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Equations are obtained for the Green's functions that describe the kinetics of a quasi-one-dimensional 
conductor with a charge-density wave [Peierls dielectric (PD)]. The equations are similar to those of the 
kinetics of superconductors and are valid when onedimensional fluctuations can be disregarded (for example, 
as a result of threedimensionality dfects). The low-frequency conductivity of PD is calculated in two limiting 
cases: a) in the gapless state, at A <v <q ( A  is the order parameter, v is the reciprocal momentum-scattering 
time, and q is the characteristic curvature of the Fenni surface of the quasi-one-dimensional conductor); b) in 
a pure PD (v<q 4). The natural oscillations of the phase of the chargedensity wave are investigated. It is 
shown that these oscillations exist in the form of a "soft" mode near the critical temperature and in the form 
of a "hard" mode at low temperatures. 

PACS numbem 72.15.Nj 

It i s  known that when the temperature is lowered an 
instability of the Peierls type appears in quasi-one-di 
mensional conductors (metals and semimetals), and that 
a structural phase transition takes place near a certain 
temperature T,. The initial lattice is then restructured 
and a superlattice appears in the crystal. In many 
quasi-one-dimensional conductors, the appearance of 
the superlattice is accompanied by formation of an elec- 
tron charge-density wave (CDW) (see, e.g., Ref. 1). 
The instability sets in i f  the equality &(p +Q) + &(p) = 0 i s  
satisfied in a certain region of variation of the electron 
momentum near the Fermi surface. Here Q i s  fixedand 
i s  the wave vector of the CDW. The energy &(p) i s  
reckoned from the Fermi energy EF. As a result of the 
instability, a gap 2A appears in the excitation spectrum 
of the conductor, i.e., a transition to the dielectric 
state takes place. Such a conductor i s  called a Peierls 
dielectric (PD). By itself, the transition into the PD 
state recalls a superconducting transition of a metal. In 
the former case, however, a more important role is 
played by fluctuations, which lead to a certain smearing 
of the transition. If, however, the spectrum of the 
electrons (or phonons) is not purely one-dimensional 
then, just as in a superconducting transition in a metal, 
the role of the fluctuations i s  small, and the transition 
can then be described by using the self-consistent-field 
appr~ximation.~ 

A most interesting circumstance i s  that, just as  in a 
superconductor, the response of a PD to an electric 
field E is due not only to quasipartides, but also to a 
"condensate," the role of which in a PD i s  played by a 
C D W . ~  The difference from a superconductor lies in 
the fact that the contribution made to the conductivity by 
this additional mechanism, called the Frahlich mechan- 
ism, can be equal to zero if the CDW motion i s  blocked 
by pinning. The latter i s  due to lattice defects or  to the 
effect of commensurability of the periods of the super- 
lattice in the initial lattice. Convincing experimental 
proof has been obtained of the contribution of the CDW 
to the conductivity and of the influence of pinning on this 
effect5*"see also the references therein). 

The contribution of the CDW to the PD conductivity 
was theoretically analyzed in a number of 
It was concluded in Ref. 8 that to describe correctly the 
conductivity of a PD with allowance for the quasiparti- 
cles in the CDW it is necessary to go outside theframe- 
work of the two-liquid model and to analyze the kinetic 
equations. It was noted in Ref. 7 that the usual kinetic 
equation is not valid in this case, and the situation is 
analogous with that encountered in the development of 
the theory of nonequilibrium processes in superconduc- 
tors. Two approaches were used, in the main, in the 
microscopic theory of kinetic phenomena in supercon- 
ductors. In the first, the response of the superconduc- 
tor to an external action was determined by expanding 
the temperature Green's functions in powers of the field 
E and of the order parameter A and by summing the 
corresponding diagrams,' followed by analytic continua- 
tion to the real-frequency axis. In the second approach, 
the Keldysh technique for the investigation of nonequilib- 
rium processes, generalized to the case of supercon- 
d u c t o r ~ , ' ~ "  was used. The last approach offers a num- 
ber of advantages. First, by using the strong depend- 
ence of the Green's function G(&,ct, p,R) on the energy 
near the Fermi surface it was possible to obtain equa- 
tions for Green's functions that a re  integrated with re- 
spect to the variable [,, =v(p-fiF) and depend therefore 
on a smaller number of variables: g =g(c,  z t ,  0, cp, R). 
These equations can be written in the form of a single 
matrix equation. Second, the obtained normalization re- 
lations simplify greatly the solution of the equations.'' 
This approach made it possible to solve a number of in- 
teresting problems of the theory of nonequilibrium pro- 
cesses in superconductors (see, e.g., the reviewi2). 

The method of analytically continuing the responses 
was used by Gor'kov and ~ o l ~ o v '  to calculate the static 
conductivity of a PD near the transition temperature T,. 
In the present paper we analyze a number of kineticphe- I 

nomena by another approach developed in superconduc- 
tivity theory. We obtain general expressions for the 
matrix Green's functions that describe the PD. From 
these equations we obtain the linear response of the sys- 
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tem to an external electric field ~ ( w ,  k). The static con- 
ductivity u of the system i s  determined with allowance 
for electron scattering by impurities and for the motion 
of the CDW, with pinning neglected. In addition, we an- 
alyze the spectrum of the collective excitations of the 
PD and show that near T,, under definite conditions, 
there exists a soft mode of such excitations, w - kV, 
while at low temperatures the collective excitations ex- 
ist in the form of a hard mode, w2 - wi + k2v2. 

1. BASIC EQUATIONS 

We use the model of Gor'kov and Dolgov as the basis.' 
We consider a quasi-one-dimensional metal whose spec- 
trum i s  described by the formula 

and assume that I p(p,) 1 << E, , i.e., we consider a quasi- 
one-dimensional metal whose two flat Fermi surfaces 
Ipf =const I are only weakly bent. This bending i s  de- 
scribed by the function p(h) .  The three-dimensionality 
effects described by (~(fi) make it possible, in particu- 
lar,  to disregard the one-dimensional fluctuations. In 
addition, if the characteristic energy of the transverse 
motion - 1  p(&) 1 i s  high enough [I p ( ~ )  I > T", where T i s  
the momentum relaxation time in scattering by the im- 
purities], then the electron scattering can be treated by 
the usual cross technique, and the fan diagrams, allow- 
ance for which leads to Anderson localization in a dis- 
ordered potential,l3 can be disregarded. 

The Hamiltonian of the system, in the self-consistent 
field approximation and in the absence of external fields 
and impurities, is of the form 

where A =g(bo + b b )  i s  the order parameter, 2Qo =Q i s  
the CDW wave vector, g is the electron-phonon interac- 
tion constant, and w, is the phonon frequency. It is as- 
sumed that I k ! < < ~ ~ .  The onset of a superlattice, i.e., 
the appearance of A, entangles the states on different 
parts of the Fermi surface: p, = k +Qo and p- = k-Qo. 
From the equations of motion of the operators c; and c, 
it i s  easy to obtain equations for the matrix Green's 
functions. One of these functions, introduced by Kel- 
dysh 

~.s--i-'<cr+., ( t )  ct*., (t') 

describes the kinetics of the system, and the two others 
(retarded and advanced) describe the spectrum of the 
system. The equations for the functions G and GR(*) 
are  of the form 

~ ~ - ~ e ~ ( * ) - i i 3  (t-t ') ,  (5) 

e ( k +  Qo) 0 O A 3=(  0 e(k-Qo) ), x = ( ~ *  O). 
In the stationary case, the Green's functions depend 

on the difference t - t'. From (5) we obtain for the 

Fourier component 6R(&) the known expression718: 

g2=qa-e ( P + ) ~ ( P - ) .  

If the vector Q i s  parallel to the filaments (QIIP,,) we 
have 

q=Q2/2m-er+dpL), E- (QOlm) k-vk. (7) 

The PD spectrum i s  thus described by the formula 

We consider now elastic scattering by the impurities. 
If 1 cp(h) I>> T" we can use the usual cross technique. In 
addition, we disregard diagrams that a re  odd in the im- 
purity potential and describe the pinning.'' Neglect of 
pinning means that either the field E exceeds the thresh- 
old CDW collapse field, or  that the frequency of the 
field E is high enough (see Ref. 7). We then have for the 
impurity self-energy part 

x Ga(kl~~)8[Q~(a-al-B+h)+~-~111 (8) 

where N, i s  the impurity density and u i s  the potential of 
the interaction with the impurities. The wave vectors q 
and q, characterize the spatial inhomogeneity of the per- 
turbations, so that q" i s  the characteristic scale of the 
inhomogeneity. Since we a re  considering perturbations 
that a r e  smooth over interatomic distances, we canneg- 
lect q and q, compared with Q. It follows therefore 
from (8) that a - a, - 0 + 0, =0. 

Neglecting in the interaction potential q, q, and k,,, 
k,,, compared with Q, we can rewrite (8) in the form 

We have taken here a Fourier transform in the coordin- 
ate representation with respect to  the summary coordin- 
ate R =  (r +rP)/2, and S i s  the area of the intersection of 
the Brillouin zone with the plane k,, = 0. The collision 
frequencies v, and v2 a re  determined by the forward and 
backward scattering of the particles (with a change Q in 
the value of the momentum). They are  expressed in 
terms of the potential u with the aid of the equations 

SN' l u (b,+Q) 1'. vz (k,) = o'v 
Just a s  in the case of a superconductor, Z does not 

depend of k,,, i.e., on 5 [accurate to  terms -UcF - 6, 
T ) / E ~ ]  and the functions 6 vary rapidly with changing 5. 
Therefore, by eliminating 5 from the equations for 6, 
we can obtain equations for the Green's functions integ- 
grated with respect to 5: 

i - + J ~ E & ( E , ~ ~ ,  &, (11) 

Consider, for example, Eq. (4) for the functions 6. We 
write down this equation with allowance for the scatter- 
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ing of the particles by the impurities and for the pre- 
sence of the electrostatic potential @(R, t ) = d.~), as  
well a s  the conjugate equation 

We subtract these equations from each other, after 
multiplying the first by u, from the left and the second 
from the right. In the equation obtained in this manner 
we can integrate with respect to 5. The result is an 
equation for the function ;(E, &';It, 4): 

&(e-i(R) )g-g (e'-&(R)) 8.+i(v^~)g 
-@ (R) O.g+tU.@ (R) -8.st-g%&. (13) 

Here E' = E' - q(kJ 

v, = as(p,)/ak i s  the group velocity on the right- (left-) 
hand Fermi surface. The product of h(It)i  and @(It12 
means the convolution 

the right-hand side of (13) describes scattering by the 
impurities. The integral of the collisions with the pho- 
nons is of similar structure if the inelasticity of the 
scattering i s  neglected (see Ref. 7). A similar equation 
holds for the functions$"'. If the vector Q i s  parallel 
to the filaments ( Q I I ~ , ~ ) ,  then v, =vL * v,, , where vL = a cp 
(kL)/akL, v,, = vn,, , and n,, i s  a unit vector in the direction 
of the filaments. The gradient term can then be re- 
written as  follows: 

We shall consider just this case QIIp,,. We write down 
the equation for the matrices i and gR(A). It i s  more 
convenient, however, to introduce a new matrix of the 
Green's functions and of the order parameter - I- 

g.=i.g, t:'"' =^o#g"'"), A,-U.A. (16) 

We introduce also the supermatrix gn in analogy with 
the procedure in superconductivity theory": 

The equations for the Green's functions can then be 
written in the form of a single equation for the matrix 
g. This equation is easily obtained from (13) and from 
the analogous equations for ZR (A), with account taken of 
(15). It takes the form (we leave out the subscript n to  
simplify the notation) 
--" *..- i 
ea,g -gazer + [A - GZ, il- + ivV + 2- VLVL 6, i ~ +  = 12, il-; (1 8) 

[a', q*= [n6+i;i], 
i dk,' -.. .. 1 

2:=-zS T ( ~ ~ ( k L - k L ) ~ z g ( k , ' ) u z - T v s ( k ~ - k ~ ' )  

x r6,i (k,') 6% + 6"i (k,.') Gll. \ 

If all the functions depend only on the longitudinal 

coordinate Rll, then the arguments advanced by Larkin 
and ~vchinnikov" can be used to obtain the normaliza- 
tion relation 

det, 
J-g(s, 2n e,; Rll)g(e,, e'; ~~~)=2ni8(e-e'). (20) 

Equation (20) must be supplemented by the self-con- 
sistency condition. We write down the equation for the 
evolution of the operators bQ and bTQ using the interac- 
tion Hamiltonian 

From this we get 

1 a 
(1 +--) oq' atz A=I j%j deg+-(8, t ;  R). (21) 

Here X =g2~/2nwQv. An equation for A* can be obtained 
analogously. 

We now write down equations suitable for the deter- 
mination of the modulus and phase of the order param- 
eter A = I A 1 e,, 

IAlcosx=- I dk, 
*(i-ra/oq2) J de Sp (t,;), (22) 

ilAlsinx- 
h 

l-oz /wqz) J % J ~ ~ S P ( G ) .  (23) 

The current i s  also expressed in terms of the function 
i. For the current along the filaments we have 

Nu' dk, I - ~ ~ ~ S  deSp2, (24) 

where N = 2 ~ / v  is the electron density of states of the 
PD at TaT,. 

Equation (18) together with the normalization condition 
(20) and the self-consistency conditions (22) and (23) de- 
scribes the kinetics of the PD in the self-consistent- 
field approximation with pinning disregarded. These 
equations will be used to solve a number of problems of 
PD kinetics. 

2. LOW FREQUENCY CONDUCTIVITY OF THE SYSTEM 

We calculate on the basis of the derived equations the 
low-frequency (w << v, A) conductivity of a PD with al- 
lowance for the CDW motion. We consider two limiting 
cases: a) high impurity density and large curvature of 
the Fermi surface (A<<v<< 77). b) low impurity density 
and weak bending of the Fermi surface (v<< q<< A). The 
first of the considered cases corresponds to a gapless 
PD. 

a) To find the system conductivity u in this case it i s  
necessary to specify the concrete functions ~(14)  and 
v(k,). We assume for simplicity that in the main region 
of variation of kL the functions vl,, do not depend on kL. 
The right-hand side of (18) can then be rewritten in the 
form 
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- - "  - "., " -  " " 
- iv ,  ((;, <g) u,g - g;, <g) az)/2 + iva GZ (g> o ~ g  - g~ (g) 0, 

+ 2, ( i )  ivi -& (i) k)/4, (25) 

<g)-S-l j dkLg. 

We find first the functions iR a ), which we represent 
in the form iR =gR COU, +fR +ay. From (1 8) and (20) 
we obtain, taking (25) into account, 

( f ( * ) ) L  ( p ( * ) ) z = i ;  

where v, = v, + v,. 

Equations (26) and (27) differ from the corresponding 
equations for superconductors with magnetic impurities 
only in the presence of the function 1. The role of the 
frequency 7;' of collisions with spin flip i s  assumed in 
this case by the quantity vo = v, + v2/,. Putting 11 = 0, we 
can use the known results of superconductivity theory. 
In particular, at AT,< 1 (correspondingly, h/vo < l ) ,  a 
gapless state takes plece. This analogy with supercon- 
ductors w!s noted repeatedly (see, e.g., the review by 
~ulaevskii'). Strictly speaking, however, one cannot 
put 1 = 0 at v# 0, for it i s  then necessary to take into 
account localization effects in the one-dimensional sys- 
tem. Allowance for the curvature of the Fermi surface 
also leads to a suppression of the critical temperature 
T,. If 7 > v, then the influence of the curvature on the 
PD spectrum and on T, predominates, and the influence 
of the impurities is negligile in this case (in accord 
with the ratio v/$. In fact, let us determine f R u l  from 
(26) and (27) by perturbation theory, regarding A/V as 
a small parameter. We obtain 

It follows therefore that the PD state density N, does 
not vanish at any value of &.  If we neglect the ~ ( k , )  de- 
pendence, then 

From the self-consistency condition (22) we obtain for 
the transition temperature T, 

where c, is an energy on the order of the width of the 
electron band. It i s  seen that at v << 1 the T, (v) depend- 
ence i s  weak, since the main contribution to  the inte- 
gral i s  due to high energies. If v<< q<< T, we obtain 
from this formula 

TP-T,( l -aq21T2),  T,--e.e-": a-i. 

We determine now the linear response of a gapless PD 
to a constant electric field E. Just as in superconduc- 
tivity theory,Si2 it is convenient to represent the per- 
turbed Green's function t in the form of the sum 

Here 2''' and i'.' are respectively the regular and an- 
omalous parts. The latter differs from zero in the non- 

equilibrium case and has complicated analytic proper- 
ties. Since (18) contains the combination & - @, we seek 
the total Green's functions in the form 

h e )  =io(e-$)+6B, 

( 0  ( 8 )  = (80~-&.') th s. 
@ i s  defined by (29). 

The function (30) must be substituted in the linearized 
equation (18) and written for the compoents_@"' and 

;'.I. The latter take in this case the f ~ r m ~ ' ~ ' = ~ j ' ) i  
+g,b'6x (the same holds for gRu'). It must be borne in 
mind that the problem is not entirely static, since the 
condensate current i s  proportional to adat. The limit 
as  w- 0 must therefore be taken with caution. For & 
and we obtain the equations 

i v  ivr 
-ogrR-2AgSR +- (f+R+f-R)g.R - - 

2 (f+=+f-")g:) 

wherefi =?(&f w/2) and v, =vl*v2. Hence 

iEv a 8  i aeax 
g R - i - -  ( ) , gln----  

2 6  e 2 ae at' 

i'.' can be obtained similary 

We now write the final expressions for the functions 
&, and 6gs, which determine the current and the phase 
of the order-parameter 

Substituting kl) in (24), we determine the current 

where a, i s  the conductivity in the normal state 

If the CDW is  slowed-down, then 

ax - - 0 and Z=oNE (1-a) .  
a t  

But if the pinning i s  inessential and the CDW moves, 
then ax/at must be determined from the self-consisten- 
cy condition (23), which yields 

dt v 2 ~ s  
(35) 

Determining the derivative adat from (35) and substi- 
tuting it in (34), we get 

j=oNE[l-b(1-bl4a) I .  
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Let us estimate a and b. In the case v<< q<< T con- 
sidered by Gor'kov and ~ o l ~ o v *  we obtain 

At v<< q and T << q, putting for example q(k,) = qo cos 
(a. kA), which is typical of the tight-binding approxima- 
tion of electrons on a filament, we obtain a - ~ ~ / v ~ q ~  and 
b -  -A'/?$. In both cases I b I<< a,  i.e., in a gapless PD 
the CDW motion compensates for the decrease of the 
conductivity of the f ree  electrons and leads to  a negligi- 
ble increase of the conductivity. 

b) We determine now the conductivity of a quasi-one- 
dimensional conductor with a low impurity density (v 
<<A). We confine ourselves to the simplest case of 
weak bending of the Fermi surface, q<< A and q<< T. 
Then the equilibrium properties depend neither on v nor 
on q. In particular, it follows from (26) and (27) that 
the functions 8"' a n d p u '  a r e  of the same form a s  in 
a superconductor 

g"(^)=(e/A)f"(AJ=e/gR(A), 

ER(*)=~(E' -A ' )"  sign e . 0 (  lei -A)+i(Az-ez)"8(A-  181). 
(36) 

Proceeding a s  in the previous case, we evaluate the 
functions gl and g, that determine the current and the 
phase of the CDW: 

e a (8-g*) + 0  ( l e l -A)  ( ~ E E ' + v ~ A ~ ~ E - ~ ~ x / ~ ~ )  l a x * -  
g4 - -- 2 at  2~ ae  2T ch2(e/2T)  (fC,+A2vs) ' 

Here 5 = (c2 - A ~ ) " ~ .  With the aid of g1 we obtain the 
current 

2 Y z v  T I E,.,e4n+1?2 
VOA a t '  

It is seen from (39) that in the case of an immobile 
CDW (adat =O) the PD conductivity is close to  the con- 
ductivity o, of a normal metal near T, and is exponen- 
tially small at low temperatures. 

In the case of a moving CDW we must find ax/at from 
the self-consistency condition (23). We note that the 
term adat in g, makes a diverging contribution to the 
integral. We calculate it therefore with logarithmic ac- 
curacy, cutting off the integration a t  E - A-q, where 
the growth of the state density stops. Expressing adat 
in terms of E with the aid of the self-consistency condi- 
tion, we obtain 

n ( v d v ~ ) " [ l n ( A / q )  I-', AITa1  
TA- ' [ ln (T /q )  A/T>l' 

(40) 

Substituting this result in expression (39) for the cur- 
rent, we get 

At A<< T the contribution of the CDW to the conductivity 

is thus less than the conductivity decrease by the gap 
formation (since the logarithm is large by assumption). 
At low temperature, the PD conductivity is large by 
virtue of the motion of the CDW, and can exceed sub- 
stantially the conductivity above T,. 

3. COLLECTIVE EXCITATIONS 

In this section we determine the linear response of a 
PD to an alternating electric field E, =-ik@ =E, ,  
exp(- i c ~ t  +ikx) and determine the spectrum of the collec- 
tive excitations connected with the perturbation of the 
phase ,y of the CDW (i.e., with the oscillations of the 
phase of the order parameter A) and of the longitudinal 
electric field E, (and correspondingly of the potential). 
To solve this problem we must linearize (18). We then 
obtain linear equations for the matrix functions 6g(w, k), 
with right-hand sides proportional to the potential @ and 
to the phase ,y of the CDW. These equations can be 
solved in the general case of arbitrary w and k, a s  well 
a s  arbitrary relations between the parameters vl,z q, 
and A. We confine ourselves fo r  simplicity to the case 
of a pure PD (v,,, =O)  and disregard the curvature of 
the Fermi surfaces (q<< A). 

We must calculate the function @ that determines the 
current in the system and the phase of the CDW [see 
Eqs. (23) and (24)]. It i s  again convenient to  represent 
g - a s  a sum of regular an9 anomalous parts, 2=2"' 
+g'.'. The equations for gb'  can be easily obtained 
from (18). As for the equations for CU', they a r e  ob- 
tained in the same manner a s  for superconductors, and 
have a structure similar to that of the equation for ib'. 
The difference is that the right-hand sides of these 
equations do not contain the additional factor 

and the exponent A(R) is replaced by the exponent R(A) 
in the equations for gRCo. The solution of the matrix 
equations for the functions @"'and g'O' i s  simplified if 
these functions a r e  represented in the form 

Here if=gfu,   xi^, a r e  the unperturbed functions. In 
this notation" the linearized normalization relations 
a r e  automatically satisfied. It turns out that the func- 
tions d; a r e  of the form a,;# + a l i ,  where 

(D (o-2AF+/G-) +kvA (F+/G-)X 
a'-- t 

(E . .V%/ )L(kv ) '  ' 
(43) 

F, =f +e, G_=gf -g:. The expressions for GR have 
exactly the same form, if  the functions with exponent A 
a r e  replaced in (43) by functions with exponent R (for 
iA, correspondingly, the functions with exponent R a r e  
replaced by functions with exponent A). 

With the aid of the functions a, and "' it is possible 
to  obtain expressions for the current Z(w, k) and an 
equation for the phase ~ ( w ,  k). Linearizing Eq. (23) and 
substituting in it expressions (42) and (43) we obtain 
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after simple transformations an equation for the phase: 
ix+i~"+ix("'-O, 

rr) - j &[th (pa,) + th(pe-) 1 (FtEa+F+AuzA). (44) 
4A 

From (24) we get an expression for the current 
I=I'"+IC' 

Nv' 
1'') - - j de [th (fie,) + th (fie-) ] (G-na."-G-Au.A), (45) 

46 

Calculating the integrals in (44) and (45), we can find 
the response of the PD to an alternating electric field 
and the spectrum of the collective excitations. We shall 
perform the calculation using expressions (43) and as- 
suming for simplicity that the frequencies are  low 
enough: w << A and kv << A. We note that the regular 
parts of x"' and I"' can be determined by closing the 
contour of integration with respect to  E in the upper or 
lower half-plane and calculating the residues at the 
poles of the tangents. The anomalous parts of x'.' and 
1"' are  due to the quasiparticles; at low temperatures 
T <<A they contain a small factor exp(-A/T). We con- 
sider two limiting cases. 

a) Low temperatures: T << A. 

In this case the anomalous terms z'.' and x'.' contain 
the small factor exp(-A/T) and they can be neglected. 
Calculating the regular parts by residues, we obtain 
(we assume that XW; <<Ah2) 

We obtain the collective-excitation spectrum from (46) 
and from the quasineutrality condition M=0, i.e., I = 0. 
If we disregard the electric field - ik9 ,  then we obtain 
from (46) the soft mode: w = ~ ' ~ ~ w ~ k v / 2 ~ .  Allowance 
for the electric field changes the soft mode into a hard 
one: 

The first term coincides with the formula given in Ref. 
4, and the second term describes the spatial dispersion. 

We write down also an expression for the conductivity 
o(w)  of the system in the long-wave limit: 

b) Temperatures close to the critical T,: A << T. 

In this case the contribution to  the current is due 
mainly to the quasiparticles, i.e., to the terms I'.' in 
(45). Calculating z'.' in the long-wave limit (kv << w ) ,  we 
obtain, assuming w << A: 

NU' [T( i -T)  kv~, A + t x T T ] .  n A 

The equation for the phase (44) yields 

Substituting (50) in (49) we obtain the conductivity of the 
PD near T,: 

The equation (50) for the phase holds i f  the ratio w / h  
is not small. Calculating the regular terms for the case 
when they play the decisive role in Eq. (44) for X ,  under 
the condition 

we obtain the condition for the phase 

In this case of temperatures close to  T,, the term in 
the right-hand side of (53) due to the influence of the 
field E, turns out to be small. We obtain accordingly 
near T, a soft mode 

which attenuates weakly under the condition [cf. (52)) 

The situation with the collective excitations in PD 
near the critical temperature i s  similar to the super- 
conducting case.l2 In both cases the characteristic field 
E, which causes the dissipative condensate-current- 
compensating quasiparticle current, turns out to be 
small by virtue of the large number of the quasiparti- 
cle. It leads therefore to small damping of the soft 
mode determined from the self-consistency condition. 

We note in conclusion that the obtained equations al- 
low us to analyze also nonlinear problems, and can also 
be generalized to include the case when pinning plays an 
important role. 

The authors a r e  most grateful to S.A. ~razovski i  for 
a discussion of the work and for helpful remarks. 
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