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The vertex function for an electron in a constant crossed field of arbitrary intensity is derived to the third 
order in the radiation field. It is shown that the radiation interaction smears out the Airy function which, in 
the external field, describes the intensity of the interaction of the electron with the photon as a function of the 
nonconserved momentum component. A qualitative relation V"'-ax2" V"' is found between the first-order 
and third-order vertex functions for large values of the dynamic parameter x = [(eFp)q1I2m -'. It is also 
shown that the radiation interaction does not change the order of magnitude of the squared mass of the 
system transferred at the vertex. The vertex function satisfies the Ward identity as modified by the external 
field. 

PACS numbers: 4 1.70. + t 

1. INTRODUCTION the vertex function for the fieldcan be expanded in pow- 

At present there is  much interest in research on the 
radiative corrections to electromagnetic processes in 
strong external fields, i.e. , fields whose intensity is 
close to the characteristic quantum-electrodynamic 
value F, = m2c3/e6 = 4.4 - 1013 Oe. The mass and polar- 
ization operators in a constant field have been calculat- 
ed to second order in perturbation theory,'-lo a s  well a s  

e r s  of the pure field invariants, and a s  the first  approxi- 
mation one gets the vertex function in a crossed field. 
The correction terms brought in by the deviation of the 
field from a crossed field a r e  small owing to the stated 
conditions. Physically these conditions mean that the 
field is weak compared with F, and that the particles 
a r e  ultrarelativistic. 

the fourth-order corrections to these, quantities ,"-I3 

and also the radiative corrections to certain proces- 2. THE MOMENTUM REPRESENTATION FOR THE 

sesy- l3  while the asymptotic behavior of the mass and VERTEX FUNCTION 

polarization operators has also been investigated in 
higher orders of perturbation theory. '*-I6 A more de- 
tailed bibliography and commentary on radiation cor- 
rections in the electrodynamics of an intense field i s  
given in Ref. 17, page 272. 

In all  of these papers, however, the diagrams studied 
did not include the vertex function, which has not been 
found, up to this time, in electrodynamics in an exter- 
nal field. In the present paper we fill this gap and cal- 
culate the vertex to third order in the radiation field for 
an electron in a constant crossed field E 1 H, E =8, or  
arbitrary strength. This field is  described by the four- 
potential1 ) 

In third-order perturbation theory the vertex function 
of an electron in a constant crossed field can be written 
in the form 

V?'(X", y, x')  = eZy,S'(x". y )  r , S c ( y ,  s') 7 9 '  (2"-x') ,  ( 1 )  

where SC ( x , ~ )  i s  the propagation function of an electron 
in the crossed field, a s  found by schwinger18: 

S c ( x ,  y )  =e'?S(x-y),  ~ ~ = ' / ~ e ( a ,  x - y )  (k, x + y ) ,  (2) 

1 1 
n.6 (s) = 1; 4, + eF.8 + ez ( F F ) ~ ,  

6 (4) 

and Dc(z) i s  the propagation function of the photon, for 
which we shall use the proper-time representation: 

It i s  the low-frequency approximation of a plane wave 
D c ( z ) = - ~ T e x p ( i ~ - i p * ) .  i - d t  

field, and for ultrarelativistic particles it is a good ap- ~(4%) 
(5 

proximation of an arbitrary constant field. Here C( i s  a small photon mass introduced to remove 
In fact, for an electron in an arbitrary constant field the infrared diffraction divergence of the vertex func- 

the vertex function depends on invariants composed of tion. 
the momenta, the invariants X,  x', and K. composed of We shall look for the vertex function in the E ,  repre- 
the momenta and the field [ ~ q .  (56)], and pure field in- sentation, which was introduced by one of us' and i s  
variants; for these last it i s  convenient to take the in quantum electrodynamics in an external field the 
values E and 11 of the electric and magnetic fields in a analog of the ordinary Fourier transformation. We 
system in which they a r e  parallel, a s  measured in units find that the basis functions of the E ,  representation in 
of F,, i. e. , the invariants e cme and eqms,. For a the crossed field case a r e  of the form 
crossed field these last invariants a r e  equal to zero. 
If an arbitrary constant field is  such that the pure field 
invariants a r e  small both in comparison with unity and 
in comparison with X ,  x ' ,  and n: 

eern-=, eqm- ' t i ,  X, x', x ,  

The matrices (6) a r e  eigenfunctions of the operators2' 
-ial, -ia2, -i(a, + a,), (mI2 with the eigenvalues p,,p,,p-, 
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p2 and satisfy the equation written in the form (see Ref. 17, page 9) 

where ll, = -ia, - eA, i s  the kinetic momentum operator 
and yp i s  the y-matrix eigenvalue of the operator yII. 

s o  that 

r p  ( z ) E p  ( 2 )  =Ep ( 2 )  T P .  (17) 

Equation (17) can also be written in the form The matrices E, have the orthogonality and complete- 
ness properties 

d'z E ( 2 )  E p ( x )  = ( 2 n )  ' 6 ( q - p )  , I -q 

eoF 
e P ( z ) , p ( z ) ~ , ( x ) -  exp - I - ( k z )  

'ikp 

and accordingly the transition from the kinetic momen- 
tum yj5 to the quantum numbers yp o r  conversely i s  
nothing but a Lorentz transformation. J%(x) = ~ ~ E P + ( x ) K I ;  

We write the E, transform of the function (1) in the form 

v : ' ( ~ .  p, I ) =  j d'x' d'x"dby &(xu)  v,? (z", y,  z ' ) E , ( ~ ' ) e " ~ .  (9) 
The function A,(G,j5), considered a s  a function of the 

quantum numbers G and 3, has independent meaning 
apart from the dependence of 6 and 5 on the coordin- 
ates. We shall show this with the example of the fourth- 
order vertex correction to the mass operator, which in 
the E, representation is given by 

Changing the variables of integration in Eq. (9) to 

and using a relation which follows directly from the ex- 
plicit form of the E, functions, Eq. (61, M,!" (p, p )  = j &x e x f  B , ( x )  M:) (x, X I )  E ~ ( Z ' ) ,  (19) 

E , ( y + z )  = E p  ( y ) E a , ,  ( z )  e"la')lkY', (11) where 

where 

Using the obvious equation E,(x)E,(x)= 1, we rewrite 
Eq. (9) in the form i s  the classical kinetic momentum of a charge a t  the 

point y- with the initial value p, a t  the point y_=O, we 
rewrite Eq. (9) in the form 

v,'"(q,p,l)=j d ' y ~ ~ ( y ) A ?  ( B ( Y ) , B ( Y ) ) E , ( Y ) ~ " ~ ,  (13) 

where 

and show that the integral 

M:" ( p )  = d4x' E p ( x )  M:) ( x ,  x l ) E p  ( X I )  (22) 

.it) (7, p) = ea ( d4z'd'zWEi (z') yVS (2") ylrS (2')  y ,Ep(- z') Dc (k 4- z') 
Xexp {'I% ie [(azw) (kz") - (az') (Iiz')l}, (14) 

does not depend on x.  

Using the E, representation of the electron propaga- 
tor and the representation (13) for the function v:'(~, 
p,I) ,  we get 

( 6 )  ie' e - l l ( ~ - ~ )  

M, ( p )  = - jd'l d'f d l y  - 
(2n) 1'-is 

EP ( 2 )  r,E, ( 2 )  

and S(z) is  the diagonal part of the electron propagation 
function, Eq. (3). 

The resulting representation (131, (14) for V'3'(p,q,l) 
is  a Fourier integral with respect to the argument 2 .  
Shifting the variable of integration y- and using the re -  
lation ( l l ) ,  we can get for V'3'(q,p,l) a representation 
(13) with a different function A:), which, unlike Eq. 
(14), depends explicitly on I. This representation i s  
not a Fourier integral with respect to the variable I, 
but on the other hand allows us  to simplify the depen- 
dence of the function A:' on t,$,, i .e. ,  on the variables 
of integration in Eq. (13). 

From the relations (11) and (18) we have 
1 1 

E p  ( 2 )  y p E i ( 4  rnf E ~ ( Y ) =  E,(Y)E~(,)(~-Y)Y,E~(~,(x-Y) + 

(24) 
Therefore the expression (23) can be put in the form 

Equation (13) differs from the E, representation of the 
point vertex v?) by the replacement y, - A,. There- 
fore the function A,(G ,$) determines the correction to 
the vertex function in the E, representation: if in the curly brackets we change from the variable 

of integration f to J=R y),  noting that the Jacobian for 
the change is equal to unity, and then set  x - y = z. 

As can be seen from Eqs. (14) and (121, the vertex 
function in the E, representation depends on the coor- 
dinate y- of the absorption of the photon through the clas- 
sical kinetic momenta $,(y) and G,(y) of the electron 
before and after the absorption, o r  more exactly through 
yt, and yG. In a certain sense these y-matrices can be 
regarded a s  eigenvalues of the operator yII. This state- 
ment follows immediately from Eq. (71, which can be 

After integration over the virtual momenta the ex- 
pression in curly brackets in Eq. (25) i s  a y-matrix 
invariant which depends only on yj%( y), yz, and OF. 
The Lorentz transformation (18) takes yjS(y) into yp 
and yz into y'i, where 
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and does not affect the invariant OF. Therefore where 

(27) r =  q + - p + - l +  , a = ------ eqFp 81 = (em) ' 
If now in Eq. (25) we change from the variable of in- k+ ( k q )  ( k p )  ' ( k q )  ( k p )  ( k l )  ' 

(32) 

tegration y to E (the Jacobian i s  unity) and leave off the We call attention to the fact that when the external 
unnecessary tildes from f and Z, we finally get field i s  turned off the integral over y- immediately gives 

( L )  ie' d'jd'l 1 
M" (PI= --yj= V , ! ~ ' ( P ~ ~ ,  -0 m+iyf-iE 

( 2 n )  
2) ( f , ~ ) .  (28) 

Accordingly, ~ : ' ( p )  does not depend on the coordinate 
x ,  and using Eq. (8) we get for the mass operator (21) 
the diagonal expression 

M:" ( q ,  p )  = (2n)' 6 ( q - p ) ~ ? '  ( P I ,  (29) 

which was also to be expected from general considera- 
tions. ' 

An analogous representation can be obtained also for 
the second-order mass operator: 

iez d'f d'l 
M'a) ( p ) = - - -  - 1 

( 2 n ) 8  J l i - iE v:" ! ~ . f .  -1) m+iyf - i s  '' (30) 

and leads to the conservation law pa + I ,  =q, for all  
four momentum components. If we turn off the radiation 
interaction in Eq. (311, i.e., if we set  A(')--~, ,  then 
v'" goes over into the vertex function V" given by 
Eqs. (22) and (23) of Ref. 19. In the presence of the 
field the first ,  second, and minus components of the 
momentum a r e  conserved, and the plus component, con- 
jugate to the minus coordinate, i s  not conserved; the 
kinetic momentum of the electron depends on the coor- 
dinate y- of the absorption of the photon. Therefore 
after the integration over y _  the final momentum i s  not 
completely determined by the initial momenta p and I ,  
the conservation law holding only for three of the four - - 
components, see  Eq. (31). Moreover, if we regard 

Comparing formulas (28) and (30), we see  that the 
A, a s  a slowly varying function of y ,  and abstract from change from the second-order mass operator to the 

vertex correction (281, (30) a r e  remarkably similar to spin effects, then because of the oscillation of the func- 

the vacuum expressions; in them only one vertex i s  tion eff'*' the largest contribution to the integral (31) 

"dressed" with E,  functions. This similarity, achieved comes from the neighborhoods of points cp= cp,, where 

with the technique of the E ,  representation, decidedly fl(cp,) = 0 .  Since 

facilitates the interpretation and the calculations. -fr(cp) =r-acpf 4Pcp2=k+-I (B+ (Y) -B+ (y) -1+),  (33) 

3. CALCULATION.OF THE VERTEX FUNCTION this means the neighborhoods of points a t  which the 
conservation law holds also for the plus components of 

Before proceeding to the direct calculation of the the momenta. 
vertex function A,, in third-order perturbation theory, 
we recall that the representation (14) i s  not unique. For the radiationless vertex function v;), for which 

For example, by choosing in Eq. (9) integration var- A;' = y,, the integral over y- in Eq. (31) reduces es- 

, iables different from those of Eq. (10) one can get for sentially to an Airy function ch(z) with the argument 

the vertex fuiction a representation that depends ex- 
plicitly on I. In the absence of an external field this 
arbitrariness of choice corresponds to the use of con- which replaces the function 2a8(q+ - p +  - I + ) .  We omit 
servation laws. In our case, however the situation i s  here a common factor and the spin structure that leads 
less trivial, since in a constant field we have only three to terms in the first and second derivatives of the Airy 
conserved quantum numbers and different representa- function. 
tions of A,, differ from one another in their y-matrix 
structures. The passage from one representation to 
the other requires integration by parts with respect to 
the variable y- in Eq. (13), so  that in calculating A:' 
it i s  convenient to start  directly from Eq. (13). We 
shall try to express the vertex function in the form of 
an integral over the proper times of the electron and 
photon, in which the phase in the parts that do not de- 
pend on the field is expressed in terms of G2=q2, h2 
=pZ and 12, and in the y-matrix structure the matrices 
yij a r e  on the left and the yf, a r e  on the right. 

We note that the argument z i s  gauge invariant, and 
determines the amount of detuning q +  -p+ - l +  in terms 
of the field strength P,, and the values of the conserved 
components of the momentap, q ,  and I .  On the other 
hand, by means of the conservation laws we can give 
to the quantity (q - p  - I)  + the meaning of the transferred 
squared mass of the system in the charged o r  neutral 
channel: 

Choosing the coordinate system and the gauge so that Accordingly, the interaction of the electron with the 

the vector a is  along the axis 1 and k i s  along axis 3, photon i s  intense only if z i s  not too large in absolute 

and integrating over the coordinates y,, y,, and y + 
value, i. e. , if the law of the conservation of the plus 

= 4(yo + y3), we put Eq. (13) in the form components of the momenta i s  not too strongly violated. 
When the radiation interaction is taken into account A, 

v ; ' ) ( q ,  p, 1) = ( 2 n )  6(q1-pi-1,)  6  (q2-p2-1d6 ( q -  - P-  - I - )  becomes a complicated function of y _  and the Airy func- 
eoF eoF tion i s  considerably modified, cf. Eq. (54). x j d y -  e""exp ( 4 - 9 )  C ) ( I ( Y ) , I ( Y ) I ~ X P  ( i x c p ) .  (31) 

-- 4 k q  Using the representations (2) and (5) of the Green's 
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functions and the explicit form (6) of the E, functions, 
we carry through the integrations over z',zN in Eq. (14) 
by means of the formula 

where w i s  a 4 x 4 matrix in the Lorentz indices cr,B 
and an n x n matrix in the indices i,k that number the 
4-coordinates of the integration and the prescribed four - 
momenta, w-I i s  the matrix inverse to w, and g is an 
arbitrary function of the variables x', k = 1,2, .  . . , n. 

In our case 

where the two-rowed matrices w, a r e  given by 

s,, s,, and t a r e  the respective proper times of the el- 
ectrons with the momenta p,q and of the photon, and 
&9;' = s;l + t;'. 

The inverse matrix w-' also has the structure (36) 
with the matrix coefficients u, instead of w,: 

a,=w,-' = - 
det wo -t-' o,-' 

where o, is  the Pauli matrix, and 

(39) 

After the integration Eq. (14) can be written in the form 

where 

and the double arrow over differential operators means 
that they act both to the right and to the left. After car- 
rying out the differentiations we a r e  to set 

The result (40) has a very complicated dependence on 
f i  and G ,  and consequently on y-. This dependence can 
be considerably simplified by the following device. Sub- 
stituting the expression (40) in Eq. (31) and making the 
changes of variables 

2 ~ 4 ~ 2  
2- = y- +--- 

S ,  +S2 + t  
I-, (42 

we can rewrite Eq. (31) in the new form 

where the transformed vertex function A(;)(?,$, 1) now 
depends on I ,  but in return has a very simple dependence 
on z :  

{ 
ma i  x exp - imS- i -  vR - - oZu(l-q')  e@FP Q,(q, a, l ) ,  (45) 
3 2 1 

S - ~ V ~ + V ~ )  +1/2q1(1-q) +L/rp2(i+q)  + l / c P ~ ( i - ~ t ) ,  (46) 
R=i / , ( eFq) ' ( l -q )  [ l + ' / 2 q ( l + q )  (1 -v )  l+'12(eFp)'(l+q) 

X [ I - 1 / 2 q  ( I - q )  ( I - v ) ]  + l / , ( e F l ) z ( l - q z )  [ ~ - 2 + ~ / . ( l - q ' )  (1+v)'] .  (47) 

The variable v,=v + ~ ( 1  +v)/v,  A =  (p/rnI2 contains the 
photon mass. The phase of the integrand depends only 
linearly on z, through eGE7, = eqFp + e 2 1 F ~ z .  The quan- 
tity Q ,  i s  given by 

where 

and the matrices A,A', B(q),B'(q) a r e  defined by the 
equations 

In the transformation of Q, we have used the equality 
(33), which we already used in the integration by parts 
in Eq. (31) over the variable y-. 

We note that the matrices A and A '  have a simple 
physical meaning, namely 

where the matrix naB is  defined in Eq. (4), azB differs 
from it in the sign of the charge o r  the field, and zeff 
is the effective value of the relative coordinate of the 
classical electron with the momentum q (Ref. 5). 

When the field i s  turned off the vertex function (45) 
goes over into the vacuum form, which was first  ob- 
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tained by Karplus and K r 0 1 l ~ ~  (see-also Ref. 21). 

As already been mentioned, for the radiationless ver- 
tex function v:' the integral over y_ in the representa- 
tion (31) reduces essentially to the Airy function @ ( z )  
with the argument (34). It follows from Eq. (45) that 
the radiation interaction smears  out the G(z), replacing 
it with the function 

am' " ' dv ' 
4ni! dm! TT;j d l  exp ( i w ~  - ~ ' V R  ) m ( 2 - t ) .  (54) 

where z i s  the same argument (34) and C i s  a correc- 
tion which depends on o, v ,  and : 

4. PROPERTIES OF THE VERTEX FUNCTION IN 
STRONG FIELDS 

We shall discuss two properties of the vertex function 
we have derived, which make it decidedly different from 
the corresponding function for an electron in vacuum. 
The interaction of particles with the external field i s  
characterized by the relativistically and gauge invariant 
parameters 

which, depending on the channel, satisfy the conserva- 
tion laws 

~+r.=x'* x-x+xr. (57) 

It follows even from the radiationless vertex function 
V F -  @ ( z )  and from the structure of the argument z that 
the squared mass transferred in the vertex is of order 
of 

is independent of m, and vanishes when the field is 
turned off 

For large fields or  momenta a t  least two of the pa- 
rameters x, x', x a r e  large, and the transferred mass- 
squared is much larger than the square of the electron 
mass and increases with the field. For example, if 
x - x'- x>> 1, then in any channel the transferred mass- 
squared is -(eFp)'/'. 

The radiation interaction does not change the validity 
of Eq. (581, since the important values of the variables 
of integration in Eq. (54) a r e  such that f i s  always smal- 
l e r  than o r  of the order of unity. 

Of still greater interest i s  the qualitative behavior 
of the vertex function v:' a t  large values of the param- 
eters (56). In this case the important values in the ex- 
pression (54) a r e  w - x9I3 and G(z - 5) - 1, and we have 
the relation 

(31 (1) 
V, -axqlri, . (59) 

Furthermore the y-matrix terms3' Q , ,  which effective- 
ly depend on the field, a r e  important here. The rela- 
tion (59) indicates that axzf3 is a universal parameter 
for the applicability of perturbation theory for large 
energies or fields. Arguments in favor of this sor t  of 
dependence (power-law, not logarithmic) of this param- 
eter on x were first given by one of the present writ- 
ers' and were confirmed in Ref. 14. 

5. THE WARD IDENTITY 

The vertex function must satisfy a generalized Ward 
identity, which was first  found by Fradkin." It is  con- 
venient for u s  to use  this relation in the E ,  representa- 
tion (see the paper by Mitterz3) 

where ~ @ ' ( q )  i s  the second-order mass operator and 
the matrix I(q,p, 1) has the representation 

and i s  a generalization of the four-dimensional function 
(21r)~8(q -p -I) ,  which describes conservation of mo- 
mentum a t  the vertex, to the case of a nonzero external 
field. Therefore I(q,p,Z) differs from V,(q,p,l) by re-  
placement of A, with unity, see  Eqs. (13) and (31). 

By taking the limit I - 0 in the identity (60) we can 
get the differential Ward identity 

eF a d M ( p )  k  k d M  [ ( - - 1  A . ( ~ + S ~ , ~ , O )  1. . . = - 1 - - 1 - 1 . -  
k p d s  ," a p ,  4 ( k p ) *  a p ,  

By direct calculation it can be verified that our vertex 
function (45) and the previously found1' mass operator 
of the electron in a crossed field satisfy the relation 
(62). This i s  a good check on these calculations. The 
choice of the integration variables in (13) for the vertex 
function was determined precisely by the requirement 
that they should be identical a t  I = 0 with the integration 
variables in the expression for the mass operator.12 
It i s  not hard to see  that for I = 0 the integral over y- 
in Eq. (45) gives a 6 function for the plus component 
of the momentum, and the phase of the integrand in Eq. 
(45) no longer depends on the variable q ,  which i s  the 
fractional difference of the electron proper times, q 
= (s, -sl)/(s, + s,). The phase now agrees with that 
of the second-order mass operator,'' except for the na- 
tural change in the variables of the vertex 

the sum s, + s, replaces the proper time s in the anal- 
ogous variables of the mass operator. The variable w 
can be called the proper time of the vertex function. 

We note that for the representation (45) of the vertex 
function we have besides Eq. (62) the relation 

Our result for the vertex function contains of course 
a logarithmic divergence with respect to the proper time 
and requires regularization. Since the presence of the 
external field does not lead to any ultraviolet divergen- 
ces beyond those of the vacuum case, to regularize the 
vertex function (45) it sufficies to subtract from it its 
value a t  I = 0 ,  yq =yp = im and F=O; 

~ ( 3 )  - - ,, (7, q 3  0) lya=,m, I?=,, = L ( ~ ) ~ P ,  (64) 

(65) 
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Then for  the regular ized ver tex  function we  have 

Introducing in Eq. (65) as the  lower l imit  on the var i -  
ab le  of integration w the value w, - 0 a n d  performing the 
integrations, we  get  for  L ' ~ '  the  expression 

The w r i t e r s  are grateful  to E. S. Fradkin and the  
m e m b e r s  of his s e m i n a r  f o r  a discussion and  the i r  
comments .  

')We use a system of units in which R = c = 1, and the notations 
pa=  @. ape), PQ=P'Q-POQO P-, =PO-PJ. P+= i /2(po+pS). 
= e2/4r& = (137.03. . . )-I. 

'1 Expressions not written in invariant form are  always given 
in a coordinate system with the axis 3 along the vector k: 
kp = (0, 0, ko, ik&, k+ = ko. 
A detailed derivation and analysis of the relation (59) i s  
presented in our preprint (Fiz. Inst. Akad. Nauk, No. 84 
1981), under the same title. 
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