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Light-induced drift of gases in fields of nonmonochromatic radiation with different spectral characteristics is 
investigated. The dependence of the drift velocity on the form of the spectrum, on the width, intensity, and 
detuning of the radiation frequency from atomic resonance are analyzed. It is ascertained that at a fixed 
integrated intensity of the radiation, the drift velocity of the gas is larger in those cases when the spectral 
width of the radiation agrees in order of magnitude with the Doppler width of the atomic transition, while the 
wings of the spectrum fall off more rapidly. It is shown that, at equal intensity, nonmonochromatic radiation 
makes it possible to obtain larger drift velocities than monochromatic radiation. The feasibility in principle of 
obtaining supersonic light-induced gas streams is investigated. 

PACS numbers: 5 1.70. + f 

INTRODUCTION chromatic radiation with different spectral character- 

It was previously showntd theoretically and experi- 
mentally that a traveling light wave i s  capable, under 
certain conditions, of producing a macroscopic flux J 
of absorbing partides located in a buffer-gas medium 
(optically-induced drift phenomenon). The flux velocity 
can approach the average thermal velocity of the parti- 
cles. A theory of light-induced drift (LID) in the field 
of monochromatic radiation (MR) was developed in Ref. 
3. The gist of the LID phenomenon i s  the following. 
Let the frequency w of the monochromatic radiation 
differ little from the frequency wo of the transition be- 
tween the ground state n and an excited state m of the 
atom. When the radiation in question interacts with a 
gas consisting of the described atoms, the velocity dis- 
tributions p,(v) and p,(v) of the excited and unexcited 
atoms become asymmetrical. The asymmetry i s  due 
to the fact that the radiation excites predominantly 
those atoms whose velocity i s  such that the correspond- 
ing Doppler shift k - v  of the radiation frequency (k is 
the wave vector) cancels out the frequency detuning $2 
= w - wo. In this case the asymmetry of the velocity 
distribution means that the corresponding average ve- 
locity differs from zero. Consequently, in each state 
there exist directed atom motions characterized by the 
fluxes 

j, - jvp,(v)dv, j, = jvp,(v)dv, 

which a re  collinear with the wave vector k, directed 
opposite to each other, and equal in magnitude, so that 
J=O. 

A buffer gas offers resistance to these fluxes. Since 
the dimensions of the excited andunexcited atoms are  
generally speaking different, the forces resisting the 
fluxes of the excited and unexcited atoms are  also dif- 
ferent. A net force i s  therefore produced and i s  exert- 
ed by the buffer gas on the absorbing gas a s  a whole. 
This leads to a directed macroscopic motion of the lat- 
ter, characterized by the flux 

J=jn+j,#O. 

The present paper i s  devoted to a theoretical investi- 
gation of the LID phenomenon in a field of nonmono- 

istics. The prospect of using nonmonochromatic radia- 
tion to enhance the LID effect was demonstrated by us 
earlier5 on the basis of a very simple model of inde- 
pendent radiation modes. In Sec. 2 of the present pa- 
per we obtain and integrate expressions that describe 
the fluxes J due to LID in the field of nonmonochromatic 
radiation, a s  well a s  expressions for the velocity dis- 
tribution functions of the populations of the ground and 
excited states of the absorbing particles, p,(v) and 
p,(v), respectively, a s  function of the velocity distribu- 
tion p,(v) + p,(v) of the total number of absorbing parti- 
cles. Sections 3-5 a re  devoted to study of the course 
of the LID of gases in fields with spectra of concrete 
forms. We analyze the cases of a Lorentz, Gaussian, 
and rectangular emission spectrum. We investigate 
the feasibility in principle of the onset of light-induced 
supersonic streams of an absorbing gas, i. e. , of 
streams with velocity higher than thermal. 

2. GENERAL EXPRESSIONS 

We consider the interaction of a gas of two-level 
atom with a nonmonochromatic quasiresonant electro- 
magnetic wave 

E (*, t )  =I/,  [e ( t )  e-""-"'+e'(t) e""'-"' 1, 

where ~ ( t )  i s  a random function of the time. In the 
presence of a large amount of buffer gas, this interac- 
tion, using the model of strong collisions that establish 
a Maxwellian distribution: i s  described by the following 
system of equations for the elements of the atomic den- 
sity matrix: 

Here V=-c(t)d.,,,,/2A; d,,,, i s  the matrix element of the 
dipole moment for the transition m-n; wo and r are  the 
frequency and homogeneous half-width of the given 
transition; r, is the radiative width of the level m; v i s  
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the velocity of the atom; v, and v, a r e  the freq-~encies 
a t  which the absorbing atoms in the excited and the 
ground states, respectively, collide with the atoms of 
the buffer gas; 

W ( v )  = (r~'"iJ)-~ exp [- (v/iJ)'] 

is the Maxwellian velocity distribution; 5 is the most 
probable thermal velocity of the absorbing atom; pj(t) 
( j  = m, n) is the population, integrated over the veloci- 
ties, of the level j. It was assumed that the states m 
and n a re  essentially differently perturbed in the colli- 
sions, so that in the case of p,,(v, t )  the collisions lead 
only to a broadening (r ) and to a frequency shift. Tf 
necessary the latter can be regarded a s  included in wo. 

Introducing a new variable ~ ( v ,  t), such that 

pmm(v, t )  =o(v ,  t )  exp [ i (oo+kv)  t - r t ]  , 

and using the f i r s t  equation of the system (2. I), we ob- 
tain 

1 

o (v ,  t )  = i j  V ( t r )  [ p ,  ( v ,  t ' )  -p,(v, t ' )  ]exp (iQrt'+rt')dt',  
-- 

Qr=o-o,-kv=Q-kv. (2.2) 

Using (2.1) and (2.2) and averaging over the random 
variables (we designate this averaging by angle brack- 
ets), we obtain for the diagonal elements of the density 
matrix the expressions 

-2Re 5 < V ( t f )  V ( t )  [ p , ( v ,  t')-p,(v, t') ])exp[--iQf (t-t')-r(t-t') ] d t f .  
-- 

Following ~ursh te in '  we "uncouple" the field and 
atomic variables: 

Then the stationary solution of the system (2.3) satis- 
fies the following equations (( p,(v, a)) p5(v)): 

(rm+v,)p~(v)=W(v)v~pm+21GI2[p.(v) - 
-P,(v) ]Re I cD(r)exp[- iQfz-rz ldr ,  

0 

where *(T) is a correlation function connected with the 
emission line shape g(wf - w) by the relation 

1 -  w 

g ( o l - a ) = - R ~ I  d r ( P ( z ) 6 x p [ - i ( o l - o ) ~ ] ;  5 g (o ' -o )do '= l .  
0 -- 

The solution of Eqs. (2.4) is of the form 

Here 

The angle brackets (. . ), denote averaging over the 
velocities with a Maxwellian distribution. Formulas 
(2.5) generalize the expressions obtained earlier8 for 
the case of monochromatic radiation, t o  include the 
case of nonmonochromatic radiation with arbitrary 
spectral composition. 

The expressions obtained above a r e  applicable, within 
the framework of the validity of the employed approxi- 
mation, namely the splitting of the field and atomic 
variables. This approximation is valid if during the 
radiation correlation time T, (which i s  of the order of 
magnitude of 6-', where 6 is the half-width of the spec- 
trum) no noticeable change takes place in the level p o p  
ulations. The corresponding criterion takes the form 
6'Ig(n) IG 1' << 1, or ,  a t  n = 0, the form - I G l 2  << 6'. We 
note that a t  1G 12<< 6'the saturation parameter x " (GI27,/6 
can assume values x >> 1. Thus, the employed approxi- 
mation enables us to consider also cases of strong sat- 
uration of the populations, which a r e  determined by the 
probability of transition after a time of the order of T, 

>> 6-'. A more detailed discussion of this question, is 
contained, e. g., in Refs. 7 and 9. 

In the population velocity distribution functions p5(v) 
we can separate the equilibrium (Maxwellian) and non- 
equilibrium (selective) parts proportional to Y(v). The 
function ~ ( v )  describes the dips and the peaks in the 
distribution function, called in the case of MR the Ben- 
nett dips and peaks. 

The nonequilibrium and equilibrium parts of pj(v) a re  
proportional respectively to the quantities TI, and TZ,, 

which have the dimension of time. For the level tn 
these quantities a re  interpreted in the following man- 
ner: TI, is the lifetime of the state with given velocity 
p,(v); T', is the lifetime of an excited atom in a state 
with Maxwellian velocity distribution. We note that rim 
+ T2,,, = r,", where r,-' is the total lifetime on the level 
m. In accordance with their physical meanings, TI, 

and T2, govern the weights of the selective and equilibri- 
um parts of the velocity distribution of the excited 
atoms. The field part of the distribution p,(v) has the 
same structure a s  p,,(v). For the level n, however, 
besides the induced transitions and the change of the 
velocities on account of the collisions, an important 
role is played by arrival from the level m via the spon- 
taneous relaxation channel. Therefore the interpreta- 
tion of TI, and T,, is more complicated. 
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Using (2.51, we easily obtain the total velocity dis- 
tribution of the absorbing atoms . 

Here N is the density of the absorbing particles. From 
(2.7) i t  is easily seen that the deviation from the Max- 
wellian distribution i s  due to the difference between the 
collision frequencies v, and v,, in full agreement with 
the qualitative reasoning presented above. 

Multiplying (2.7) by v and integrating over the veloci- 
ties, we obtain an expression for the total flux of the 
absorbing atoms J and for the drift velocity u: 

We proceed now to analyze the influence exerted on 
the LID by the spectral characteristics of the radiation. 
We first demonstrate the advantages of using nonmono- 
chromatic radiation, using a s  the simplest example a 
Lorentz radiation spectrum. 

3. LID OF GASES IN THE FIELD OF 
NONMONOCHROMATIC RADIATION WITH A 
LORENTZ SPECTRUM 

Using for g(w' - w) the expression 

where 6 is the half-width of the emission spectrum, we 
obtain 

xL(6+r)" T.IGI' 
Y (v) = ; x,=2- 

Q'2+(6+I')'(l+xL) 6+r  ' 

According to (2.8), the expression for the drift velocity 
takes the form 

Formula (3.1) generalizes, by means of the substitution 
r - 6 + r, formula (9) of Ref. 8, obtained for the case 
of monochromatic radiation, to the case of nonmono- 
chromatic radiation with a Lorentz spectrum. 

At v,, << v, and v, << r,, the parameter rg/?, takes on 
minimum values close to -1. This condition, together 
with the condition x, >> 1, ensures minimal values of 
the denominator of expression (3.1). At the same time, 
at v, << v, the factor (v, - v,)/(v, + v,) takes on the larg- 
est absolute values. Thus, it is clear that the maxi- 
mum of the quantity lu l is realized under the conditions 
x L  >> 1, V, << v,, and v, << r,. Using the tables of Ref. 
10, we find that the maximum drift velocity is reached 
a t  ~ ~ 0 . 5  and y =  1-2, and its value i s  lu I=0.5?j. Thus, 
the drift velocity amounts to half the thermal velocity of 
the absorbing atoms. 

If v, and v, a r e  of the same order of magnitude, v, - v,, then the attainable drift velocity values become 
smaller than given above, but remain comparable with 

- 
v.  

If monochromatic radiation i s  used (6 << r )  at x, - 1 
the condition y - 1, a s  can be easily seen, takes the 
form r- kZ. The parameters r and v, a r e  not indepen- 
dent, since both a re  determined by the collisions of the 
absorbing atoms with the buffer-gas atoms. The condi- 
tion I?- kZ means thus that v, >> r,. For typical elec- 
tronic transitions in atoms we have r,/kz- lo4 ,  and 
the condition r/kZ- 1 can be satisfied only if  r is gov- 
erned practically entirely by the collisions (impact 
broadening). Recognizing also .that the broadening 
cross section usually exceeds the transport cross sec- 
tion by not more than an order of magnitude (v,/r 
-lo4), we arrive at the conclusion that the condition 
r/kE- 1 corresponds to a ratio v,/r,- 10'. The ratio 
rB/ra differs in this case from the optimal value. Un- 
der conditions when this ratio is minimal we have r - I?, << k;, and the optimal values y - 1 can be attained 
only by substantially increasing the field intensity (at 
r,/kZ- l o4  and v,- I?, we should have x, - lo4). 

If nonmonochromatic radiation i s  used, the condition 
y -1  is of the form 

Since the parameters 6 and v, a r e  independent, this 
condition can be satisfied simultaneously with the condi- 
tion v, 5 r, for arbitrary x,, including x, - 1, if 6 - k5. The saturation parameter x ~ ,  both in the case of 
monochromatic and nonmonochromatic radiation, i s  
proportional to the integrated intensities of the radia- 
tion, ZMR and IN,,, respectively. Starting from the 
definition of x,, it can be easily shown that if nonmono- 
chromatic radiation is used, a drift velocity u compar- 
able with 3 can be obtained at integrated intensities 
ZNYR that a r e  smaller by a factor 6 / r -  kZ/r- lo2-ld 
than the ZMR needed for this purpose. The last conclu- 
sion is most important and demonstrates the substan- 
tial advantages that the use of nonmonochromatic radi- 
ation offers over monochromatic radiation for the 
study and practical utilization of the LID of gases. 

4. INFLUENCE OF THE FORM OF THE 
SPECTRUM ON THE LID 

In the preceding section we have demonstrated the 
advantages of the use of nonmonochromatic radiation 
over monochromatic radiation. This raises the ques- 
tion of whether the characteristic form of the spectrum 
is of importance. We indicate first  a case when the 
form of the spectrum is not a significant factor. We 
consider a situation in which the homogeneous width of 
the atomic transitions and the width of the spectrum are  
much smaller than the Doppler width of the transition, 
and the radiation intensity i s  limited by the condition 
?=A << 1 isee formula (2.613, meaning smallness of the 
fraction of the selectively excited particles. Then Y 
= ?,A. Recognizing that A (v) is according to (2.6) a 
more rapidly varying function than W(v) and vW(v), 
when integrating with respect to v in (2.8) we can take 
the latter outside the integral sign at the point of the 
maximum of A(v). As a result (r),, (vY),, and conse- 
quently also the drift velocity u, a r e  determined only 
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by the integrated intensity of the radiation: 

x (B) = [2n"% I G 1 '/kF] exp [- (Q/&) 7 < I .  

Thus, in the considered case the drift velocity does not 
depend on the form of the spectrum. 

In another limiting case, when the spectrum width 
greatly exceeds the Doppler width of the transition, and 
the envelope of this spectrum is smooth, the quantity u 
is likewise independent of the form of the spectrum. 
Indeed, if 1 << kF, we obtain 

However, calculating (Y) ,  and (vY),, we take into ac- 
count the change of the spectral density of the intensity 
over an interval of the order of k Z  

Y ( P - k v ) = Y  (9)-t,A'(Q)kv/[lf~J(Q)]~, 

A'(Q) =dA/dQ; A ( Q )  =2n 1 GI ' g ( Q ) ,  
(4.2) 

where A(O) i s  dependent by the spectral density of the 
radiation a t  the frequency of the atomic transition. 
From (2.8) we obtain with the aid of (4.2) 

where A 1  i s  the change of the spectral density of the in- 
tensity over the interval k; in the vicinity of the atomic- 
transition frequency. In the particular case of a Lor- 
entz spectrum, formula (4.3) coincides with (3.1) for 
values 6 >> kv. 

From formula (4.3) follows an important conclusion 
that in the case of broad radiation spectra the velocity 
of the light-induced drift is governed not by the form of 
the entire spectrum, but only by the character of i t s  
variation near the frequency of the atomic transition. 
In addition, i t  is easily seen that the maximum value of 
lu I is limited by the factor ~ I / 2 1 ,  which is small in 
the employed approximation and at optimal detunings 
O- 6 is of the order of the ratio of the Doppler width of 
the transition to the width of the emission spectrum. 

We turn now to an analysis of cases  when the width of 
the emission spectrum is comparable with the Doppler 
line width. The influence of the form of the spectrum 
then turns out to be substantial. This region is all the 
more interesting, because the LID effect itself is man- 
ifest in i t  to the greatest degree. For  comparison with 
the already invested example of the Lorentz spectrum, 
we consider another example-a Gaussian spectrum: 

g ( o - o f )  =n-'"P-' exp [- (o-o') ZIi32]. 

Putting p >> r, we obtain 

In the approximation of low radiation intensities 7,A 
<< 1 and Y= 7,A, we can obtain the following expression 

u vn-v, xo (Q)  9 k v  
-=- 
5 v,+v, [ I + ( T B ~ T = ) x G ( Q )  I [V+ (kc) ' ]  ' 

In the same approximation in the field, for the Lorentz 
spectrum it is necessary to leave out the unity from the 
denominator of (3.1). 

Assuming the width of the spectra to be the same and 
equal to the Doppler width of the transition /3 1nw22 = 6 
= k 3  rB/7, s 1, we find with the aid of the tables of 
Ref. 10 that the maximum value of the drift velocity is 
reached a t  151 121. lk;, for a Gaussian spectrum and a t  
1 O I -  1.2k; fo r ' a  Lorentz spectrum. In the case of dif- 
ferent integrated intensities of the radiation, the drift 
velocity for a Gaussian spectrum is 1 .8  times larger 
than the drift velocity for a Lorentz spectrum. This 
agrees with the concept developed above, since a Gaus- 
sian spectrum drops off more rapidly in the wings than 
a Lorentz spectrum, and consequently ensures higher 
selectivity of the excitation. 

Under the conditions @, 6 >> kv, T; v, 5 l?,,,; x,, u L  << 1, 
the expressions for the drift velocities u, and u, for 
Gaussian and Lorentz emission spectra take respec- 
tively the forms 

The maximum of lu, I is reached at 1 O I =  2-" 2 ~ ,  

while that of lu, I a t  IO 1=3"'6. Assuming that P 
= 6 1n-i"'22, we find that u,/uL= 1.6 at equal integrated 
radiation intensities. A similar estimate can be ob- 
tained also with the aid of the general formula (4.3). 
Thus, in the latter case the difference is less  pro- 
nounced, this being due to the overall decrease of the 
selectivity of the excitation in the case of spectra that 
a r e  excessively broad. 

With the aid of (4.3) we can obtain for the drift veloc- 
ity an expression that is valid a t  arbitrary radiation in- 
tensities with a broad Gaussian spectrum: 

According to (4.7), the maximum value of u,/E is de- 
scribed by the expression 

and is reached a t  radiation intensities satisfying the 
condition 

Figures 1 and 2 show a graphic analysis of expression 
(4.7) for the values of the parameters P = lOk;, and 
vm/v, =lo.  Figure 1 shows the dependence of the drift 
velocity on the radiation intensity I in w/cm2 at a fixed 
value of the detuning O = P. To estimate the radiation 
intensity we used also the values of the parameters 
(P = lo i0  secd, urn<< rm=lo7 sec-', Id /=  ID), at which 
x ,  = 0.281 [W/cm2]. It is seen from the figure that 
with increasing intensity the drift velocity increases 
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FIG. 1 .  Dependence of the drift velocity on the radiation in- 
tensity I with a broad Gaussian spectrum, Q=p = 1 0  ko; v,/vm 
= 1 0 ;  1 [~/crn']=3.5  nG(n). 

and reaches a t  the chosen value of 52 a maximum equal 
to u/Z= 1/37 a t  I- 12 w/cmZ, which corresponds to 
x~(S2) = 3.4. Next, with increasing radiation intensity 
the field broadening of the Bennett structure and the 
corresponding loss of selectivity lead to a decrease of 
the drift velocity. 

Figure 2 shows the dependence of the drift velocity 
-u/E on the detuning 51/P a t  a fixed value of the radia- 
tion intensity I- 48 w/cm2 ( IG I 2 / p ~ ,  = l). The remain- 
ing parameters a r e  the same as in Fig. 1. Since the 
chosen value of the intensity is somewhat larger than 
that corresponding to the maximum of the plot of u/G 
against I in Fig. 1, i t  follows that, in accordance with 
(4.8) and (4.9), an increase took place both in the opti- 
mal value of the detuning (1 S2/P I -  1.87) and in the en- 
suing maximum value of the drift velocity u/5= 1/20. It 
is seen from the figure that the drift velocity reverses 
sign with change of the detuning. 

The general regularities clarified in the present sec- 
tion allow us  to proceed to an analysis of a situation 
wherein, using the dependence of the LID on the char- 
ac ter  of the spectrum, i t  is possible to obtain the most 
striking results, namely to obtain light-induced drift 
streams with velocity exceeding the sound velocity 
(SVLID). 

5. SVLID OF GASES IN A NONMONOCHROMATIC 
FIELD WITH A "RECTANGULAR" SPECTRUM 

We consider radiation with a rectangular spectrum 
g(wt - w), having a width A: 

FIG. 2. Dependence of the drift velocity in a radiation field 
with fixed intensity and broad Gaussian spectrum on the de- 
tuning resonance from n / ~ .  p = 1 0  kg; v Jv. = 1 0 ;  IG 12/pr, 
= 1 .  

g ( o l - o )  =A-' if o C o 1 < o + A ,  

g ( o ' - a ) - 0  if o r < o a n d o ' > o + A .  

Putting r < <  kc, A (it follows from the results  of Sec. 3 
that these assumptions correspond to the optimal condi- 
tions for obtaining maximum drift velocities u), we can 
obtain with the aid of (2.6) the expression 

An analysis of (5.1) shows that in the case of a rec- 
tangular spectrum at  urn-v, the optimal conditions for  
the value of the flux a r e  x,,, 2 1, 52 - 0, and A 2 kv. A 
rectangular spectrum ensures the maximum velocity 
selectivity of atom excitation that is possible for non- 
monochromatic radiation. Therefore, when radiation 
with this spectral composition is used, the entire capa- 
bility of the LID of gas can be realized. 

We consider now in greater detail the case of a 
"semi-infinite" spectrum a s  A - *. The corresponding 
expression for the drift velocity is 

(5.2) 
The function +(C&/kE) is equal to zero a t  S2 =O. With in- 
creasing value of IS2/kz I ,  i t s  modulus reaches quite 
rapidly values close to unity, and a s  I0/k5 I - * i t  a p  
proaches unity asymptotically. 

Thus, i t  is seen from (5.2) that a t  51 = O  the maximum 
drift velocity lu I is reached when v, - 0 and n,,,, - *, 
and amounts to lu I =  n-"*G. However, when the detun- 
ing ISl/kv I is increased, i t  becomes possible in princi- 
ple to reach values lu I >  ?, i. e., exceeding the speed 
of sound. 

The SVLID phenomenon can be qualitatively explained 
in the following manner. Let v,=O, vm+O, -51> kz, 
and A -- *. The condition v, = 0 means that if the veloc- 
ity of the unexcited atom is such that i t  does not inter- 
act with the field, then this velocity cannot change. In 
the case considered, the atoms that do not interact with 
the field a r e  those whose velocity projection on the 
wave vector is v, < 51/k. At -51 > kE, this condition - 
means v,< -v .  Any unexcited atom whose velocity does 
not satisfy the described condition interacts with the 
field, and has a nonzero probability of going over in a 
unit time into an excited state and of acquiring a s  a re- 
sult of a collision (v, # 0) a velocity such that v, < -E, 
and go over via the spontaneous relaxation channel into 
an  unexcited state. It is obvious that the indicated opti- 
cal-collisional transfer processes establish a stationary 
state in which all the atoms a r e  not excited, and their 
velocities a r e  such that v, < -c. This means that a su- 
personic flux of absorbing particles is established in a 
direction opposite to the field. While the described 
tendency towards optical-collisional transfer is not so  
brightly pronounced a t  v, # 0 and vrn/v, >> 1, i t  can nev- 
ertheless ensure the onset of SVLID. 
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FIG. 3. Dependence of the drift  velocity in a radiation field 
with rectangular spectrum of width A= 10 k; on the distance 
from the left edge of the spectrum to  the center of the transi- 
tion a t  different values of the parameter Rmt= 2 IG 1 2 / ~  ( T;, 
+ urn) and on the ra t io  of the collision frequencies v,/vn. The 
maximum values of lu/G I a r e  reached a t  Rmt >>no. I )  v Jv,, 
= 10, no=  0.08; 2) v /v,= l o 2 ,  no=  0.03; 3) v,/v,= lo3, no 
= 0.03; 4)  v,/v,= loa, n o =  0.02. 

The qualitative difference between the case of the rec- 
tangular spectrum and the other spectra is that only for 
this spectrum there is no field broadening of the Ben- 
nett structures. Therefore [see ( 5 . 1 )  and (5.211 for 
each se t  of values of C2 and v, /v ,  there exists a parame- - 
ter value nr,,, = ~ ~ ( 5 1 )  which, when substantially ex- 
ceeded, makes u practically independent of the intensity 
of the radiation, and the limiting values of the drift 
velocity a re  then determined by the parameter v,,,/v,. 
For all  the remaining spectrum types, to each value of 
the parameters vm/v ,  and C2 there corresponds a definite 
optimal intensity. 

Figure 3 shows a graphic analysis of Eq. ( 5 . 1 )  for 
different values of the parameters v,/v, and 
>> no(C2). The left and right sides of the plot corre- 
spond respectively to interaction between the rectangu- 
l a r  spectrum and the right and left parts of a Maxwelli- 
an distribution. The curves a r e  symmetrical, a s  they 
should be. The larger the parameter v,/v,, the larger 
the part  of the Maxwellian distribution that can be con- 
verted into a wing by optical-collision transfer. There- 
fore the maxima of the curves shift towards larger val- 
ues of IO/kiTl and increase with increasing parameter 
vm/v.. 

From a comparison of the maximum of curve 1 with 
the corresponding maxima of the curves in Figs. 1 and 
2  one can see  the advantages of the rectangular spec- 

trum over the Gaussian one. Curves 2-4 demonstrate 
the possibilities of reaching supersonic fluxes a t  quite 
moderate radiation intensities and demonstrate the de- 
cisive role of the factor v,/v, when it  comes to obtain- 
ing large drift velocities. 

Supersonic drift velocities can be obtained also with 
the aid of radiation with a Gaussian spectrum, but in 
this case the radiation intensity must satisfy rather 
stringent requirements. For  a Gaussian spectrum with 
optimal value f i =  k?i, i t  is impossible to obtain for u an 
analytic formula that is valid a t  large values of n , .  
From ( 4 . 8 )  and ( 4 . 9 )  i t  is seen, however, than a t  v,  
<< v, values u, > v can be obtained a t  I SZ I 2 p2/k5. With 
increasing parameter fi/kG, the required intensities in- 
crease exponentially. 

It is seen from ( 3 . 1 )  that for monochromatic radiation 
and for radiation with a Lorentz spectrum, no super- 
sonic light-induced fluxes a r e  possible. The reason is 
that the wings of the Lorentz contour decrease more 
slowly, and a s  a result the excitation of the atoms turns 
out to be insufficiently selective in velocity. 
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