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It is shown that the l /o spectrum (natural flicker noise) exists in the low-frequency region in any system of 
the diffusional type. The nature of the spectrum does not depend on the shape of the body (cube, film, 
filament). The upper limit of the natural-flicker-noise region is determined by the diffusion coefficient and the 
minimum characteristic dimension of the body. The lower limit is not determined by the parameters of the 
system, but by the time of observation. The intensity of natural flicker noise is inversely proportional to the 
number of particles in the system. The temperature dependence of the noise intensity is not a universal one. It 
is determined by the temperature dependence of the statistical characteristics of the specific diiusion process. 
Residual time correlations exist in the time interval corresponding to the flicker noise frequency range. The r0 
and l /o  dependences for the residualcorrelation and natural-flicker-noise regions are valid when the 
corresponding diffusion lengths (DT)"' and (D/o)"' are much greater than the minimum dimension of the 
body. This allows the dimension d of the body to be set equal to zero if the individual objects are grains or 
domains. 

PACS numbers: 05.40. + j 

1. INTRODUCTION 3. The upper limit of natural flicker noise i s  deter- 
mined by the diffusion coefficient and the minimum di- 
mension of the system. The spectrum l / u Y  with y =l  (flicker noise) was dis- 

covered more  than 50 yea r s  ago by Johnson during the 4. In the diffusion model flicker noise does not have 
investigation of the voltage fluctuations in a vacuum a lower frequency limit wml, determined by the pa- 
tube with an  oxide c a t h ~ d e . " ~  Subsequent investiga- rameters  of the system. The value of w,,, i s  deter- 
tions revealed the universality of the l/w7 s p e ~ t r u m . ~  -1 mined by the t ime of observation: wmin -TOba. 

A very large number of papers devoted to the analysis 5. The intensity of natural flicker noise is inversely 
of specific models of flicker noise have been published. proportional to the number of particles in the system, 
But there is thus far  no convincing explanation for the in particular, the number of c a r r i e r s  in a semiconduc- 
universality of this phenomenon, and the absence of a tor .  This  result  ag rees  with the Hooge's empirical  
lower limit of the spectrum has  also not been explained. formula4 and the result  obtained in Voss and Clarke's 
Fo r  example, the l /wr  spectrum is observed in semi- paper,5 in which flicker noise i s  explained in t e rms  of 
conductors right down to frequencies of the order  of temperature fluctuations. 
10'~ Hz. 

The purpose of the present paper i s  to show that the 
l/w spectrum i s ,  a t  low frequencies, characterist ic  of 
any system of the diffusional type. An equation of this  
type (with diffusion coefficient D) describes the diffu- 
sion of Brownian particles, the charge c a r r i e r s  in a 
plasma, electrolytes, and semiconductors, the evolu- 
tion of the fluctuations of hydrodynamic quantities 
whose spectrum is concentrated near w = 0 ,  etc. 

We shall call the l /w noise generated during "Brown- 
ian motion" "natural flicker noise." This  designation 
emphasizes that what we a r e  talking about i s  equili- 
brium noise, whose occurrence in macroscopic bodies 
is due to their atomic-molecular s tructure.  Besides 
this ,  there can a lso  exist "technical flicker noise." 
This type of noise is possible in  nonequilibrium sys-  
tems.  

The main results  of the paper amount to the follow- 
ing. 

6. The temperature dependence of the intensity of 
natural flicker noise is not a universal one. It i s  deter- 
mined by the temperature dependence of the statistical 
characterist ics  of the specific diffusion process. 

7. Residual time correlat ions exist in the region of 
large t imes,  when the inequalities L~,, /w << T << To, 

a r e  satisfied. 

Let  u s  explain this  in grea ter  detail. 

It is well known ( see ,  for example, Refs. 6 and 7) 
that for  a n  unbounded system and an unbounded region 
of wave-number values k ( 0  k c  -) the time correla-  
tions a t  la rge  t imes a r e  proportional to rdf2 (d is the 
dimensionality of the space). The corresponding spec- 
t r a l  densities a r e  proportional to wdt2-'. In the present 
paper we show that the corresponding diffusion lengths 
(2D/w)lt2 and (207)'" fo r  the region of natural flicker 
noise and the region of residual time correlations a r e  
much grea ter  than the dimension L of the system. As - 
a result ,  we can t rea t  the system a s  a point in deter- 

1. It is shown that the l /w spectrum (natural flick- mining the dependences on T and w.  Formally, this 
er noise) exists  in the low-frequency region during corresponds to ze ro  dimensionality. Setting d = O  in 
Brownian motion of any kind. the above-cited dependences rdf2 and wdf2-', W e  a r r ive  

2. The form of the spectrum does not depend on the a t  the dependences r0 and w", which correspond to 
shape of the body (cube, film, filament). residual t ime correlations and natural flicker noise. 
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2. NATURAL FLICKER NOISE 

Thus, let us, following the foregoing, consider the 
problem of the low-frequency spectrum for an arbi- 
trary system that can be referred to the class of "dif- 
fusional" systems. For  concreteness, we choose tem- 
perature as the fluctuating quantity. This, naturally, 
does not impose any limitation on the generality of the 
results. The diffusion equation in this case is the heat 
equation. In order to emphasize that this is only an 
example of the equation of the diffusion type, we shall 
denote the thermal conductivity coefficient by D. 

Let us write the equation for the Fourier transform 
of the temperature fluctuation 

6Tk( t )  =&T (r .  t )  exp(-ikr)dr (1) 

in the form of the Langevin equation (see Ref. 8 ,  Chap. 
lx): 

The moments of the Langevin source a r e  given by the 
formulas 

Let us first  assume that the system has one charac- 
teristic dimension L (the volume V-L3). In studying 
the spectrum in the region of low frequencies (w < 2D/ 
L2), it is sufficient to investigate the spectrum of the 
fluctuations in the temperature averaged over the 
volume V: 

Let us consider the expression for the fluctuation spec- 
trum of this function. We find with allowance for (4) 
that 

dr dr' d(r-r') 
(~Tv) . '  -- j (6T 6T).,.,.* - V = j (6T 6T).,,-.r. - v .  (5) 

In going over to the last expression, we used the con- 
dition that the fluctuation distribution within the volume 
V should be spatially homogeneous. This is justified, 
since for ( D / W ) ~ ' ~  >> V (the low-frequency region) we 
can consider an ensemble in which the distribution of 
the positions of an individual system within the bound- 
ar ies  of the volume (D/w)' /~ is an equiprobable one. 
Let us Fourier transform the last expression in (5) 
with respect to r - r' (below we set  r - r' = r). As a 
result, we obtain the equality 

Let us substitute here the expression, obtained with the 
aid of the Langevin equation (2), for the space-time 
spectral density: 

As a result we obtain the following expression for the 
sought spectrum : 

The frequency integral 

The equal-time correlator ( 6 ~ 2  in the formula (8) 
does not depend on k in a broad range of k  values (0 
e k a  vi:l3, where V, is a physically infinitesimal vol- 
ume: V,,<< V), and can be taken out from under the 
integral sign a t  the value k=O. It then follows from 
(8) and (9) that 

For  large V ( V - w ) ,  the function 6(k) ar ises  in the 
expression (10) after the integration with respect to r; 
therefore, the spectrum ( 6 ~ ~ ) :  i s  equal to zero at all 
frequencies w #O. The situation changes significantly 
at frequencies w << w / L ~ ,  when the diffusion length 
( 2 ~ / w ) l  l2 becomes significantly greater than the di- 
mension of the system, and, in consequence, the pas- 
sage to the limit V - - becomes impossible. The sepa- 
ration of the normal mode with k=O therefore becomes 
impossible, and we must consider an ensemble of sys- 
tems for which the k values of the normal mode a r e  
defined statistically. We can then perform averaging 
over the wave numbers near k=O. 

For  the averaging let us  take the Gaussian distribution 
with a dispersion given by the following combination of 
two length parameters: the dimension L of the system 
and the diffusion length (w/w)'I2: 

The operation of averaging over k corresponds in the 
formula (10) to the substitution 

1 L,' * r L 'kZ 
- j e a k r d r - ( x )  exp -<-=} .  
(an)" 2 

Instead of the Gaussian distribution, we can also use 
other distributions peaked at k= 0, and satisfying the 
normalization condition 

Taking account of the substitution (12), we obtain the 
following expression for the spectrum: 

From this we have for the region of low frequencies 
(u,<< W/L2) a spectrum al/w-natural flicber noise: 

If 6Tv is a temperature fluctuation, then the equal- 
time correlator ( ( 6 ~ ~ ) ~ )  i s  given by the expression 
(see Ref. 9,  8112) 

Here C, is the heat capacity of the system. If, on the 
other hand, 6Tv is, for example, a concentration fluc- 
tuation 6n(r,t) averaged over the volume V, i.e., if 
bTv - 6nv, then 

Here g2 is a two-particle correlation function, e.g., 
for the carr iers .  The temperature dependence of the 
flicker-noise intensity is then significantly different. 
The volume V can then be related to the correlation 
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volume. In the formula (15) C,, is a constant of the o r -  
der of unity. In the case  in which the Gaussian distr i-  
bution is used 

The spectrum (15) does not possess a lower limit 
determined by the parameters  of the system under con- 
sideration. The lower spectral  limit i s  determined by 
the observation time, i.e., 

The lower limit can be explicitly taken into account in 
the formula (15) by making the substitution 

Flicker noise can be concentrated not only near zero  
frequency, but also near distinct f r e q u e n ~ i e s . ' ~  If oo 
is one of them, then we can show that the spectrum i s  
again given by the formula (15) if we make in it the sub- 
stitution 

It follows from the formulas (15)-(17) that the flicker- 
noise spectrum EN-' .  F o r  this  reason, the noise is 
fairly intense ei ther  in sys tems of sma l l  dimensions 
(films, filaments), o r  in sys tems made up of grains o r  
domains. The dependence N-' corresponds to ~ o o g e ' s  
empirical f ~ r m u l a . ~  This  type of dependence on the 
particle number was obtained by Clarke and v o s s 5  in 
their investigation of flicker noise in  films. But the 
frequency dependence l/w was,  in effect, postulated in 
this investigation. 

3. FLICKER NOISE IN  FILMS AND FILAMENTS 

Above we assumed that the sys tem has  one charac- 
ter is t ic  length parameter .  Then the volume v - L ~ .  
Let us now consider a film of thickness d and width 
and length L. Thus,  v = ~ L ~ .  Let  us find the upper 
limit of the flicker-noise spectrum under the condition 
that 

Instead of (12), we then obtain the distribution 

Using this distribution in the formula (14), we again 
obtain the flicker-noise spectrum (15). Now, however, 

Thus, the upper frequency limit of the flicker-noise 
region i s  determined by the minimum geometric di- 
mension of the sample. Fo r  a filament d in the formula 
(24) is the diameter of the filament. 

4. THE LANGEVIN EQUATION FOR FLICKER NOISE 

The flicker noise spectrum can be computed with the 
aid of the corresponding Langevin equation. To  derive 
this  equation, let us  make in the equation for  the Four- 
i e r  component 

(-io+Dk2)6T(o, k) =y(", k ) ,  (25) 

which follows f rom the Langevin equation (2), the fol- 
lowing substitutions, which reflect the averaging over 
the wave numbers fo r  the low-frequency region: 

It follows from the formulas (25) and (26) that the dis- 
sipative t e rm in the Langevin equation now depends not 
on the wave number, but on the frequency, namely, 

~ ~ = l ~ l .  (27) 

The intensity of the noise source  is also proportional 
to I w 1 .  The expression for  the spectrum can be writ- 
ten in the form 

It coincides with (15). The frequency integral 

gives the mean square fluctuation for the flicker-noise 
region. The divergence of the expression a s  T,, - 00 
only indicates that we shall  ultimately fall outside the 
l imits  of the "diffusion model." This does not, of 
course,  invalidate the model under consideration. This 
restr ict ion is somewhat s imi lar  to the restriction of the 
model of white noise. 

5. RESIDUAL TIME CORRELATIONS 

The expression, corresponding to the formula ( l o ) ,  
for  the t ime correlation of the fluctuations bT,( t )  has  
the form 

L " L ZkZ 
6 = ( ) J e x  D - 2 d ( ( T ) .  (30) 

Here the dispersion of the wave-number distribution i s  

It follows from this formula that for the time interval 

the function ( ( 6 ~ ) ' ) ~  does not depend on T (the residual- 
time-correlation region). 

The described method of finding the low-frequency 
fluctuation spec t ra  may be useful in the investigation 
of the flicker noise generated during the equilibrium 
and nonequilibrium phase transitions described in 
chapters 4, 5,  11, and 12 of Ref. 11. For  the theory 
of flicker noise in semiconductors, plasmas,  and elec- 
t rolytes,  the hydrodynamic theory of a weakly ionized 
plasma developed in Ref. 12 may be found to be useful. 

I take the opportunity to thank I. A .  Shishmarev for  a 
discussion of the problems considered here.  
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