
Impurity center in the field of a strong light wave 
0. P. Antonyuk 
Institute of Spectroscopy. Academy of Sciences of the USSR 
(Submitted 16 November 1980) 
Zh. Eksp. Teor. Fiz. 80,2221-2230 (June 198 1)  

Oscillations of the populations of resonance electron levels of an impurity center in the field of a light wave 
give rise to oscillations of the equilibrium positions of the lattice atoms.. The oscillations, in turn, shift the 
level positions. Consequently, the oscillations of the populations become nonlinear. Their spectrum is 
manifested by the appearance of lines in the Raman scattering. The effect should occur for an impurity center 
as well as for a single molecule. The resultant features in self-induced transparency are discussed. 

PACS numbers: 78.50. - w, 42.65.G~ 

Investigations of the optical properties of an  impurity 
center the interaction of an electron with light is nor- 
mally allowed for using perturbation theory. However, 
this approach is inappropriate if the light wave is 
fairly strong. On the other hand, there is a well-known 
Rabi solution1 in which the interaction with light is al- 
lowed for exactly, but only in the case of a pure elec- 
tron system which does not interact with phonons. We 
shall obtain a similar solution (see below in 81) describ- 
ing the evolution of an impurity electron under the in- 
fluence of light, but with allowance for its interaction 
with the phonon subsystem. We shall show that this 
gives r ise  to nonlinear oscillations of the populations 
and that the Raman scattering spectrum (54) exhibits 
lines at frequencies characteristic of nonlinear oscilla- 
tions. In 92 we shall consider the question of self-in- 
duced transparency in the case when an impurity elec- 
tron interacts not only with light but also with phonons. 
In 83 we shall justify the self-consistent approach 
employed in § 1. 

We shall begin with the usual Hamiltonian 

+ z hwkibk*+brr- (aI+a2Sa2+aI)dlBo cos Bt, 
k* 

where a, and bkX a re ,  respectively, the electron and 
phonon annihilation operators; d, is  the electron dipole 
moment of a transition; Eo is the field amplitude; 52 is 
the field frequency. We shall consider the usual case 
when the frequencies of phonons obey wkX<< Q= (E,  - &,)/ti. 
States in a resonant electron-phonon system obeying 
the condition w k ~  = w 0 =  (& - &,)/fi a r e  considered in Ref. 
2. 

5 1. NONLINEAR OSCILLATIONS 

We shall begin with a simple and illustrative descrip- 
tion of the situation. We shall allow for the interaction 
between an electron and the phonon subsystem in a self- 
consistent manner. We note that the phonon subsystem 
is characterized by ~$,+4 - (4%) 'h. Here and later we 
shall use (- . .) to denote quantum-mechanical averaging 
over the exact state. We shall assume that $/% << w,, 
where w, is the Debye frequency (this assumption is 
justified by the final results). In this case we can des- 
cribe the lattice assuming that n, is constant and inde- 
pendent of time. The phonon Hamiltonian can be re- 

duced to 

H p  -2 hkr6r~+6ki -x n21ukAlaAwkL, 
k* kh 

- 
where bkA = bkA +n,ukh. Thus, the effect of an  electron 
on the lattice is to shift the equilibrium positions which 
vary slowly with time. When describing the electron 
motion, we shall use the substitution 

~ k r ' b r r + ~ r r b r r + + ( ~ ~ ~ ' b r l + ~ ~ ~ b r r + ) = - 2 n 2  1 urL12. 

Consequently, the fate of an electron can be described 
by the Hamiltonian 

H.=s,a,+a.+ ( 4 - 2 n , x  hwkr~ukr~~) a2+az- (a~+a.+al+a~)dlIEo cos Bt. 
k* 

The coefficients of the expansion of the electron wave 
function for the states 1 and 2 can be described by the 
secular ~chr6dinger  equation (see, for example, Ref. 2). 
We can also use the equation for the density matr ixS 
In either case, using the variables 

and bearing in mind that (4 a,) + (4 %) = 1, we obtain 

~i=-2sr, p==(e+u)r, i=-(e+u)p+2sn, v = - f ( n + l ) .  (2) 

The following notation is used in Eq. (2): E = (E, - cl)/li, 
S =s0cos Qt, 

Since the variable v is slow and v<< E, we can exclude 
7 from Eq. (2). We shall seek the solution of the result- 
ant system in the form 

p=pi cos Qt+p, sin Bt. 

The variables n, p,, and p, a r e  assumed to be slow 
compared with the frequency 52. For these slow vari- 
ables, we obtain 

ri=-sop,, 

Pi=- (A+fn)pz, (3) 
p2=(A+fn)p,+son, 

where A = Q  - & +f. It follows from the first and second 
equations of the system (3) that 

p,=so-'(Anifn212+ c ) .  

The integration constant c can be found from the condi- 
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tion that in the state 1 we have n =-1, pl =a. This gives 
c = A  - f/2. Substituting the expressions for Pi, P2 in 
t e rms  of n and ri in the third equation of the system (31, 
we obtain 

-n= f n3/2+3AfnY2+ ( Aa+jc+so') n+ac, 

' and then 

ri2+f na/4t-Afns+ (A2+fc+so') d+2Acn-c,, (4) 

which is identical with the equation of motion of a classi- 
cal  particle in a potential relief described by a poly- 
nomial of n. In the absence of the interaction with pho- 
nons (f =O), the potential is a parabolic well, s o  that the 
motion (dependence of n on t) is in the form of oscilla- 
tions of frequency (ha +$)lD. Such oscillations represent 
the  Rabi solution. 

In analyzing the f + 0 case we have to find the roots of 
the polynomial in Eq. (4). The problem simplifies great- 
ly if the frequency of light n is equal to the frequency 
of a zero-phonon transition & - f. Then, A = 0 and the 
polynomial becomes biquadratic: 

(5) 

The nature of the dependence of the expression in 
parentheses on n depends strongly on the relationship 
between the parameters fa and 4, and it is shown in 
Figs. l(a), l(b), and l(c). The constant c, is selected 
s o  that the smallest root 

is - 1, since we a r e  dealing with the case when a t  t = 0 
the system is in the state 1 (n=-1). This gives c, 
=(f - 4s3/f2. Consequently, 

We can see  that there a re  always real  roots n =*I. 
Moreover, iff 3 4$, new real  roots [ ~ i g .  l(c)] a r e  ob- 
tained: 

It is clear from Fig. 1 that if f 2 <  4 4 ,  the influence of 
the lattice is not s o  important. If a t  t = O  an electron is 
in the state with n =-1, then after a time it goes over 
entirely to an excited state which corresponds to n = 1 if 
A =O. The situation changes if fa a 4$. An electron then 
oscillates within the limits 

FIG. 1 .  Effective potential in the cases  o f f  <2se (a) ,  2s;<f2 
<4s: (b), and f2>4s$ ( c ) .  

I f f  - 4$+0, t he  oscillation period T- m. 1f f =4<, 
the function n(t) r i ses  monotonically, beginning from 
n(0) = - 1 and we find that n(t) - 0 when t- m. 

It is quite easy to write down the solution of Eq. (5). 
It has all  the features described qualitatively above. In 
the case when the interaction with the lattice is impor- 
tant (f2 3 4$), the solution is (see, for example, Ref. 2) 

where s n  x is an elliptic sine which depends on the 
parameter X =2s0/f. The quantity f corresponds to  the 
Huang-Reiss factor known from the theory of impurity 
centers and it can exceed considerably the Rabi frequen- 
cy. In this case, we have s n  x =  s i n x  and then 

An impurity is weakly excited and the oscillation ampli- 
tude is $/f2<< 1. The dependence (6) corresponds to 
harmonic oscillations of a classical particle near the 
left-hand minimum of the pckential shown in Fig. l(c). 
The condition &/%<< w, is satisfied iff ,  so<< w0. 

52. ROLE OF THE ELECTRON-PHONON 
INTERACTION IN SELF-INDUCED TRANSPARENCY 

The evolution of an electron in the field of a soliton 
is again described by the system (2) but s = -d,E/E is 
no longer a given function but a dynamic variable defined 
by the wave equation 

Here and later,  c denotes the velocity of light in a 
medium, a =~da;/.*R, x is a nonresonant part of the re-  
fractive index, and N is the impurity concentration 
(cm -9. 

We shall  seek the solution of the system (2), (7) in 
the formS 

s=Wcos @, 

p=Q cos 0 + R  sin 0, 

0=kz-ot+cp, 

where W, Q, R,  and cp a r e  assumed to be slow, com- 
pared with Q, function of the variable 4 = t  - z/u. In 
the case of slow variables, we obtain a s  usual 

A=oWR/e, W=Ae2R, @=heXQ/W+Qa, 

R-@Q= (e+v-o)Q-(e+u)nW/o,  
Q+@R=- (E+u-o).R, u = - f  ( n f  1 ) ,  

where 

The derivatives in the system (8) a r e  with respect to 
4 .  In the first  three equations the correction v to t is 
omitted since X<< 1 and v<< c. The difference from the 
situation described earl ier  is that the equations now 
have a new variable v which gives r i s e  to  an additional 
nonlinearity in the system (8). The first  and second 
equations of the system yield 
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FIG. 2. Effective potential for g= 0 (curve 1 )  and g2h >> 1 
(curve 2); w4= w ' J ~ E ,  w:= B A ' / ~ ~ - ~ / ~ E .  

Therefore, we find that 

All the variables in the system (8) can be expressed in 
terms of W, and then W can be described by an expres- 
sion which, for the frequency and wave vector selected 
sothat  w=ck=&,  is 

Wz-[Ae2W2-' / ,  (1+Wg) W' 

+E-'(-g2/16+g/6) W'] =O. (9) 

If g=O, the polynomial in the brackets in the above ex- 
pression has the form represented by curve 1 in Fig. 2. 
I ts  roots a r e  W,, = 0 and W3 ,, =*2x1I2&. 

Since v<.  E for all  cases when K@ ~ f l c  W;,,, it follows that 
2gA<< 1. Thus, the condition g# 0 leaves unaffected the 
variables -W and -W4 in Eq. (9) and only gives rise to 
a term -We. On increase in g, it begins to play an im- 
portant role if at the point =4A2 it becomes compar- 
able with the first two quantities: 

Consequently, the electron-phonon interaction discussed 
here is important if $A 2 1 (f k 2k1I2&). This corres- 
ponds exactly to the condition f 3 2s0 obtained earl ier  
and it means that the maximum shift of a level Iv 1 = 4gAc 
becomes comparable with the field (expressed in suit- 
able units) W- 2~'"&. However, if g 'A>> 1, the term 
-we dominates Eq. (9). The polynomial has the form 
represented by curve 2 in Fig. 2. The term -w4 can be 
ignored altogether and the soliton envelope is then 
given by the equation 

Its solution can be written in the form 

For comparison, we recall  that if g =0, the envelope 
has the form3 

The wave amplitude decreases, compared with the 
amplitude when g = O ,  by a factor g ' " ~ ' ~ ~ .  The condition 
&/n<< w, is satisfied if A<< wo/&. 

53. EXACT EQUATIONS OF MOTION 

The complete orthonormalized basis of the wave 
functions in the problem under consideration i s  the set 

The wave function of any state can be represented in 
the form 

where the summation is carried out over a l l  possible 
se ts  of the occupation numbers {nkj. 

The Schrijdinger equations for the expansion coef- 
ficients a r e  

if, (nkI) =e.-i*tsc2 (n t r } ,  
(10) 

Summation with respect to kX in  the second of the 
above equations relates the coefficient c2{nkx) to all  the 
coefficients c2{nkxi 1) in which one of the occupation 
numbers differs by unity. By definition, the  coefficient 
c2{nkx) vanishes if at least one of the numbers obeys 
nkx' 0. 

It is easily shown that, in the s = 0 case, the wave 
function 

is the eigenfunction for the Hamiltonian of the problem. 
In fact, if we use 

we obtain 

Therefore, 

The wave function (11) describes the shift of the equil- 
ibrium positions of the lattice atoms caused by the 
electron-phonon interaction. It is used also widely in 
the polaron theory. The correction to  the energy (12) 
is the polaron shift denoted above by lfj. 

We shall represent the wave function (11) in the form 
of an expansion in respect of the selected basis: 

The coefficients of the expansion c(0){nkx} a r e  readily 
found if we multiply both sides of the above equality by 
*a{n k J  : 

Substitution of Eq. (13) in Eq. (10) demonstrates that 
c1{nkx} = O  and c2{nkJ =c(0){nk x) represent the solution 
of the system in the s = O  case. 

We shall seek the solution of the system (10) with 
s # 0 in the form cl{n A} = c1c{n kx), c2{n kx) =c2C(nk XI. 
Substituting these expressions in Eq. (lo), we obtain 

it,c (nth) +ic,t(nkA) =e-'"tscz~{nra),  
(14) 

~ Z C  {nkh} + i a c  (nkh} = eicfsclc { n k ~ }  

f ce [ ~ : h o k h c - ~ ~ ~ ~ ' ( n ~  $ 1 ) " ' ~  {nrr + 1) + u r a . o ~ e ' ~ ~ ~ ' V G c  {nu-- I}]. 
kL 
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Substituting in the system (14) the expression for c(nkx) 
which differs from ~ ( ~ ) { n ~ )  of Eq. (13) by the substitu- 
tion ukA - Ic, p ~ ~ ~ ~ n , ~ ~ ~  (f- 4 f). We shall multiply 
by c*(nkx) and sum over {nka, which yields the follow- 
ing simple equations for c, and c,: 

iCi-2clfnl'-e-'etsc2, 
ih-2c2f (n2-nr)  -e'"scI. 

Introducing new variables 

a,=cl exp j 2ifn: dt, %=a exp j Z i / ( n ? - d d t ,  
e 0 

we find that 

which is equivalent to  the system (2) obtained in 51. In 
f a d ,  the dipole moment of an  atom 

can be expressed in terms of the quantity 

We shall also determine the functions r and n: 

Differentiating n, p, and r and using the system (15), 
we obtain the system (2). We can easily s e e  that the 
transition from (14) to (15) represents a self-consis- 
tent approximation. In fact, if c{nkA) is substituted in 
Eq. (14) we obtain 

The summation over inkx} used in the derivation of 
the system (15) corresponds to the following substitu- 
tion in the system (16): 

~ L I  + (nrr) = n u  I c (nu1 Is = n 2  l u k ~  1'. 
( n u t  

This substitution is valid if the deviation of nkx from 
bka)  within the dispersion limits 

gives r ise  to small  corrections in the system (16). This 
means that the following relationships should be satis- 
fied: 

I h,/azl B (nz2 -nz )  f ,  IA2/n,oo I <I. ) 
The last condition for the system (17) means that at 

every moment we can define the conce@ of dispersion 
nkx which varies slowly with time. The relationships 
(17) a r e  obeyed in the case of a weak electron-phonon 
coupling (f<< w,), since it follows from the solutions 
found in 91 that if so >> f ,  then 

whereas for so<< f ,  

$4. OPTICAL PROPERTIES 

The polarization of an atom p can be expressed in 
t e rms  of n and ti: 

p=pi cos Ql+p,sin Qt, 

p1=a- i (An+fn2/2+A-f /2) ,  

p2=-so"A 

The function n is periodic and has a spectrum. It 
follows from the system (18) that this function is re- 
flected in the dependence p(t) and, consequently, in the 
spectrum of scattered light. Thus, a spectroscopic 
analysis of the scattered light can give direct informa- 
tion on oscillations of the populations. In the limiting 
cases off>> so and f<< so the function n varies harmon- 
ically but the frequencies a r e  different in these two 
cases. If f >> so and A = 0, the oscillation frequency is f , 
s o  that the scattered light has components with 52, 52 i f, 
and 51 * 2f. However, if so>> f, then n oscillates a t  a 
frequency w, = (A' + $)ltZ and the scattered light includes 
frequencies 52, 52 * w, and C2 * 2w,. We can easily find 
the intensities of the various lines. If f >> so, and A = 0, 
then Eqs. (18) and (6) yield the following expression 
for the dipole moment of an atom: 

Each atom becomes a source of dipole radiation4 with 
the following intensities of the various components: 

where Zo(51) =(da,a4/8rc3) sinz @do, 9 is the angle between 
d, and the direction of emission of radiation, and do 
is a solid-angle element. The above numerical esti- 
mates apply to the total radiation in the s,/f = lo-' case. 
The components of frequencies 52 and 52 +f a r e  pro- 
portional to the intensity of the scattered light, whereas 
the components with frequencies 52 - f and 51 i2 f  a r e  pro- 
portional to  the cube of the intensity. Similar results 
a r e  obtained also in the case when f>> so. 

Since we can assume that the field is classical and 
known, the Hamiltonian (1) does not include the radia- 
tive width of the upper level yo. We shall  consider the 
terms of the interaction which a r e  linear with respect 
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t o  the displacements and, therefore, we shall ignore 
also the broadening of the level y, because of the elec- 
tron-electron interaction, which is obtained if the quad- 
ratic terms a r e  included.' However, the effects con- 
sidered here, like the Rabi oscillations, appear in a 
rea l  situation only when their characteristic frequencies 
a re  considerably greater than the damping y =yo +y, ig- 
nored by us. Thus, the inequality yT<< 1 should be satis-  
fied (T is the period of nonlinear oscillations in 9 1 or  
the pulse duration in 82). 

The quantities yo and y, vary within wide limits and 
for many impurity centers they a r e  well known.gp5 For 
example, in the case of ruby exhibiting self-induced 
transparency a t  helium temperatures, we have yo<< y, 
and Y ,  - 10'-10' set-I (Ref. 3). The pulse duration 
satisfies the condition yT << 1, a s  indicated by the fact 
the phenomenon itself is observed. Nonlinear oscilla- 
tions in the f>> so case a re  characterized by the period 
T =2nf-'so that Eqs. (6) and (19) remain valid if y/f<< 1, 
which again is easy to satisfy. Investigations of impur- 
ity centers in strong electromagnetic fields a r e  par- 
ticularly promising. The well-developed methods of 
laser spectroscopy of gases can give unique informa- 
tion. The possibility of spectroscopic analysis within 
an inhomogeneously broadened line (which corresponds 

to  the intra-Doppler spectroscopy of gases) is particu- 
larly attractive. It is interesting to consider also the 
possibility of investigating impurity centers by a weak 
probe wave inthe presence of a strong saturating wave. 
T o  the author's knowledge, such investigations have not 
yet been made. 

The author is grateful to  V. M. Agranovich and V. E. 
Kravtsov for critical comments. 
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