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The collision-correlation-induced power-law tails in the spatially homogeneous response in a gas with binary 
encounters are investigated. It is shown that the low-frequency response is determined by the interaction 
between the diffusion-type hydrodynamic modes ("diffusons"), which describe the spreading of the correlation 
arising between the single-particle quantities upon the disturbance of the state of equilibrium of the system. 
The coupling between the diffusons may be "strong" or "weak," depending on the type of conservation laws 
obtaining in the system and the types of hydrodynamic modes. In the latter case the asymptotic behavior of 
the response is provided by the single-diffuson approximation. But in the "strongw-coupling case the 
determination of the correct asymptotic behavior requires, generally speaking, the consideration of all the 
many-diffuson processes, and the problem then acquires the features of the dynamics of critical phenomena. 
The effect of the collision-induced long-lived correlation on the low-frequency fluctuation spectrum and, in 
particular, the possible explanation of l/f noise by this effect are considered. 

PACS numbers: 05.20. - y 

INTRODUCTION 

The investigation of power-law tails in kinetic theory 
beg* with the work of Alder and Wainwright,' who dis- 
covered in numerical experiments that the asymptotic 
form of the velocity-velocity correlator, v(t)v(O), for a 
selected particle of a gas of hard spheres is given by a 
power law, t-d'2, where d is the dimensionality of the 
space, instead of the expected exponential law e-:'' 
(I/T is the collision rate). Such a temporal asymptotic 
behavior (for three-dimensional space, to which we re- 
str ict  ourselves below, this law is t4 ' * )  is due to the 
fact that the particle excites in the course of i t s  motion 
a weakly damped hydrodynamic mode of the diffusional 
type. The power-law hils continue to be intensively 
investigated, and there is an extensive literature on this 
question (see, for example, Refs. 2-10). 

The purpose of the present paper is to investigate the 
temporal asymptotic behavior of the spatially homoge- 
neous response at large times, a s  well a s  to ascertain 
how the phenomena giving r ise  to the power-law a s y m p  
totic behavior of the response affect the low-frequency 
spectrum of the spatially-homogeneous fluctuations. 

As the initial physical system,, we shall consider a 
gas of uncharged particles interacting (i. e . ,  colliding) 
with each other and with external scat terers  forming a 
thermostat. The initial cause of the appearance of the 
power-law tails is the violation of the so-called Boltz- 
mann hypothesis on molecular disorder (Stosszahlan- 
satz). which wstulates the total noncorrelation of the 
occupation numbers of the single-particle states. At 
the same time, these states turn out to be correlated 
after each collision, since the states of two particles 
(in the case of a binary encounter) o r  else the states of 
a particle and an external scatterer change simultane- 
ously. At thermodynamic equilibrium this correlation 
on the average vanishes, and the occupation numbers of 
the single-particle states remain uncorrelated. In the 
nonequilibrium state the correlation does not vanish 

even on the average, making, for example, a contribu- 
tion to the fluctuation phenomena in the steady non- 
equilibrium state. "*'2 

In the response problem the initial deviation from 
equilibrium gives r ise  to a correlation between the sin- 
gle-particle occupation numbers that is proportional to 
this deviation. This correlation is, however, small 
(with respect to the parameter of the kinetic equation), 
and has over periods of time of the order of the relaxa- 
tion time little effect on the response, which, a t  these 
times, can be well described within the framework of 
the molecular-disorder hypothesis. But the situation 
changes a t  large times, since the correlation arising 
between the single-particle states in momentum space 
leads to the correlation in coordinate space of such lo- 
cal macroscopic characteristics of the gas a s  density, 
temperature, and total momentum, characteristics 
which a r e  conserved during relaxation in momentum 
space. The relaxation of the correlation of these quan- 
tities is brought about a s  a result of the slow hydrody- 
namic processes (diffusion, viscosity, thermal conduc- 
tion), and therefore the contribution of this "hydrody- 
namic" correlation to the response turns out to be long- 
lived. Although this contribution is small, i t  is just the 
one that determines the temporal asymptotic behavior of 
the response. Thus, the low-frequency response prob- 
lem becomes a problem of the kinetics of the diffusion 
type of hydrodynamic modes, i. e. , of the kinetics of 
"diffusons ." 

The papers that have so  far been published on the 
power-law tails a r e  usually devoted only to the single- 
diffuson approximation, which corresponds to the so- 
called Kawasaki-Oppenheim ring operator. l3 In this 
approximation, the relaxation amounts to the diffusional 
dissipatioli of a conserved quantity's gradient that h a s  
appeared a t  some point, e. g., an  excess momentum 
surrounding a particle, as in the case considered by 
Alder and Wainwright. ' Diffusional dissipation by itself 

946 Sov. Phys. JETP 53(5), May 1981 0038-5646181 1050946-1 OM2.40 0 1982 American Institute of Physics 946 



yields an asymptotic t-''' time dependence. Additional 
powers of l / t  can, however, ar ise  in certain cases. 
This is precisely what happens in the case of a gas in- 
teracting with a thermostat, when there is only one hy- 
drodynamic mode-the diffusional mode-involved. 
This mode turns out to be weakly coupled to momentum 
space and the processes of correlation formation and 
destruction occurring in this space. This weak coup- 
ling leads not only to a steeper (than tJ' 2, power-law 
tail in the spatially homogeneous response, but also to 
the smallness of the many-diffuson corrections to the 
single-diffuson approximation, which, consequently, 
yields the correct  temporal asymptotic form of the spa- 
tially homogeneous response. It may be said that in 
this case the initial perturbation produces weakly inter- 
acting diffusons, and that the situation can be described 
with the required accuracy with the aid of perturbation 
theory. 

But the other situation in which the hydrodynamic 
modes a r e  more strongly coupled to the relaxation in 
momentum space i s  also possible. In the gas consid- 
ered by us, such a situation ar ises  when the thermo- 
stat-induced energy and/or momentum relaxation i s  
"cut off. " The new hydrodynamic modes-thermal- 
conductive and/or viscous modes- that then appear 
turn out to be more directly coupled to both the pro- 
cesses of correlation formation in momentum space and 
the single-particle relaxation in this space. As a re- 
sult, no additional powers of l / t  a r ise  in the asymptotic 
form of the spatially homogeneous response, and we 
have the t4' ' law in the single-diffuson approximation. 
It turns out, however, that the t9I2 law is not neces- 
sarily the true asymptotic form in this case, since the 
many-diffuson corrections may increase with increas- 
ing t, and a situation somewhat reminiscent of the situ- 
ation that obtains a t  the critical point of a second-order 
phase transition may arise.  Thus, we may, in investi- 
gating the low-frequency response, get into the field of 
critical-phenomenon dynamics. The application of the 
methods of critical dynamics to the response problem 
is outside the scope of the present paper. Let us  only 
note the following: the true asymptotic form of the re- 
sponse should be obtained by summing the entire many- 
diifuson series. I t  can be expected that this will give in  
the frequency representation a weak frequency depend- 
ence of the type wa, la! I<< 1. If this were not the case, 
then the kinetic coefficients would be subject to strong 
dispersion a t  low frequencies. But low-frequency 
anomalies a r e  normally not observed in the kinetic co- 
efficients, an argument in favor of the convergence of 
the ser ies  describing the long-range correlations to an 
almost constant quantity. 

At the same time, a low-frequency anomaly in the 
fluctuation spectrum-the so-called l/f noise-is well 
known and widespread. I t  can be shown that the spec- 
trum of the background low-f requenc y fluctuations is 
described by a ser ies  that is more singular by one pow- 
e r  of the frequency than the ser ies  for the response. 
The convergence of the latter ser ies  to ma, 1 a 1 << 1 
could thus indicate the existence of a l/w type of singu- 
larity in the low-frequency fluctuation spectrum. 

1. THE RESPONSE PROBLEM WITHIN THE 
FRAMEWORK OF THE BOLTZMANN MOLECULAR- 
DISORDER HYPOTHESIS 

Let us  consider a gas of uncharged particles that in- 
teract through collisions with each other and with scat- 
t e re r s  forming a thermostat, and impart momentum 
and energy to the scatterers. The state of the gas of N 
particles is described by a distribution function that 
satisfies the Boltzmann equation and the normalization 
condition: 

a t~ , - f - l ,F ,+IIp  (F, F ) = 0 ,  z FP=N.  
P 

Here the linear operator I, describes the collisions with 
the thermostat, while the bilinear operator n,, describes 
the binary collisions. 

In the state of thermodynamic equilibrium the distri- 
bution function is stationary and has a-Maxwellian form, 
with 

a t ~ , - ~ p , = n p { ~ ,  F }  =o. (1.2) 

Now le t  the distribution function a t  the moment of 
t = 0 be different from the equilibrium function, i. 
let  

Fp ( 0 )  =Fp+6Fp ( 0 ) .  

ti me 
, e., 

The regression of the small  initial deviation bF, is giv- 
en by the formula 

which is the solution to the equation for the response: 

where the symbol J, denotes the linearized collision op- 
erator 

J ~ = I , + I I ~ { .  . . , F }  + u p { F ,  . . .), (1.5) 

which is made to vanish by the function aNF9, which, a t  
equilibrium, coincides with the Maxwell function": 

J,a,Fp=o. (1.6) 

The formula (1.3) describes a fast  relaxation (i. e. , 
one occurring over a period of time T ~ -  J,") in momen- 
tum space. We shall, neglecting the possible strag- 
gling of the relaxation times T, (and assuming that all 
the T, a r e  shorter than some cu), call this exponential 
relaxation. Indeed, for the flux (current) generated by 
the deviation bF,(t), we obtain the expression 

j ( t )  - v6Fp ( t )  - z exp (-J,t) 6~~ (0) = c c t i r z  v6F. (0) -e-'/rie. 
I P P 

(1.7) 
By choosing the initial deviation in the form 

we can find the following velocity-velocity correlation 
function: 

The integral over time from zero to infinity of this cor- 
relator is the usual diffusion tensor 
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i - 
DM - Nz v.J.-'vb; - ( t )  up (0) dt. J (1.10) 

I 

The Boltzmann equation thus leads to an exponential 
decay law for the velocity-velocity correlation, and, 
consequently, power-law tails of the type found by Alder 
and wainwright1 (i. e. , power laws of the type t9' 
should be explained by deviations from this equation, 
i. e., by violations of the molecular-disorder hypothe- 
sis. These violations a r e  caused by the presence of 
correlation between the single-particle states. But it 
will be useful to consider the response to a spatially 
homogeneous perturbation in our system before pro- 
ceeding to take this correlation into account. For sim- 
plicity, we choose this perturbation to be a point per- 
turbation: 6FD(r, 0) = 6FD(0)6(r). Its evolution is de- 
scribed by the formula 

which i s  the solution to the spatially homogeneous 
Boltzmann equation: 

The relaxation then occurs in two stages. First, there 
occurs (over a period of time of the order of 7,) a tran- 
sition to local equilibrium: 

where h o ( r ,  t) is the initial delta function that has 
spread over a distance of the order of the mean free 
path I =vrD. The subsequent relaxation process will 
have the character of diffusion, compensating the in- 
duced change in the local concentration, 6n(r) = ho( r ,  t): 

6n (r, t )  =e-'"A6n ( r )  - 1 lr-r'12 
rz(nDt,o,,l ,-  J h ' e x ~  { - F ) 6 n ( r ' ) .  (1.14) 

The function bn(r)-the initial condition for the diffusion 
equation-is, to withjn terms of the order of l/r<< 1, 
which arise during the fast phase of the relaxation, the 
initial concentration perturbation 

6n~(r )  = 6P, (r ,  0 ) .  
P 

Let us note that, on account of the law of conservation 
of particle number, 

Let the particles be introduced at the moment of time 
t = 0 into some small region, i. e. , at the "point" r = ro. 
Then the concentration at this "point" falls off in time 
according to the tJ' law: 

This formula describes the decrease of the concentra- 
tion in the region of initial localization of the particles 
a s  a result of the diffusional expansion of the region of 
localization. The power-law asymptotic form t4' ', 
given by (1.16), has a universal character, and does 
not depend on the form of the initial perturbation; it is 
only necessary that 6N* 0, i. e. , that a subsequently- 
conserved quantity-a number of particles-be intro- 
duced at the moment of time t = O  into some small re- 

gion ("point") of the system. We shall see below that a 
phenomenon described by a formula of the type (1.16)- 
the decrease of the density of some conserved quantity 
as a result of its diffusional spreading over the entire 
system-always underlies tJ' tails. 

Let us now consider what happens when 6N = 0. To 
derive the temporal asymptotic form, let us  use the hy- 
drodynamic algorithm for solving the Boltzmann equa- 
tion (see, for example, Refs. 12 and 14). Instead of 
6 ~ , ( r ,  t), i t  is more convenient to consider i ts Fourier 
transform 6FD(q, t): 

We assume the initial perturbation 6FD(r) to be a delta- 
function perturbation. Standing under the sign J," i s  
the ''current" part, mD, of the perturbation: 

For 6N= C,6FD * 0, the algorithm (1.17) immediately 
yields the tJ' law: 

Now let a current 

rather than particles, be introduced at the point r = 0 at 
t =O. Let us  find, using the algorithm (1. I?), the time 
variation of the current a t  this point: 

We have obtained a td" law, which, like the tJ' law, 
does not depend on the specific form of the perturbation 
at t=O, but corresponds to a local introduction of a 
nonconserved quantity. This quantity-in the present 
case, a local current-relaxes rapidly, creating a con- 
centration gradient: 

- 
6n(r, t )  -- j div 6j (r,  t )a t .  

Subsequently, the zolution proceeds according to the 
diffusion law, the h serving a s  the initial condition for 
the diffusion equation. The quantity %is proportional 
to q1<< 1; thus, the initial current 6jo creates a small 
concentration gradient. One more factor, q, appears 
in the computation of the local long-lived current 6j, 
since the greater part of the diffusional perturbation- 
the "diffuson"-is proportional to F, [see (1. I?)] and 
does not generate a current. It is these two q which 
occur in the numerator of the algorithm (1.17) which 
change the t9'= law into a t d r 2  law. Thus, the t a r 2  law 
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is characteristic of a perturbation that violates a con- 
servation law obtaining in the system (here the particle- 
number conservation law), whereas the t"'2 law is 
characteristic of a perturbation that does not violate the 
conservation laws (i. e. , of a perturbation that does not 
introduce conserved quantities into the system). There 
is only one conserved quantity (the particle number) in 
our system, a circumstance which is due to the pres- 
ence of a momentum- and energy-collecting thermostat. 
If the thermostat is switched off, then new hydrodynam- 
ic-acoustic heat-conduc tive, and two viscous- modes 
appear. The last  three of these modes a r e  "slow" 
modes, and can participate in the generation of the long- 
lived response. 

2. CORRELATIONS AND THE RING OPERATOR 

The corrections to the Boltzmann equation (1.1) o r  to 
the ensuing response equation (1.4) a r e  proportional to 
powers of the ratio A ~ / T ,  << 1, where At is the collision 
time ("duration"). Of these corrections we should 
choose those which describe long-range correlations. 
0nuki5 first  pointed out the connection between long- 
range correlations in the response problem and fluctua- 
tions in the nonequilibrium state, in which binary colli- 
sions give r ise  to an additional correlation. "*i2 By us- 
ing the apparatus of the theory of fluctuations in the 
nonequilibrium state, we can routinely construct those 
corrections to the Boltzmann equation which a r e  respon- 
sible for the appearance of power-law tails. We shall 
f i rs t  derive the ~ a w a s a k i - ~ ~ p e n h e i r n ' ~  ring operator, 
which takes account of the correlation in the single-dif- 
fuson approximation. In Sec. 3 we shall give the dia- 
grammatic derivation; here the corresponding result 
will be obtained from simple physical arguments. To 
derive the Boltzmann equation (1. I ) ,  we substitute the 
product of the single-particle distribution functions into 
the binary-collision operator, thereby assuming the to- 
tal absence of correlation of the particles participating 
in the collision. The correlation can be taken into ac- 
count by substituting the "instantaneous" distribution 
functions, and then averaging the entire expression 
over the ensemble. In view of the short duration of a 
collision event, the low-frequency correlation of inter- 
est  to us  here should have no effect on it, and should 
therefore not change the transition probabilities. But 
the occupation numbers can now be correlated; there- 
fore, the binary-collision operator should be written a s  
Il,{m}, i. e., we should substitute into this operator 
the two-particle distribution function 

The correction describes the correlation of the 
single-particle states. The particle collisions occur 
rapidly ("instantaneously"), and in a small region of 
space (at a "point"). Therefore, we need a function 
that describes the correlation of the occupation num- 
bers  p and pi a t  one instant and a t  one point in space 
(at a point on the kinetic scales). For  a spatially ho- 
mogeneous system the equal-time correlator 

(riJ depends only on the difference r - ri. It 
to represent i t  by i t s  Fourier transform: 

an equation similar to the 

The left-hand side of this equation describes the evolu- 
tion of the correlation of the occupation numbers p and 
pi as a result of the collisions of the particles in  these 
states with other particles, a s  well as their kinematics. 
The right-hand side is the source of the correlations- 
the binary-collision operator with one summation omit- 
ted,"*I2 describing the simultaneous departure of parti- 
cles from, and the arrival  of others in, the pair of 
states during their intercollision. At equilibrium, 
nDDt{~, F}=  0 because of the equality of the arrivals and 
departures. But any deviation from equilibrium imme- 
diately disturbs the balance, and causes the appear- 
ance of a correlation proportional to this deviation. In 
the response problem, F,(t) = F, +AF,(~),  and therefore 

where 

is the linearized source of the correlation induced by 
the perturbation AF,. The equal-time correlation a t  a 
given point is described by the function2' C, Sub- 
stituting this function into the binary-collision operator, 
we obtain a ring operator describing the correlation 
produced by the perturbation and the inverse effect of 
the correlation on the evolution of the perturbation: 

The ring operator is linear in the perturbation AF. 
The presence of q in i t s  denominator guarantees the 
participation of the hydrodynamic modes and the ap- 
pearance of a diffuson pole. The time derivative in 
the denominator indicates the presence of memory. 
Another distinctive feature of the ring operator is i ts  
two-particle character: i t  describes the simultaneous 
creation and simultaneous annihilation of two spatially 
inhomogeneous excitations. Notice that, for the ring 
process to occur, the particles participating in i t  need 
not be identical. From the expression (2.4) we can de- 
rive the ring operator that describes the long-range 
correlation that ar ises  upon scattering of gas particles 
by scatterers forming a thermostat. 6 * 7  To do this, we 
should regard the index pi as pertaining to these scat- 
terers,  and drop the corresponding terms in (2.4). 
The ring operator then becomes in form (but not in 
fact) a single-particle operator: 

The correction to the distribution function obtained 
when the ring process is taken once into account has 
(in the frequency representation) the form 

This correction is small  with respect to the parameter 
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A~/T,: the estimate for q 5 1/2 yields nary collisions a r e  unimportant, and J, E I,, we obtain 
the contribution to the current in the form 

+-($)a&-(:)a. (2.7) 
AJa( t )=Dag xqpqB,e-q'ot  C U ~ . I ~ - ' A F ,  (0 )a  t -5 .  (2.13) 

Despite the smallness, the ring operator determines P P 

the evolution of the system a t  large times because of 
the fact that i t  separates out the diffuson pole, which 
can compensate for this smallness. We separate out 
the diffuson pole in the ring operator (2.5) with the aid 
of the algorithm (1.17). Let u s  again discuss the struc- 
ture of the latter. The universal hydrodynamic-re- 
sponse function is multiplied by an "amplitude" deter- 
mined by the perturbation yp .  The universal response 
function contains the diffuson propagator e ' tez~, or,  in 
the frequency representation, (-iw +q2~)- ' .  The nu- 
merator of the universal response function contains two 
terms: the equilibrium distribution function F, and a 
small correction, which is proportional to q. The cor- 
rection is the current part of the universal response. 
The diffuson constant-"amplitudew-is also made up of 
two parts, determined respectively by the "concentra- 
tion," 2, y,, and "current," ~c,vJ,-'jr,, parts  of the per- 
turbation y,. The "current" part  is small, and propor- 
tional to q. In the ring operator (2.5) the particle num- 
ber-conserving operator I, serves  a s  the perturbation 
A. . 

Because of this, the diffuson amplitude is determined by 
the small current part, which is proportional to q. 
Furthermore, upon substitution of the hydrodynamic 
algorithm into the ring operator, the universal re- 
sponse function appears under the sign of the operator 
I,, and loses i t s  major, q-independent part: 

The vanishing of the major part  of the response when i t  
is substituted into the ring operator is due to the in- 
sensitivity of the relaxation in momentum space to local 
concentration changes that do not al ter  the equilibrium 
character of the momentum distribution of the parti- 
cles. Only the small correction due to the diffusional 
current arising during the compensation of the concen- 
tration gradients relaxes. As a result, the factor q2 in 
the ring operator appears also in the numerator: 

The function fDa does not depend on the form of the per- 
turbation: 

The diffuson amplitude A, is a linear functional of the 
perturbation AF,: 

The sum over q in (2.10) determines the asymptotic 
forms of the ring operator and i t s  contribution to the 
response. In the frequency representation this will be 
the law wwU2; in the temporal representation, the law 
tdl2.  For  example, in the simple case in which the bi- 

This formula coincides with the formula (1.20) for the 
current, generated by a point perturbation, a t  the point 
of perturbation. But the expression (2.13) gives the 
asymptotic form of the total current generated by a 
spatially homogeneous perturbation AF,. The mechan- 
ism guaranteeing the slowness of the relaxation of 
AJa(t) is the diffusional dissipation of the density-den- 
sity correlation gradients that ar ise  during the relaxa- 
tion of the particle-particle correlation in  momentum 
space. Thus, the difference between the spatially ho- 
mogeneous processes (or the description with the aid of 
quantities pertaining to the gas a s  a whole) and the spa- 
tially inhomogeneous processes is obliterated when we 
go outside the limits of the single-particle description. 
Indeed, the two-particle correlation corrections intro- 
duce into the spatially hombgeneous response features 
that a r e  characteristic of the spatially inhomogeneous 
processes-in particular, the slowness of the relaxa- 
tion. A comparison of the formulas (2.13) and (1.20) 
clearly demonstrates this. 

The additional factor q2-l/t in comparison with the 
Alder-Wainwright t"'z law appeared in  the asymptotic 
form of the spatially homogeneous response in a way 
similar to the way in which i t  appeared in the asymptot- 
i c  form (1.20) in the case of the decay of the current a t  
the point of perturbation. First ,  the density correlation 
gradients that ar ise  a r e  small: the collisions producing 
the correlation do not create the gradients directly; 
they a r i se  later a s  a result of the rapid relaxation in  
momentum space. Secondly, the local changes in the 
density correlation again do not directly affect the re- 
laxation in momentum space, the influence is exerted 
only through a small correction due to the diffusional 
correlation currents. I t  is precisely this that we had 
in mind when we spoke in the Introduction of a weak 
coupling between the diffusional mode and momentum 
space. 

The td l2  law is characteristic of the correlation pro- 
duced by collisions with external scatterers. The bi- 
nary collisions also produce a correlation, but i t s  in- 
fluence, exerted through the diffusional mode, turns out 
to be even weaker. We can [using a two-particle hy- 
drodynamic algorithm (see Refs. 11 and 12) similar to 
the one-particle algorithm (1.17)] show that, in the 
vicinity of the thermodynamic equilibrium, there ap- 
pears in the numerator of the ring operator (2.4) not 
qZ, but q4. This is due to the additional symmetry 
characterizing the particle-particle collisions in com- 
parison with the particle-external scatterer collisions. 
(Let us  note that this symmetry does not play a role 
near a stationary nonequilibrium state, and we again 
obtain for the response the asymptotic form t"' '. ) 

Let us now consider whether it is generally impossi- 
ble to get rid of the powers of q in the numerator of the 
ring operator, i. e., whether we can do something that 
will make the hydrodynamic algorithm take on only 

950 Sov. Phys. JETP 53(5), May 1981 Gantsevich eta/. 950 



terms not containing q. For this to happen, i t  is ne- 
cessary that the following two conditions be fulfilled. 
First, the fast  relaxation in momentum space should 
not destroy the collision-induced correlation between 
the single-particle states and, secondly, the hydrody- 
namic modes coupled to the preserved correlation 
should have a direct influence on the single-particle re- 
laxation in momentum space. In a gas with binary col- 
lisions, such modes can be the modes connected with 
viscosity and thermal conduction, which ar ise  when the 
thermostat is "switched off. " Let us, for simplicity, 
consider the case in which only the relaxation in terms 
of energy is "switched off," i. e. ,  in which the scatter- 
ing by the thermostat is purely elastic. A new integral 
of the motion-the total energy of the gas-then arises,  
and the single-particle relaxation operator J, acquires 
a new zero: 

dl.', x ~ p J ~ . . . = o ,  J p - = O .  
d l '  

P 

The operator J, + J,, now has four zeros, of which only 
one, namely, (aF,/aT)(aF,,/aT), is important to us. 
To i t  corresponds the conservation law 

At the same time, the source of the correlation-the 
two-particle operator II,i-violates this law: 

Thus, the binary collisions now directly produce corre- 
lating "heat-conductiveJ' diffusons: 

where n is the thermal conductivity coefficient: 

The property (2.16) allowed u s  to get r id of one q in 
the numerator of the ring operator. We can get rid of 
the second q factor because the function (a~,/aT)(aF,,/ 
aT) does not make the binary-collision operator, under 
whose sign the hydrodynamic mode in the ring operator 
(2.4) stands, vanish: 

The property (2.19) indicates that the presence of the 
"heat-conductive" diffusons has a direct effect on the 
relaxation processes in momentum space. The ab- 
sence of the additional q factors immediately leads to 
the t"IZ law for the asymptotic form of the spatially 
homogeneous response: 

The presence in the system of viscous modes leads to 
the same effect, for 

(here V is the velocity of the gas). In this case the 
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viscous-mode pole in the ring operator is separated out. 
Also possible is a correlation with the participation of 
a source of the type 

In all  these cases the picture of the phenomenon re- 
mains the same: there begins to be generated a t  each 
point in space upon the appearance there of a deviation 
from equilibrium a subsequently preserved correlation 
that then diffusionally spreads out over the entire sys- 
tem. The asymptotic form t9I2 is due to the fact that 
the correlation decreases in "density" a t  the point of 
i t s  production a s  a result of the expansion of the volume 
in which it occurs: the radius of the diffusion sphere 
increases like t"'; consequently, the volume increases 
like (t"2)3, and the density of the conserved quantity de- 
creases  like t"". The correlation is produced a t  al l  
points in the system, and spreads out over the system 
without being destroyed [cf. (1.15)]. In view of the 
preservation and continuous generation of the correla- 
tion in the system, a correlation "buildup" should oc- 
cur in the system, and a distinctive correlation insta- 
bility should develop. Since a l l  the points in space a r e  
equivalent, the buildup should occur in the diffusional 
mode with q = 0, i. e. , the spatially homogeneous two- 
particle distribution function should begin to increase 
upon the appearance of a deviation from equilibrium. 
And, indeed, for *ai I,,,,= we have [see (2. 2)]: 

from which we find, for example, for Z,c,J,. . . = 0 that 

As long a s  the distribution function differs from Max- 
wellian, the source on the right- hand side of (2.23) 
"operates," resulting in the growth of the correlation of 
the single-particle energies. 3 '  In the following section 
we shall see that the correlation instability can make 
the consideration of the many-diffuson processes of all 
orders  necessary, and that the allowance for these pro- 
cesses  may yield for the response a temporal asymp- 
totic form different from t"". 

3. THE DIAGRAMS FOR THE RING OPERATOR. 
HIGHER APPROXIMATIONS 

It is convenient to use for the study of the long-wave, 
low-frequency correlations, an example of which is the 
correlation described by the ring operator (2.4), the 
diagrammatic technique proposed for classical systems 
in Ref. 15 (where the interaction of electrons with long- 
wave, low-frequency phonons i s  investigated). When we 
go over to a classical system, the operators figuring in 
the quantum-statistical expressions commute, and 
therefore the double ordering-in time and "along the 
contour" (i. e., in the order in which the operators ap- 
pear in the original expression)-which is characteris- 
tic of quantum diagrammatic reduces to 
only ordering in time. Two propagator lines represent- 
ing an observable then merge into one classical propa- 
gator. Figure 1 shows two such lines that have merged 
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FIG. 1. FIG. 2. 

into one distribution-function line. We consider this 
line to be saturated by points-collisions with the ther- 
mostat (see Fig. 2). We shall represent an  external 
field that introduces a momentum q in the following 
manner (see Fig. 3): to the point of interaction corre- 
sponds the derivative qa/Bp (which in the figure acts  to 
the left); to the directed segment with the momentum q 
corresponds the propagator B;'(~, w) of the spatially in- 
homogeneous excitation: 

The diagram in Fig. 3 evidently solves the spatially- 
inhomogeneous response problem. The interaction of a 
particle with a scatterer can, in the case of a sufficient- 
ly "mild" potential, also be described classically. In 
this case the corresponding collision operator should 
be associated with a se t  of diagrams describing the mo- 
tion of the particle in the field of the scatterer (see Fig. 
4). Quantum collisions a r e  characterized by a large 
momentum transfer a t  the vertex, which makes i t  im- 
possible to describe a collision, using only the symbols 
of the classical diagrammatic technique, in which the 
momentum transfer is always small, and the derivative 
qa/Bp occurs. At the same time, if the Born approxi- 
mation, i. e. ,  only one diagram, is often sufficient in 
the quantum description, in the classical treatment the 
collision is represented in the form of an infinite sum. 
Let us  note that, in view of the condition At << s,, the 
structure of the collision will not be of interest to us, 
and a collision will, consequently, always be represent- 
ed as an instantaneous event. Thus, the ser ies  in Fig. 
2 describes a ser ies  of instantaneous collisions with the 
thermostat, the time interval between collisions being 
of the order of the relaxation time 7,. 

A binary collision is shown in Fig. 5(a). The vertical 
line corresponds to an instantaneous exchange of mo- 
menta: the particle momenta pi and rn go over into the 
momenta p and p'. Joining from the left the distribu- 
tion functions FDi and Fq, and summing over pi and rn 
(as always, the summation is assumed to be over all  

FIG. 3. 

FIG. 4. 

"1:. PI , '3 ;, 
FI, F 

a b c 

FIG. 5. 

FIG. 6. FIG. 7. FIG. 8. 

internal lines), we obtain a binary-collision operator 
without one summation, IT,, {F, F}, depicted in Fig. 
5 b). The operator n D p ,  Fj, which has  only one out- 
come, p, is depicted in Fig. 5(c).' The function *:,, is 
depicted in Fig. 6. A c ross  section drawn through both 
propagator lines to the right of the vertical-the binary 
collision-corresponds to [-iw + iq(v - vi) + JP + J,~]-~. 
Joining the symbol for  to the symbol for n,, we ob- 
tain a diagrammatic representation of the ring opera- 
tor (2.4) (see Fig. 7). We have omitted all the p in- 
dices, and retained only the momentum q. I t  is not dif- 
ficult to see why this operator is a "ring:" the ring a- 
long which the spatial-homogeneity-destroying momen- 
tum q moves can be seen. Also evident is the correla- 
tive character of the generated diffusons. Notice that 
by itself the ring operator is spatially homogeneous: q 
does not get outside (a summation has been performed 
over it). The diagram in Fig. 7 can be interpreted a s  
follows: a t  some moment of time a binary collision 
produces a correlation in the system, i. e . ,  introduces 
the momenta q and -q. This correlation is taken into 
account in another collision (and spatial homogeneity is 
reestablished). If the period between the collisions is 
sufficiently long, then the response to the f i rs t  collision 
assumes the form of a hydrodynamic mode-a diffuson. 
If this period is short, then the "ring process" is a 
small correction to the binary collision. Thus, the 
"ring process" can in a sense be regarded a s  a pro- 
longed (in time) collision in which there is enough time 
for the "bare" particle lines to "get dregsed" in other 
collisions and be transformed f i rs t  into excitations de- 
scribed by the kinetic equations (i. e. , into "relaxons") 
and then into hydrodynamic modes (diffusons). This is 
especially clearly illustrated by the impurity ring oper- 
ator computed in the Born approximation (see Fig. 8). 
We see that the fas t  dynamical correlation-the colli- 
sion-and the slow statistical correlation-the "ring 
process"--are both described by topologically identical 
diagrams. The only difference between them is that the 
ring process is "prolonged" in time, and we must insert 
collision operators in the propagator line under the im- 
purity cap, which changes the corresponding energy de- 
nominator: instead of - iw  + i q -v ,  we have f i rs t  -iw 
+ iq . v + J,, and then -iw + q ' ~ ,  appearing. [1n order to 
avoid any misunderstanding, let us note that we cannot 
limit ourselves in the classical description to the Born 
approximation: the ring operator depicted in Fig. 8 
will contain an additional smallness q2/p2 in compari- 
son with the exact impurity ring operator (see Fig. 9) 
because of the small  momentum transfer that occurs a t  
the vertices. A ring operator for  the two-body inter- 
action can be constructed a t  the vertices in the Born 
approximation with allowance for  the exchange, which 
will give r i se  to a large momentum transfer.'] 

It is convenient to investigate the higher-order cor- 
relations with the aid of the diagrammatic technique. 
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FIG. 9. FIG. 10. FIG. 11. 

An example of these correlations fo r  binary collisions 
is shown in Fig. 10. More complicated constructions 
can be imagined. Since only the diffuson poles a r e  im- 
portant for the asymptotic form, we can simplify the 
diagrammatic technique by contracting to a point-vertex 
anything connected with the spatially homogeneous re- 
laxation. The spatially homogeneous state will then 
play fo r  us the role of a "vacuum" from which spatially 
inhomogeneous excitations-diffusons-will be created 
under the action of a perturbation. The simplest ring 
operator will then assume the shape of a loop (see Fig. 
11). The process depicted in Fig. 10 will assume in 
the abridged notation the form of a loop with an inset 
[Fig. 12(a)]. A similar process is depicted in Fig. 
12(b). Notice that the multiple application of the hydro- 
dynamic algorithm gives r ise  not only to third-order, 
but also to fourth-order, etc., vertices. At small q 
the dominant contribution will be made by third-order 
vertices. Here we shall not specify the type of ver- 
tices: the important thing is to determine whether they 
a re  proportional to q o r  not. Let us  estimate the or- 
ders  of magnitude of diagrams of various degrees of 
complexity. The simplest loop gives one summation 
(q3) and one diffuson propagator. This yields q3/q2 = q 
(t- wit2) in the case of q-independent vertices and q2q3/ 
q - ww" for vertices that a r e  proportional to q, i. e. , 
the already known t4" and tt6" laws. Let us  consider 
how the order of magnitude of a diagram will change 
upon the addition of a second diffuson (Fig. 12). One 
summation, i. e. ,  q3 in the numerator, and two diffuson 
propagators (corresponding to two new cuts between the 
vertices) a r e  added, which gives q4 in the denominator 
and a contribution from the two vertices to the numera- 
tor. The role of the "internal" vertices turns out to be 
decisive: if each of them contributes q, then the dia- 
gram in Fig. 12 is smaller than the simplest diagram; 
their ratio q2q3/q4 =q  - 0. Thus, the many-diffuson 
corrections turn out to be insignificant a t  large times, 
and the simplest ring operator yields the correct  
asymptotic response. On the other hand, if the two in- 
ternal vertices do not depend on q, then each new com- 
plication in the diagram will give r ise  to factors q3/q4 
= l /q-  1 / ~ " ~ ,  and the behavior of the response at large 
times will be determined precisely by the many-diffuson 
corrections describing the many-particle correlation. 
But in our theory the left and right third-order internal 

vertices in which the diffuson line inserted in the dia- 
gram terminates have different characters (see Figs. 
10-12). The left vertex corresponds to the creation of 
a pair of diffusons (as  a result of the correlation aris-  
ing during the collisions between the single-particle en- 
ergies and/or the momenta of the colliding particles). 
The fact that this vertex does not vanish as q - 0 physi- 
cally indicates that there a r i ses  a t  some point in the 
system a collision-conserving quantity that then diffu- 
sively spreads out over the entire system. The ap- 
pearance in the system of a correlation between the 
single-particle quantities is not prohibited by the single- 
particle conservation laws obtaining in the system. 
Thus, the q-independent vertex from which two diffuson 
lines a r e  drawn out to the right (into the future) is pos- 
sible; an example of such vertices is the left third-or- 
der internal vertex in Fig. 12. As for the right inter- 
nal vertex i t  corresponds to conversion of two diffusons 
into one (only one diffuson line goes out from i t  to the 
right). The nonvanishing, a s  q - 0, of a vertex with 
one diffuson line going out to the right (into the future) 
would indicate the introduction into the system (with 
subsequent spreading) of a conserved single-particle 
quantity. But the single-particle conservation laws ad- 
mit only of the redistribution in the system of the sin- 
gle-particle conserved quantities, and not their produc- 
tion. Thus, a vertex with a single diffuson line going 
out to the right (the right internal vertex in Fig. 12 is 
such a vertex) must go to zero a s  q - 0, which can be 
shown by a direct calculation with the use of the hydro- 
dynamic algorithm (1.17). This circumstance saves 
the low-frequency response problem from a power-law 
discontinuity a s  w - 0. Furthermore, the expression 
for a "two-into-one" vertex (i. e., a vertex a t  which two 
lines from the "past" a r e  converted into one line going 
into the future) may turn out to be proportional not to q, 
but to q2, which makes the many-diffuson corrections 
generally insignificant for q - 0. The correct  asymp- 
totic form of the response, tJ'2, is then given (as in 
the case of the t6I2 law) by the simplest ring diagram. 
But in the presence of a scattering asymmetry in the 
system the expansion of the vertex begins with the f i rs t  
power in q. We obtain the same result when we take 
account of the interaction between the various symme- 
trically different hydrodynamic modes (e. g. , the vis- 
cous and heat-conductive modes). In this case there 
may exist a ser ies  of diagrams that increase like pow- 
e r s  of In w. To obtain the correct  asymptotic form of 
the response in such a situation, we must sum the en- 
t i re  ser ies  of diagrams, i. e., take the many-particle 
correlations into account. It should be noted that a t  low 
frequencies the properties of such a ser ies  and, conse- 
quently, of the response described by it, should be 
fairly universal, a fact which draws the low-frequency 
response problem and the problem of phase transitions 
together. Since the kinetic coefficients normally do not 
exhibit any universal dispersion a t  low frequencies, we 
can assume that this series,  when summed, will yield 
a slowly varying function of the frequency (i. e., a func- 
tion of the type wa, la! I<< 1; not excluding, naturally, 
the possibility that a = 0). 

FIG. 12. At the same time, experiment indicates the existence 
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FIG. 13. 

of an anomaly in the low-frequency fluctuation phenom- 
ena for a very broad class of systems-the so-called 
l/f noise. Therefore, i t  would be interesting to analyze 
how the above-described correlations affect fluctuation 
phenomena. The pertinent diagrams for the long-lived 
corrections to the double-time two-particle correlation 
function, which gives the fluctuation spectrum, differ 
from the diagrams, considered by u s  above, for the 
single-particle function in that they have a second "exit" 
(the two particles a r e  observed a t  different moments of 
time). The "exits" may be the "ends" of the diagrams 
shown in Figs. 11 and 12; in the case of the two-particle 
function, such diagrams will give a se r i e s  describing 
the equilibrium fluctuations related to the response by 
the fluctuation-dissipation theorem. But more singular 
with respect to the frequency a r e  the diagrams in which 
the left end corresponds to the introduction of some 
state of nonequilibrium into the system and the second 
exit is located on a diffuson line (see Fig. 13). The re- 
sulting additional cross  section adds an extra diffuson 
pole. The section of the diagram between the exits then 
describes the evolution of the fluctuation, i. e . ,  i t s  de- 
cay; the observable frequency w appears in the corre- 
sponding cross  section. The section of the diagram to 
the left of the exits describes the appearance and evolu- 
tion of the correlations from the moment of the appear- 
ance of the nonequilibrium single-particle distribution 
(the left end of the diagram) to the commencement of the 
observation of the fluctuation. The cross  section of 
this part of the diagram contains not -iw, but the La- 
place parameter s (cf. Ref. l l ) ,  which can be made to 
go to zero o r  tend to the frequency of the external field, 
depending on the formulation of the problem. In par- 
ticular, if s is small (the state of nonequilibrium was 
switched on long ago), the left sections in the diagrams 
in Fig. 13 will give in the denominator an extraneous- 
in comparison with the corresponding diagram in the 
response (Fig. ll)-q2 factor. 

Thus, the f i rs t  ring correction to the nonequilibrium- 
fluctuation spectrum contains an extra factor of l/w in 
comparison with the f i rs t  ring correction to the re- 
sponse, i. e., i t  gives an  anomaly of the l / ~ " ~  type in 
the excess- noise spectrum. 

The property whereby an extra section a r i ses  in the 
diagrams for the two-particle distribution function is 
retained in the higher approximations, in which i t  may 
also lead to the appearance of an extra factor of l/w in 
comparison with the corresponding diagram for the re- 
sponse, although the situation here is more complex. 
The point is that the second-exit point can be inserted in 
any of the diffuson lines; therefore, each response dia- 
gram generates several diagrams for the nonequilibri- 
um two-particle function, some of which will, for s - 0, 
contain in the denominator such a number of qZ factors 
that the corresponding integral will diverge a t  the lower 

limit. This fact is related to the possibility, noted in 
the preceding section, of the correlations' growing in 
the presence of a state of nonequilibrium. 

For  all the complexity of the resulting picture, we can 
clearly see  that the singularity of the se r i e s  describing 
the nonequilibrium fluctuations is stronger than that of 
the ser ies  for the response, which prompts us  to postu- 
late that the experimentally observed l/f excess noise 
may have a "ring character," i. e., be due to the above- 
described difficulty in damping out the perturbations in 
the system, the slowness of the system in returning to 
equilibrium, the fact that the correlations in the sys- 
tem have a tendency to build up. (Notice that the inte- 
gral  of l /w over the spectrum diverges a t  the lower 
limit, which agrees with the tendency, described by 
(2.23), of the equal-time two-particle distribution func- 
tion's to increase in time in the nonequilibrium state. ) 

The kinetics of interacting diffusons, which describes 
the low-frequency response and low-frequency fluctua- 
tions, is somewhat reminiscent of the kinetics of mat- 
ter  a t  the critical point, which, as is well known, is 
characterized by power dependences. Thus, if we as- 
sume that the l/f noise is indeed due to the above-con- 
sidered long-lived correlations, then a power depend- 
ence of the type l/we for the excess noise, with /3 acting 
a s  some dynamical critical exponent [its experimental 
value ranges from 0.8 to 1.2 ( ~ e f .  1811, appears to be 
natural. 

The authors a r e  grateful to V. L. Gurevich for a dis- 
cussion and valuable comments. 

'Instead of the equilibrium state, we could have considered 
the stationary nonequilibrium state (see Refs. 11 and 12). 
The term with the external force creating the state of non- 
equilibrium would then be included in I,. In this case 
N B p ,  +F,, and the distribution function F, would make only 
the sum of the operators in (1. I) ,  and not each of them, 
vanish. 

2 )~a tura l ly ,  we a r e  talking about the coincidence of the points 
r and rl only to within the dimension of the region over which 
the large-scale averaging is performed, a dimension which 
is large compared to the range, a, of the forces acting be- 
tween the particles. Equation (2.2) is applicable only in the 
case of kinetic scales significantly larger than a. Since the 
long-lived correlation of interest to u s  is ,  a s  will be seen 
below, determined by small q, the upper limit of the integra- 
tion over q has no effect on the result  a t  all. 

3 ) ~ h i s  fact, which has thus far apparently remained unnoticed 
(although i t  follows directly from the theory of fluctuations 
in the nonequilibrium ~ t a t e ' ~ * ' ~ ) ,  may have a direct bearing on 
the experimentally observed l/f type of excess noise, which 
is discussed in detail a t  the end of the following section. 
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