~ . [ ' / ~ ( 4 u , u ~ - 6 : ) d d :  
72 ' 

s s a,-n ( ~ , + ~ ~ ) / l 0 8 0 ~ 0 . 1 2 2  b,NNN az=3f /Z b.N., 
+(d~~~.~+3~~&'.1)l~~+~.b: [1+ ( d ~ h z  C N . )  / ( T Z ~  b . ~ . ) ]  . 

S s where 8 is the conformal temperature of the medium 
(OU'),Z= b,N. (Z"u1) ,~=S, . ,dd~/3T.  and is related to the physical temperature T by 8= Ta, 

s S is the entropy of the system, S =ad, and 1, = x '" 
where2) = cm (c =fi = 1). 
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The values of the dimensionless numerical coefficients 
k,, k,, a,, a, must in principle be established by the 
theory of elementary particles. However, the present 
state of this theory does not permit a definite choice 
of the model, so  that, in the present paper, we shall 
investigate the system (1.1) analytically for arbitrary 
values of the coefficients k,, k,, (Y,,cY, 3 0. 

The absence in explicit form in the system (1.1) of 
the independent variable T makes it possible t o  lower its 
order once. After the substitution 

we obtain 

The most important property of the system (1.3) is its 
invariance under the similarity transformation group 

z+z exp o, 8+8 exp ( 0 / 4 ) ,  a+a exp (~114) .  

This permits the change of variables 
z=Pa', 8=Ta,  a=ao exp x (XE (-00, ), (1.4) 

which reduces the system (1.3) to the form 

which does not contain the independent variable x and 
separates in explicit form the special (steady-state) 
solution of the system 

We show that for the expanding Universe (&> 0) the 
solution (1.7) is physical. We note f i rs t  that in accor- 
dance with (1.2) and (1.4) the quantities T and P a r e  ob- 
servable; the first  of them is the real  temperature of the 
medium and the second is the combination (R: - %)/3 
of the components of the space-time curvature tensor. 
We now consider the system (1.5) and (1.6), assuming 
constancy of its physical parameters. We obtain 

From the first  equation of the system (1.8) we obtain 

P - k 1 T / ( l 2 - 2 )  P.'h=ci/a'=*k,"T2(la-2-k,T,P)-C. (1.9) 

The symbols i in the expression for the Hubble param- 
e ter  PE@ correspond to the expansion (+) and contrac- 
tion (-) stages. From obvious considerations-positivity 
of PC and T, and reality of Pt'2-there follows a restric-  
tion on the physical temperature: 

The second equation of the system (1.8) after elimina- 
tion of PC by means of (1.9) takes the form 

It has two complex solutions, which a r e  of no interest 
for us, and one real  solution 

It can be seen from Eqs. (1.11) that a stationary solution 
is impossible during the contraction stage (To< 0, PC< 0). 
However, during the expansion stage it is physical, 
since besides the condition of positivity of T, str ict  ful- 
fillment of the inequality (1.10) holds, and this ensures 
that PC and P:" a r e  positive and finite for a l l  values of 
the numerical coefficients of the original system (1.11.~) 

Complete integration of the problem gives 

PC-1,-'k,u.'/(l+k,u,'), a-a, exp [l,-ik,"u2(1+k,u:)-'h(t-to)]. (1.12) 

In (1.12), t is the physical t ime [ t  €(-a, -)I. The en- 
tropy of the system also increases exponentially with 
the time: 

S=So exp [31;'k,"u." (l+k,u:)-"' (t-to)] , 

Turning to  the interpretation of the solutions (1.11)- 
(1.13), we note first  that the stationary local physical 
parameters T, and PC are ,  apart from dimensionless 
factors of the order of unity, the Planck quantities, 
and the expansion (1.12) is in fact in accordance with 
~ o ~ l e ' s ~ )  law.4 In this case,  we see  that the quantum 
gravitational process of particle production at Planck 
curvatures takes on, in a certain sense,  the part of 
Hoyle's hypothetical C field. 

The obtained solution is at the limit of classical 
notions of space-time a s  a continuous manifold. 
Nevertheless, its existence can be expected from 
simple physical considerations. This is because the 
solution is realized when there is exact compensation 
of two competing processes, namely, the cooling of the 
system by the cosmological expansion is compensated 
by its heating due to  production of particles by the 
gravitational field. The absence of such a solution 
during the contraction stage is also obvious for similar 
reasons, since in such a case both contraction and 
particle production heat the system, s o  that its local 
physical parameters cannot be constant. 

As can be seen from (1.12) and (1.13), the specifica- 
tion of the initial conditions fo r  the Hoyle universe re- 
duces to  fixing the instant of time to corresponding t o  the 
entropy So. From the point of view of the use of the 
obtained results for interpreting the data of experiment- 
a l  cosmology, we note that the hypothesis of Hoyle 
evolution of the Universe at the Planck parameters makes 
it possible to relate the currently observed entropy of 
the Universe to  the duration of the Hoyle stage in the 
early phase of cosmological expansion.') 

2. GENERAL SOLUTION OF THE SYSTEMOF 
GRAVITATIONAL EQUATIONS. ABSENCE OF A 
SINGULARITY OF THE PHYSICAL PARAMETERS 

The system of equations (1.5) and (1.6) has a general 
solution in the form of quadratures. Indeed, it follows 
from Eq. (1.5) that 

where 11 = 1 for the expansion stage (&> 0) and -1 for the 
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contraction stage (&< 0). Substitution of (2.1) and (1.6) 
leads to an equation for T: 

Equation (2.2) can be readily integrated by quadrature, 
though to simplify the complicated integrands it is 
convenient to replace the physical T by a dimension- 
less quantity u uniquely related to it: 

Going over in (2.2) from T to  u and solving the obtained 
equation for du/dX, we find that 

Here, 5 =*1 corresponds to  the two signs in front of 
the radical in the solution of the quadratic equation 
(2.2) for d ~ / d ~ .  

Equation (2.4) gives the dependence cp[u (~) ]  = a. We 
now form an equation that should determine the depen- 
dence of u (i.e., T) on the time. Since 

(the time t is physical!), it follows in accordance with 
(2.4) that the required dependence $[U(T)] =t has the 
form 

The two constants in the cosmological solution (2.4), 
(2.6) a r e  fixed by specifying the initial conditions 

Equations (2.4) and (2.6) determine the general solu- 
tion of the system of gravitational equations (1.1) in 
parametric form in quadratures of Abelian type, the 
parameter in the obtained solution being the physica) 
temperature T of the system7) (the parameter u is uni- 
quely related t o  T). The region of admissible values 
of the local physical parameters for the solution (2.4)- 
(2.6) follows from obvious considerations (positivity 
of P, T, and a and reality of P'I2): 

The solution (2.4)-(2.6) contains for each of the stages 
(expansion, q = 1, or  contraction, q = -1) two branches 
(5 = i l ) ,  one of the branches ([ = -1) having the asymp- 
totic behaviar of the Friedmann solution a s  t - im,  
while the other (5 = 1) lies entirely in the quantum do- 
main. Therefore, in what follows we shall take [ = -1 
in (2.4)-(2.6), assuming that the treatment of the second 
branch in the framework of Eqs. (1.1) is incorrect. 

The most important property of the solution (2.4)- 
(2.6) ([ = - 1) is the absence of singularities of the 
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physical parameters of the system. Indeed, in accor- 
dance with (2.7) we have pa(-)< 0, i.e., u is bounded: 
UE(O,U,J (T ~ ( O , T ~ ~ < ( k ~ l : ) ' l ' ~ ] ;  see  (2.3)). It can be 
seen from the structure of the polynomial P,(u) that the 
equation P,(u) = O  has only one positive root, which is 
uniquely associated with u,,,, The boundedness of u also 
entails boundedness of the combination 

In addition, the maximal value of the curvature scalar,  

is also bounded, since the fact that du/dx = aiu/da is 
bounded follows directly from (2.4) (5 =-I). The rela- 
tions (2.8) and (2.9) prove that there a re  no singularities 
of the components of the Ricci tensor: b: I,,< .o. 

Note that the fact that the system of equations (1.1) 
has a finite domain of admissible values of the physical 
parameters is not related to the effect of interaction 
of the particles with an external field, since for k, = O  
all of the above conclusions remain valid. The finite- 
ness of the physical parameters is generated by the 
nonlinearity in the curvature of the employed gravitation- 
a l  equations as  the condition of conservation of reality 
of the metric and is, thus, a combination of the spontan- 
eous creation and viscosity effects. 

3. FRIEDMANN SOLUTIONS DISTORTED BY QUANTUM 
EFFECTS 

Because of the effects of the spontaneous particle 
production and bulk viscosity, the evolution of the 
Universe is not symmetric under the operation of time 
reversal. This asymmetry is manifested in not only the 
cosmological solutions but also in the different domains 
of the admissible values of the physical quantities, 
which a re  not carried into each other under the opera- 
tion of time reversal. 

The range of admissible values of T, a, and u can be 
found from the solution (2.4)-(2.6) itself with allowance 
for the restriction (2.7). For the contraction region, 
we have 
t ~ ( - = ,  01, a=(-, a,!;! >Oj, UE(O, UI;L <-I, P E ( O , P ! ~  <=] .  

(3.1) 
In this case, it is natural to  specify the initial conditions 

Thus, the family of solutions for the contraction stage 
can be parametrized by the values of the initial entropy 
of the Universe: 

In contrast to  the contraction stage, in which the 
cosmological solution does not depend qualitatively on 
the relationship between the numerical coefficients of 
the original system of equations (1.1), the early evolu- 
tion of the Universe described by the solution (2.4)-(2.6) 
([ = -1) in the expansion stage q = 1 has a different nature 
depending on the relationship between a, (spontaneous 
particle production) and a, (bulk viscosity). Indeed, in 
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the expansion stage the function F(u, 1, -1) can, besides 
the zero at the point u = O  (corresponding to  the transi- 
tion to the Friedmann solution), also have a zero a t  the 
point satisfying the equation 

i.e., for u =u, and T = T, (see Sec. 1). However, the 
existence of this zerodepends on the relationship between 
the numerical coefficients of the system (1.1). Namely, 

the the function F(u, 1, -1) will not have a zero for finite 
u. Assuming that the condition (3.3) is satisfied (spon- 
taneous production predominates over viscosity), and 
using the inequality (2.7), we obtain the following 
domain of admissible values : 

In principle, the initial conditions for an expanding 
Universe with spontaneous production that predominates 
over viscosity can be specified for arbitrary t (for 
example, for t =O) in the interval (3.4). However, it is 
convenient to parametrize the family of solutions by 
the values of a(+, =el,,, which is related to  the pos- 
sibility of findingthis parameter from data on the micro- 
wave background (8zy - loa7). Thus, suppose 

Then the cosmological solution for the stages of expan- 
sion (TJ = 1) and contraction (TJ =-I) can be represented 
in a unified form by means of the quadratures 

1 1  i 
. . 

1 
qG1y t~ i l  = (p - -) mu + qa&il2 (+ - T )  - (%ahl- $1 IU -& 

max 

The integrands in (3.6) do not contain singularities for 
any u in the domain of admissible values (3.2) and (3.5). 
We also write down the expression for the change in the 
entropy during the entire admissible time of evolution of 
the Universe: 

It is readily seen that at large It I the solution (3.6) 
approaches the Friedmann solution asymptotically. 
The degree of distortion of the "ideal" Friedmann 
solution is determined by the values of the integrals 
in (3.6) and does not depend on the initial conditions. 
The universal functions ~/(8(,~2,) and kt'' Itl/I,, ob- 
tained by numerical integration, a re  shown in Figs. 
l(a) and l(b). 

FIG. 1. 1) & >O, f f z =  0.033; 2) & > 0, ffz= 0.100; 3) d: < 0, a2 
= 0.033; 4) 6 < 0, f f z =  0.350. 

satisfied: 

i.e., bulk viscosity predominates over spontaneous 
production In this case,  besides the zero at the point 
u = O  (T =O), the function F(u, 1, -1) will have a zero at 
the point u =u,, which leads to the following domain of 
admissible valuess): 
t= (-m, m ) ,  a= (0 ,  m ) ,  UE (u,, O) ,  T E  (T., O), PE ( P C ,  0 ) .  (3.8) 

The values of u,, T,, and PC a r e  given in Sec. 1. It is 
here also convenient to  parametrize the family of solu- 
tions by means of the value of 8(+) [see (3.5)].~) We 
write down the corresponding quadratures: 

8 1 u - u  2alkiqxu'(2+R,u')z 1 p 
a )  exp{Jdu[ +-+-I), 

D (1+k2u)F(u ,1 ,  I )  u u.-u 
1 1  1 1 1  

kih(t-ta)l,-'= (F - z) +a2ki1* (T - --) - ( a t k t  - $)ln 

1-4alk,Y1u,'(2+k2a~) - (l+klu,') (3-2a,k,'hu.) ' 

The integrals in (3.9) do not have singularifies. The 
quantity to corresponds to a deformation shift of the 
point t =O. Because of the infinite time interval [see 
(3.8)], such a shift has no meaning, and we can set  
to = 0. 

The solution (3.9) belongs to  the type first  considered 
by Murphye [Murphy's analytic solution is obtained from 
(3.9) in the limit a,, k, - 01. The initial value of the 
entropy in this solution is zero, and S- C, b , ~ , B q + ,  
asymptotically a s  t- a. A distinctive feature of the 
cosmological expansion when viscosity plays the 
dominant part is that the evolution commences from a 
state in which space is compressed into a point and at 
the same time has a finite physical curvature, while 

Now suppose that the inequality opposite t o  (3.3) is the matter has a finite physical temperature. 
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In accordance with (3.7), 0 <  p 6 1, and the value p = 1 
is attained only in the limit k, - 0 (Murphy's "ideal" 
solution). In the general case P< 1, and therefore for 
lu -ucl<<u, (the s tar t  of expansion) there is a qualitative 
change in Murphy's solutions, namely, the early evolu- 
tionwhenviscosity is dominant takesplace in accordance 
with Hoyle's law [the law (1.12) holds approximately]- 
the parameter a increases and the physical temperature 
remains virtually constant. There i s  effective accumula- 
tion of entropy. For u<<uc, the expamion law departs 
from the Hoyle law, and the transition to  the Friedmann 
solution begins. The functions a/(8~,11,) and ki t2 t / l , ,  
obtained as a result of numerical integration, a r e  shown 
in Figs. 2(a) and 2(b). 

In the numerical calculation of the cosmological solu- 
tions (3.6) and (3.9), it is necessary to  take some par- 
ticular model of the elementary-particle physics. T o  be 
specific, we chose the U(1) x SUL(2) and Uc(3) model 
(QHD) (see Ref. 71, in the framework of which the matter 
of the hot Universe a t  temperatures T >  V (V is the 
threshold for the production of f ree  quarks) must consist 
of color quarks (s  =$), eight species of massless vector 
gluons (S = 1, m, =O), leptons (s =$, m,,, # O), the inter- 
mediate bosons W *  , ( s  = 1, m, + o), one scalar Higgs 
particle (s = 0, m, # O), and also photons. Restricting 
ourselves to three multiplets of fundamental fermions, 
which includes the u ,d ,  s ,  c, b, t quarks and their cor- 
responding leptons, we obtain for the numerical coef- 
ficients of the system of gravitational equations (1.1) 

The absence of information about the interaction laws 
of the elementary particles makes it impossible to cal- 
culate a, (the coefficient of bulk viscosity). For the 
coefficients (3. lo), the value of a,U [the value of the 
coefficient 0, a t  which the inequality (3.7) becomes an 
equality] was found to  be 0.1166. Therefore, in the 
numerical integration the coefficient a, played the part 
of a parameter, and values of a, both greater and 
smaller than a;' were chosen. 

CONCLUSIONS 

The results of the present paper show that quantum 
gravitational processes in a system of real  particles 
at large space-time curvatures significantly change the 
evolution of the homogeneous isotropic cosmological 

FIG. 2. 1) (IZ= 0.133; 2) Ct2= 0.167; 3) cY2= 0.200. 

model. The change is most strongly manifested in the 
fact that the employed system of gravitational equations 
has an effective range of admissible values of the physi- 
cal quantities bounded a t  large curvatures and high tem- 
peratures. This has the consequence that the physical 
parameters of the system do not develop mathematical 
singularities during the evolution process. 

The existence of a nonsingular region of admissible 
values of the physical quantities appears as  the condi- 
tion for the Riemannian geometry t o  remain real. It 
seems to us entirely natural that other possible systems 
of equations containing not only linear terms but also 
terms with a nonlinear dependence on the curvature 
should have similar properties. 

The effects of the particle production and bulk vis- 
cosity also lead to an asymmetry between the expan- 
sion and contraction stages. The asymmetry is mani- 
fested in differences in the ranges of admissible values 
and also in the rates of evollltion. For expansion, for 
example, the energy relations have the form1,) -c 
< + T :  ste, w h e r e a s f o r c o n t r a c t i o n ~ 7 $ ~ ~ T ~ ~ $ ( T ~ ~ , .  

The inclusion among the considered effects (besides 
viscosity) of spontaneous particle production also changes 
our picture of the evolution of a gravitating system in 
the expansion stage. First ,  it is found that, irrespective 
of the values of the numerical coefficients of the original 
system of equations, the early stage of the expansion 
can proceed in accordance with the law (1.12) with sta- 
tionary physical parameters (steady-state solution). 
Second, there is a change in the Murphy-type cosmologi- 
cal solutions, which in the early stage of evolution ac- 
quire the Hoyle asymflotic behavior, solutions of such 
type with Friedmann asymptotic behavior in the region 
of small  curvature being possible only in a system with 
strong viscous effects, s o  that in the initial stage of 
evolution the total heating of the system by the spontan- 
eous production processes and the viscosity almost com- 
pensates the cooling of the system by expansion Third, 
the Murphy-type solutions for an expanding system 
cease to  be unavoidable; fo r  if spontaneous production 
predominates over viscosity [see (3.3)], it is possible 
t o  have solutions without the exotic singularities in- 
herent in the Murphy solutions. Inclusion of the effect 
of the interaction of the particles with an external 
gravitational field (k, # 0) raises the viscosity barrier 
for the existence of Murphy-type solutions [instead of 
the condition ari 2 a,, the condition (3.7) must hold]. 
From the practical point of view, the existence of 
Murphy-type solutions requires a choice of the model 
of the elementary-particle physics for which the coef- 
ficient of bulk viscosity a, exceeds the coefficient of 
spontaneous production a, by 1.5 orders of magnitude. 

In our opinion, evolution with spontaneous particle 
production playing the dominant role is more probable. 
In support of this conclusion we may note that the bulk 
viscosity effect, which ar ises  entirely because the 
various internal degress of freedom of the particles 
a r e  not al l  on the same footing dynamically, must evi- 
dently decrease with increasing energy and restortation 
of the interaction symmetries. 
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Some of the problems of evolution of the Universe at 
extremal curvatures and energy densities remain un- 
resolved in the framework of the model theory employed 
in the present paper. Indeed, the cosmological solu- 
tions obtained above do not contain unphysical infinities 
but, nevertheless, they cannot be analytically continued 
into the region t< to. Therefore, there is here,  a s  in 
the classical theory, a big-bang effect. The quantum 
e f feds  merely se t  upper bounds for the parameters of 
the "nascent Universe," and the origin of the "bang" 
remains open. One can of course assume that it is the 
result of dynamical instability of the regime of station- 
ary  e ~ p a n s i o n , ~  but then the problem simply reduces to  
the origin of this regime. It should be emphasized that 
quantum gravitational theory is as yet insufficiently 
developed for any definite conclusions to be drawn about 
the extremal stage in the evolution of the Universe. It 
was already noted in Refs. 1, 2,  and 5 that a system of 
equations which takes into account only local ef feds  is 
no more then a rough approximation to  a consistent 
theory. However, we can already say that quantum 
gravitational phenomena can have a profound influence 
on the formation of the macroscopic properties of the 
Universe. 

We thank A. A. ~tarobinskG for discussing the work 
and for valuable comments. 

'1 Note that the solution (1.11)-(1.13) is also an exact special 
solution for the system of equations containing not only the 
Einstein gravitational term but also the radiative corrections 
quadratic in the curvature (see Ref. 2). 

5, In theories that take into account quantum gravitational 
phenomena solutions with stationary physical parameters 
were discussed earlier in Refe. 1 and 5. In Ref. 1, the 
steady-state regime ar ises  because of viscosity of the vacu- 
um; in Ref. 5. a nondissipative version of this stage of the 
evolution L proposed. 

6, For the system of gravitational equations containing the 
invariants quadratic in the curvature, the solution with 
stationary physical parameters is  unstable. At large a (large 
physical times t ) ,  the instability has an exponential nature 
in the time t . For a discussion of the instability of the 
s tew-s ta te  solution, see also Ref. 1. 

')As physical parameter of the solution (2.4)-(2,6), one can 
also use the combination R $ R / ~  of the components of the 
curvature tensor [See Eqs. (2.1) and (2.3) and Sec. 11. 
If the inequality (3.7) is  satisfied, the point u = u,(T= Tc) 
is  a bifurcation point of the cosmological solution (2.4)-(2.6) 
( q =  1, 1: = -1). One of the branches [see (3.9) below] de- 
scribes a system cooled (from T, to T =  0) by expansion; 
the other, which lies entirely in the quantum domain, des- 
cribes a system which is heated (from Tc to T?) > TJ. 
~ u r p h y '  s "ideal" solution6 has a similar bifurcation. For 
the reasons given in Sec. 2, we do not consider the second 
branch (11 = 1,  1: = -1) of the solution (2.4)-(2.6). 

9, It is  impossible to specify initial conditions a t  the point a 
= 0 (T= TJ,  corresponding to the s ta r t  of evolution, be- 
cause of its singular nature. 

'O) The relation e / 3  = -d has a solution with stationary physi- 
cal parameters and a Murphy-type solution a t  the singular 
point a = 0. 

'1 By nonconformal particles we mean particles whose con- 
formal invariance remains broken on the transition to the 
ultrarelativistic limit. 

2, In the convariant expressions given above, we omit the terms 
.that vanish in conformally t b t  spaces (such as, for example 
the second invariant of the Weyl tensor and the shear defor- 
mation tensor of the velocity field). Therefore, in an inves- 
tigation of quantum gravitational processes in a system of 
real particles in models with lower symmetry is  it  neces- 
sary to make a corresponding modification of the system of 
gravitational equations (see Ref. 3). 

3, In the considered type of space, the independent equations 
a r e  the (9 component of the gravitational equations and the 
equation of entropy increase. In (1.1) and below, the dot de- 
notes the derivative with respect to the cosmological time T. 
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