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A thermodynamic theory of the phase transitions associated with the appearance of crystal facets is 
developed. The equilibrium crystal shape and the angular dependence of the surface energy in the vicinity of a 
second-order faceting phase transition are determined. It is shown that the phase transitions associated with 
the appearance of edges and conical points on crystal surfaces cannot be second-order transitions. 

PACS numbers: 61.50.Ks, 68.40. + e 

The equilibrium shape of crystals at low temperatures only a few, most closely packed faces can exist in 
is characterized by the presence of facets, i.e., plane helium crystals a t  arbitrarily low temperatures. All 
sections, each of which corresponds to the emergence the other planar parts a r e  washed out by the quantum 
to the surface of a crystal face with definite Miller in- motion of the particles even a t  zero temperature (see 
dices. This nonanalyticity of the shape is a manifesta- Refs. 11 and 12). 
tion of the distinctive dependence of the surface energy 
of the crystal on the angles determining the orientation 
of the faces. Specifically, the surface energy is a 
continuous function of the angles, but this function has 
discontinuous derivatives everywhere. The linear di- 
mensions of the planar parts for the various faces a re  
proportional to the corresponding jumps of the angle 
derivatives of the surface energy, which in turn a re  
proportional to the step energy for the face in question. 
All these quantities have their greatest values in the 
case of the most closely packed faces, and rapidly de- 
crease with increasing Miller indices (see Landau's 
paper1 and chernov'sa and Jackson's3 review articles). 

The thermal motion washes out the planar parts of 
fairly small dimensions; therefore, a t  any finite tem- 
perature only facets with not too large indices occur 
on a surface. A rise in temperature usually leads to 
the disappearance of the planar parts for the increas- 
ingly close -packed faces and, finally, to the total dis- 
appearance of the facet. It i s  clear from the foregoing 
that each crystal is characterized by a set  of critical 
faceting-transition temperatures. The highest of them 
is the temperature below which the crystal f i rs t  as,- 
sumes i ts  nonanalytic equilibrium shape. The res t  a re  
connected with the appearance of planar parts of the 
various types of faces. It may also be said that the 
discontinuities of the angle derivatives of the surface 
energy o r  the finite step-energy values first  appear at 
the critical points of the faceting transition. The con- 
cept of faceting phase transitions was introduced by 
Burton and Cabrera415 and since then such transitions 
have been qualitatively observed in many cases. Re- 
cently there has been an upsurge in interest in them 
both in connection with the general problem of surface 
phase  transition^^^^ and, especially, in connection with 
the experimental observation of facets of helium cry - 
stals. *'lo The probability for the quantum processes 
of particle tunneling i s  extremely high in these crystals. 
This leads to anomalously low values for the character- 
istic equilibrium-shape establishment time, and there- 
fore provides a unique opportunity for a quantitative 
investigation of the crystal shape near the critical 
points of the faceting transition. Let us  also note that 

In the present paper we carry out a thermodynamic 
analysis of the crystal shape and the angular depen- 
dence of the surface energy in the vicinity of the facet- 
ing phase -transition points. It turns out that in many 
cases these transitions can be second-order phase 
transitions, i.e., they can be accompanied by a con- 
tinuous change in the crystal shape. The formulas de- 
scribing these phase transitions a re  similar to the 
formulas of the Landau theory for ordinary phase 
transitions, the role of the order parameter being 
played by the jumps in the angle derivatives of the sur-  
face energy. In essence, however, there is an im- 
portant difference. The critical face does not undergo any symmetry change below the transition point, and  
no order parameter characterizing i t  as such arises. 
As to the appearance a t  the transition point of discon- 
tinuities in the angle derivatives, it leads, in contrast 
to ordinary transitions, to the abatement of the fluctua- 
tions. Indeed, the energy deviation (from the equilib- 
rium value) associated with a fluctuation-induced de- 
flection of the normal to the surface is proportional to 
the square of the angles of deflection in the absence of 
discontinuities in the derivatives and to the first  power 
of the moduli of the angles in the presence of discon- 
tinuities. The fluctuation energy is significantly high- 
e r  (i.e., the fluctuations a re  significantly less intense) 
in the second case than in the first. 

Besides the planar parts, the crystal surface may 
contain singular lines and points a t  low temperatures 
(see Ref. 12). The first  of them a re  the so-called 
edges, along which finite jumps occur in the orientation 
of the normal to the surface; the second a r e  conical (or 
angular) points, near which the crystal surface has the 
shape of a cone. The appearance of these anomalies 
as the temperature i s  lowered also determines a se t  
of critical temperatures characteristic of the given 
crystal. The corresponding phase transitions cannot, 
a s  will be shown below, be second-order phase tran- 
sitions. 

1. GENERAL RELATIONS 

The equilibrium shape of a crystal is determined by 
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the condition that the surface energy, or ,  more exactly 
(see Ref. 13), the thermodynamic potential for the 
given crystal volume, be a minimum. If we write the 
equation of the crystal surface in the form z =z(x,), 
where p = 1, 2; x, =x,  x, =y,  x, y ,  and z being Carte- 
sian coordinates, then we a r e  talkingabout the minimal- 
ity of the expression 

where f = a (1 + h:)'/2 and cr is the surface energy; cr 
and f can be regarded as functions of the angle varia- 
bles h, = az/ax,. The additional condition that the 
volume be constant reduces to the condition for the 
constancy of the integral 

The formulated variational problem has, as i s  well 
known,'' the following first  integral: 

where A i s  a Lagrange multiplier and 1; = z  -x,h,. 

Since dz =h,dx,, the differential of the variable i s  
equal to d& = -x,dh,, so  that x, = -ag/ah,. Let us in- 
troduce the quantity q, = af/ah,. On account of the 
formula (31, we have 

i.e., in the equilibrium state the quantities q, differ 
from the coordinates x, only by a constant factor. Let 
us  also introduce the new thermodynamic potential 3 
= f - h,!, . Since df = q,dh,, the differential of the po- 
tential f is equal to d j  = -h,dq, , so that h, = -aJ/aq,. 

Using the relations (4), we can rewrite the equil- 
ibrium condition (3) in the following equivalent form: 

The thermodynamic potential 7, a s  a function of the 
variables q,, is thus connected directly with the crystal 
shape in the equilibrium state: 

The critical points of the faceting transitions a re  
determined by the appearance on the crystal surface of 
areas  of zero curvature. Such areas  can naturally 
ar ise  through first-order phase transitions, i.e., 
through an abrupt change in the shape with the im- 
mediate appearance of finite-sized planar sections a t  
the critical temperature. It would, however, be in- 
teresting to investigate the possibility of continuous 
faceting transitions. In these cases, a s  the critical 
temperature i s  approached from above, some point 
x, =xF)  corresponding to the emergence to the surface 
of the crystal face in question should gradually go over 
into a flattening point, i.e., into a point a t  which one or  
both of the eigenvalues of the matrix a2z/ax,axv vanish. 

On account of the formula (61, this implies the vanish- 
ing on the face in question of one o r  both of the eigen- 
values of the matrix a2f/aq,aqv o r  the matrix ah, /a?,. 
Then for the transition to be continuous i t  i s  necessary 
that the well-known2 stability criterion requiring the 
positive definiteness of the quadratic form 

for all 6h, remain fulfilled for all the faces close to the 
one in question at the very critical point. 

Equivalent to this criterion i s  the one stipulating the 
positive definiteness of the expression 

for all bq, or  the fulfillment of the two inequalities 

,ah. aha ah ah',,,, -- > - , a,. a,, ( a q : ) .  

It i s  easy to see that a continuous faceting transition 
is possible for faces perpendicular to threefold symme - 
try axes. In this case, on account of the symmetry of 
the face, the eigenvalues of the matrix a2f/aq,aqv coin- 
cide, and therefore both a re  equal to zero at the cri t i-  
cal point. Since the face under consideration corre - 
sponds to the values q, =0,  the potential7 of the adja- 
cent faces is determined by the third-order invariants: 

where a and b a re  constants. The derivatives ahl/aql 
and ah,/aq,, which should be positive a t  small q,, do, 
however, contain sign-variable linear-in q, -terms 
when computed with the aid of this formula. The pre- 
sence of a symmetry plane passing through the axis 
clearly does not save the situation. In this case a re -  
flection in the plane can be represented as the trans- 
formation ql - -ql, so  that a = 0. But the terms with 
b do, as before, violate the criterion for stability. 

In the majority of cases, however, the faceting tran- 
sitions can, as we shall see below, be second-order 
phase transitions. 

2. SIXFOLD SYMMETRY AXIS 

Let the face under consideration be perpendicular to 
a sixfold symmetry axis. The potential7 for the ad- 
jacent faces, i.e., for the faces with small q,, is in 
this case isotropic at the required accuracy. It can be 
written in the form 

f ( t ,  q.) =fa ( t )  -'/,atql.2-'/.b (1;) I, (9 

where t = T - T, (T, is the critical temperature of the 
faceting transition) and a and b a r e  constants, both of 
which should be positive in order for the stability cr i -  
terion (8) for t 3 0 to be fulfilled for all  q,. 

By differentiating the expression (91, we find that 
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It follows from (9) and (10) that, for t > 0 and sufficient- 
ly small h,, the surface energy i s  equal to 

f ( t ,  h,) =fo+hz12at, (11) 

i.e., i t s  second derivativeswith respect to the angle 
variables h, go to infinity on the face in question (i.e., 
a t  h, = 0) in inverse proportion to T - T,. 

At the critical point itself we have 

which corresponds to a nonanalytic angle dependence of 
the surface energy of the form 

f=fo+'/, (h'lb)'". (12) 

On account of the general relations (4) and (6) ,  the 
crystal shape a t  t 2 0 is determined directly by the ex- 
pression (9). 

At t < 0 the dependence (10) of q, on h, i s  many - 
valued. It, however, becomes single-valued if i t  i s  
noticed that for the values q2 < a 1 t 1 /b the stability cr i  - 
terion (8)'is violated, so  that these q, values do not 
have any physical meaning. As a result, as h, -- 0 
the quantities q, tend to the finite value q, =qo(h,/h), 
where tlo= (a1 t 1 /b)'la. On account of the relations (4), 
this implies that there appears on the crystal surface 
a planar section of circular shape with radius propor- 
tional to q,, i.e., to the square root of T, - T. The 
shape of the planar section differs from the circular 
shape only when allowance is made for terms of higher 
order in T, - T. The dependence of the surface energy 
on the angles and temperature a t  t < 0 and h - 0 is 
given by the formula 

The jump in the angle derivatives a t  h = 0 is equal to 
2qo. 

Thus, in the considered simplest case, the faceting 
transition is described by formulas quite similar to 
those of the Landau theory of phase transitions if the 
quantities q, a re  regarded as the order parameter and 
angle variables h, as the external field. Let us, how- 
ever, draw attention to the negative signs in the for- 
mula (9). 

3. FOURFOLD SYMMETRY AXIS 

Assume that the face under consideration is perpen- 
dicular to a fourfold symmetry axis and has, more- 
over, two mutually perpendicular symmetry planes 
passing through this axis. Among the faces with a 
fourfold axis this case is of greatest interest from the 
experimental point of view. The point is that, as 
noted above, the most convenient objects for the in- 
vestigation of faceting transitions a re  crystals of the 
helium isotopes. The 4 ~ e  isotopes on the melting 
curve a t  low temperatures form hexagonal close- 
packed crystals whose basal planes undergo a faceting 
transition described by the formulas of the preceding 

section. The crystals of 3He under the same conditions 
a re  body-centered cubic crystals. The basal planes of 
these crystals have symmetry planes. 

In the present case we can form from the quantities 
q,, two independent fourth-order invariants. If we choose 
a s  the xl-  and x,-coordinate axes the lines of intersec- 
tion of the symmetry planes with the face, then we can 
choose as these invariants the quantities 74, + qi and 
q:qi. The potential f has the form 

where a ,  b, and c a r e  constants. From the stability 
conditions for t 3 0 we have the inequalities a > 0, b 
> c/3> 0. 

By differentiating the potentialf, we find the angle 
variables 

To determine the structure of the facet a t  t < 0, let 
us note the following. The potential f for a fixed direc- 
tion of the vector q, is an increasing function of the ab- 
solute value of q for small q and a decreasing function 
for large q. On the other hand, the dependence off 
on the direction of q, has different characters in the 
parameter regions b > c and b c c. First  let b > c, 
then the potential? as a function of the direction of q, 
for a fixed absolute value of q has minima along the 
coordinate axes q1 = 0 and q, = 0. Since the sections 
with zero curvature should ar ise  a t  those places where 
the original potential j [and, on account of (6), the co- 
ordinate z ]  has i t s  minima, these sections with b > c 
should be located along the coordinate axes. As the 
f i rs t  of the formulas (15) shows, the quantity h, for 
fixed q, (7: < a1 t I /c) vanishes for the two values 

The potential f (and, hence, the coordinate z ) ,  which 
depends only on $, assumes equal values a t  these two 
points. It is clear therefore that in fact the entire r e -  
gion q p )  <ql <qil) should correspond to a constant, 
zero value of the angle variable h,. Similarly, for 
fixed q, (72, < a 1 t I / c )  the region < q, <qjl), where 
q$*2) = *[(a I t 1 - ~ q f ) / b ] ' ~ ~ ,  should correspond to zero 
h,. Thus, the facet should have the following struc- 
ture. Inside the ellipse 

the crystal surface has zero curvature along the q, 
axis. Correspondingly inside the ellipse 

the curvature is equal to zero along the q, axis. Inside 
the region common to the two ellipses there ar ises  a 
plane section of the surface in the form of a square 
with i t s  vertices coinciding with the points of intersec- 
tion of the ellipses. Adjoining i t  a re  four regions with 
zero curvature only in one direction. 
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In the b < c case the potentialj  as a function of the 
direction of q, has minima along the bisectrix q, = q,. 
Along these directions should be located sections with 
zero curvature. The resulting structure should be 
similar to the preceding structure, but rotated as a 
whole through an angle r/4. Indeed, if we carry  out a 
rotation through n/4, i.e., i f  in place of q, and q, we 
introduce the new variables 

then the potential f ,  expressed in terms of the new 
variables, will have the former form, but with the new 
coefficients a '=a,  b'= (b + c)/2, and c'= b' - (c - b). 
The condition b' > c i  is satisfied in terms of the new 
variables. 

As in the preceding section, all the linear dimensions 
of the facet structures vary with temperature in pro- 
portion to the square root of T, - T. 

It is easy to understand that the existence on the 
crystal surface of areas  with only one zero curvature 
implies the appearance a t  t < 0 of discontinuities in the 
surface energy f(h,) as a function of the angles not only 
a t  h, = h, = 0, but also over the segments of the coordi- 
nate axes of the (h,,h,) plane, determined by the condi- 
tions h = 0, I h, I < h, and h, = 0, Ih, I < h,, where h, 
= (a3 / t  ~ / c ) ~ / ' x  (b/c - 1). The surface f =f(h,, h,) has 
a conical shape with kinds of finite length located along 
the four generatrices in the region close to the vertex. 

4. FACES OF THE GENERAL TYPE, SYMMETRY 
PLANES, TWOFOLD AXES 

For faces of the general type, i.e., not possessing 
any symmetry properties, the faceting transition can 
be continuous. This case is characterized by the fact 
that the transition is accompanied by the vanishing of 
not both, as in the preceding sections, but only one of 
the eigenvalues of the matrix a2f/aq,aq,. The second, 
weaker inequality in (8) should then become an equality 
a t  the transition point: 

For the transition to be continuous, i t  is necessary that 
the quantity F be positive for all q, a t  T > T, and first  
vanish at some qLo) a t  the critical point itself. It is 
clear that, as a function of q, , the quantity F should 
have a minimum a t  q, = qf )  and T = T,, i.e ., 

The three conditions (16) and (17) constitute three 
equations that determine the transition point T, and the 
critical face q, =qP). If we choose the q, coordinate 
axis along the direction in which the curvature 
vanishes, then the equalities (16) and (17) imply that 
the conditions 

a re  fulfilled a t  the point q p )  a t  T = T,. 
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Furthermore, i t  can always be assumed that the 
angle variables, hp) ,  corresponding to the critical face 
a re  equal to zero a t  T = T,. The potential 7 can thus be 
written in the form of the following expansion: 

where a, 8, a, b, c, e, p ,  and q a r e  some constants. 
For brevity of notation, here and below under 7, we 
mean the deviations of the quantities q, from the crit i-  
cal values q;). The angular variables a re  equal to 

From the stability conditions (8) for t Z= 0 we obtain for 
the coefficients of the expansion (19) the following in- 
equalities : 

The facet structure a t  t <O should be obtained by 
joining certain pairs of points x t )  and x f )  on the initial 
unstable crystal surface between which the region of 
the z minimum is located by tangents along which the 
angle variables h, a re  constant. The difference Az 
=z(xf ')  -z(xy)) is then equal to Az = h,Ax,, where 
Ax, =xp)  -xF).  On account of the formulas (4) and 
(61, this means that the values, q;) and q f ) ,  of the 
variables q, a t  the ends of the straight lines should 
satisfy the condition 

where Aq, =qf) -qF) , ~ j =  (qp) ) -f($) ), and 
h, = h, (qi) ) =ha (qf) ). Since the variable 7 , i s  not singu- 
lar ,  the points qf) and q:) can be joined by a continuous 
curve along which h, is constant everywhere, and not 
only at the ends. On this curve the equality (21) can be  
regarded a s  an equation for  the determination of the 
variable Av1 for  fixed q(,') , h,, and h, = h,(qt), h,). Let 
us introduce the potential f' =f+q2h2. Its differential 
is equal to  dfr= -h,dq, +q,dh,, so  that 

For fixed h, we have Af' = A j+ h , ~ q , ,  and Eq. (21) 
can be rewritten in the form 

Since the straight lines in question a re  common tan- 
gents a t  the points qf,) and q f ) ,  Eq. (23) should possess 
the following.property (see Fig. 1) that allows us to 
determine qil) along with Aq,. To wit, the actual va!.ue 
of qp) should be the smallest among those for which 
Eq. (23) for AT, possesses a solution. 

On account of (19) and (201, the potential f' is equal 
to 
f-f~-atqt+'/~altlq?+~/~cq~~-~/~ bq14 + e q 1 q Z 2  + '/zq111 21)~2. (24) 

Expressing q, with the aid of the second of the Eqs. (20) 
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FIG. 1 .  

with the required accuracy in terms of h, and q,, and 
substituting the result into (24), we obtain 

f'=fc-atql+llza I t 1 q?-1/,bql(+'lzcsz-11~p~qIS-es'ql-(j(q-4ea/c)szq~ 

(25) 
where s = (h, - @ ) / c .  

On account of (221, the terms linear in hq,  in Eq. 
(23) cancel each other out. After being divided through 
by (hq,)', i t  assumes the following form: 

from which we find 

altl s2 4e2 pz 

c 36 

Since to within the dominant terms q, =s, the 
second of the Eqs. (26) defines an ellipse, 

inside which the section of the surface with singular 
curvature is located. 

The surface energy f ( 4 ,  h,) possesses a discontinuity 
of the derivatives on the segment of the curve in the 
(h,, h,) plane with the equation h, = a t  + es2 rc cut + (e/cP)hi[. 
The derivative jump is determined by the formula 

It vanishes a t  a finite value of I h, 1 ,  and i s  equal to 
zero everywhere at higher values of I h, I. 

The obtained formulas describe, in particular, con- 
tinuous faceting transitions a t  the faces possessing 
symmetry planes and twofold axes. 

There exists in the presence of a symmetry plane a 
one-parameter family of faces the normals to which lie 
in this plane. There a re  two possibilities here. The 
first  of them corresponds to the situation in which the 
curvature vanishes along the direction perpendicular to 

the symmetry plane (a reflection in the plane changes 
the sign of vl, but does not change 7,). In this case, 
on account of the symmetry of the faces, the derivatives 
aq/aqlaq, and ay/aq: vanish identically. The re -  
maining two of the conditions (18) constitute equations 
for the determination of the transition temperature and 
the critical face. The transition is described by the 
above presented formulas, in which we should, on ac- 
count of the symmetry, se t  cu = e =p = 0. The second 
possibility is the vanishing of the curvature along a 
direction in the symmetry plane (the symmetry trans- 
formation is the substitution q, - -q,). In this case 
a?/aqfaq, and a2J/a?lla92 vanish identically and, fur - 
thermore, j3=p = 0. 

For faces perpendicular to a twofold axis, a9j/avi 
and a3j/aqtaq2 vanish identically. As in the case of a 
face of the general type, the remaining two conditions 
in (18) constitute, in fact, a single equation (the second 
equation is a condition on the choice of the coordinate 
system) determining the critical temperature. The 
transition is described by the above -presented formulas 
with cu=B=e=O. 

Of special interest from the experimental point of 
view a re  faces perpendicular to twofold axes in hexa- 
gonal close -packed * ~ e  crystals and body -centered 
cubic 3He crystals. In both of them a twofold axis lies 
along the intersection of two perpendicular symmetry 
planes. In this case p vanishes along with a, 6, and e. 

In all the transitions considered in the present sec- 
tion, only one of the curvatures of the surface vanishes. 
Plane regions do not arise.  Such regions should ap- 
pear a s  a result of another phase transition at a tem- 
perature T6 < T,. The second transition may also be 
continuous, and then i t  is described by similar for - 
mulas. In the case of faces with a twofold axis, for 
example, the faceting transition in question is one on 
an initially cylindrical surface with h, = 0. The poten- 
tial 7 as a function of the variable 7, in the vicinity of 
the critical temperature T: can be written in the form 

where u and v a re  positive constants and T = T -Ti. 
The angle variable h, is equal to 

There ar ises  a t  T < 0 along the generatrix of the cylin- 
drical surface a plane section with le, = 0 in the form of 
a belt of width 2(u 17 1 / v ) " ~ .  

5. EDGES AND CONICAL POINTS 

At the above-considered critical points of the faceting 
transitions the curvature of the crystal surface van- 
ishes. This, as can be seen, for example, from the 
formula (ll), leads to a situation in which the coef- 
ficients of the expansion of the surface energy f in 
powers of the angle parameters h, become infinite. 
The situation should clearly. be the opposite near the 
critical points corresponding to the appearance of 
edges o r  conical points. If such a critical point is a 
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second-order phase transition point, then the curvature 
of the surface should become infinite and, consequent- 
ly, a t  least one of the eigenvalues of the matrix a2f/ 
ah,ah, should vanish in i t s  neighborhood. Then, as 
before, depending on the symmetry of the face on which 
the singularity f i rs t  appears, one o r  both of the eigen- 
values will vanish, the f i rs t  case corresponding to the 
appearance of an edge; the second, of a conical point. 

In both cases the coefficient in the expansion, 

of the surface energy in powers of a t  least one of the h, 
components (denoted here simply by h; a is a constant 
and t = T - T,) vanishes a t  the critical point. At small 
t the fluctuations in the variable h grow on the critical 
face. As usual,13 to investigate the possibility of a 
second-order phase transition, we must generalize the 
formula (27) to the case in which the critical parame- 
ter.h depends on the coordinates x, by allowing for the 
spatial dispersion of the expansion coefficient. As a 
result, we obtain in place of (27) the expansion 

where the h(k,) a re  the Fourier transforms of the func- 
tion h(x,) and q(k,) is some function of the wave vector 
with the property q(0) = 0. For a second-order phase 
transition to be possible, the function q(k,) should have 
a minimum a t  k, = 0. It i s  easy to see,  however, that 
in our case this condition is not met, owing to the dis- 
tinctive strictional interaction of the fluctuations on the 
crystal surface via the lattice-deformation field in the 
volume. Indeed, the existence of the x-coordinate (the 
coordinate system has been chosen such that h = h,) 
dependent parameter h indicates the appearance on the 
surface of an excess number, In(%) 1 = P(x) 1 /1, of steps 
of one or  another sign per unit length along the x axis 
( I  is the step height; see Fig. 2). Let us define the 
function n(x) so  that i t s  sign coincides with that of h(x), 
i.e., with the sign of the excess steps. It is important 
for the determination of the behavior of the function 
q(k) a t  small k = k, that we take the long-range interac- 
tion of the steps into consideration. It is well known14 
that the interaction v(x) of the steps over fairly long 
distances is largely determined by the interaction via 
the lattice -deformation field, and falls off in inverse 
proportion to the square of the distance 1x1 between the 
steps. The total interaction energy U of the system of 
steps is given by the integral 

-. 

FIG. 2. 

where the function u(x - x ' )  for large lx - xrl is equal 
to 

where A > 0, since steps of the same sign repel, while 
those with unlike signs attract, each other. Going over 
to Fourier transforms, we obtain 

where S is the a rea  of the surface. 

The asymptotic form, u(k) z - Z A ~  k ]  , of the Fourier 
transforms of the function v(x) for k - 0 i s  evident 
from the obvious equality 

As a result, the contribution of the long-range elastic 
interaction between the steps to the surface energy is 
equal to 

from which we obtain the following asymptotic form of 
the function q(k) for small k: 

Thus, this function has a t  k =O not a minimum, but a 
maximum, so that a second-order phase transition i s  
indeed not possible. A formula of the type (29) can a l -  
s o  be derived (see Ref. 15) purely macroscopically by 
taking into account the dependence of the surface energy 
on the lattice deformation. 

Let us note in conclusion that, if by chance the elastic 
interaction between the steps is weak compared to the 
other types of interaction, then the result obtained in- 
dicates the possibility of the appearance on the critical 
face a t  a temperature slightly higher than T, of a 
superstructure with a macroscopically large period 
(see Ref. 15). 

The author is grateful to I. M. Lifshitz, V. I. Mar- 
chenko, and A. Ya. Wrshin for a useful discussion and 
valuable comments. 
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