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Large defects deform the vortex lattice in a supersonductor. The pinning force is determined by the dimension 
of the region in which the vortex layer is tangent to the defect surface. The vortex deformation and the 
pinning force decrease as the vortices move. A region of negative differential resistance appears on the 
current-voltage characteristic. 

PACS numbers: 74.60.Ge 

1. INTRODUCTION 

The current-voltage characteristic of a hard super- 
conductor depends substantially on the sizes of the de- 
fects. For small defects, in magnetic fields m t  too 
close to H,,, the current-voltage characteristic has the 
universal form' 

i=j,F(oElj,). (a) 

The critical current i s  small in this case. Therefore 
a small number of large defects has a strong influence 
on the critical current and on the shape of the current- 
voltage characteristic. We consider below defects of 
sufficiently large size, for which the Labusch criterion 
is  These defects can be clusters of disloca- 
tions o r  of impurities, o r  else regions of precipitation 
of a new phase. If the superconducting properties of the 
defect differ strongly from the properties of the matrix, 
then such a defect can lead to plastic deformation of the 
vortex lattice. In this paper we consider defects that 
produce in the vortex lattice a weak deformation that 
can be described within the framework of elasticity the- 
ory. The dimension of the defects is  assumed to exceed 
significantly the period of the vortex lattice. 

2. EQUATIONS OF MOTION OF THE VORTEX 
LATTICE 

The vortex lattice is  acted upon by four forces: elas- 
tic, viscous, force of Lorentz interaction with the trans- 
port current, and force of interaction with the defects. 
The sum of all these forces is  z e r ~ ~ ' ~  

where C,,, C,, and C, are the elastic moduli of the vor- 
tex lattice, u i s  the conductivity of the superconductor 
in the absence of defects, B is  the magnetic induction, j 
i s  the density of the transport current, and f is  the force 
of interaction of the defects with the vortex lattice. 

If the properties of the defect can be described by the 
change of the electron-electron interaction o r  by the 
change of the mean free path of the electrons, then the 
force f near the transition temperature can be repre- 
sented in the formS 

f (r, I-u) --6 (627) /8u, 

J { 
X 

bP=v d3r1 g,(fi)  lA (rl-u) I' + -(6D) la-A (r,-u) 19, (2) 
8T 

where v=mH2$ is  the state density on the Fermi sur- 
face, D - v1,,/3 is the diffusion coefficient, and 8 ,  =a/ar 
- 2ieA is  the invariant derivative. 

We shall consider defects of ellipsoidal form. For 
most defects, the interaction force can be written a s  a 
sum of two terms. The first i s  connected with the dif- 
ferences between the free energies of the matrix and of 
a region averaged over dimensions that are large with 
the lattice period, inside the defect. The second term 
is  a periodic function having the period of the lattice and 
a zero mean value. The first term leads to a difference 
between the vortex densities inside the defect and in the 
superconducting matrix. We exclude this force and the 
elastic deformation it produces from Eq. (1). AS a re- 
sult, the function f in the right-hand side of (1) can be 
regarded as  periodic with zero mean value. 

3. CRITICAL CURRENT 

At a low density of the defects, the critical current is  
proportional to the density of the defects for which the 
Labusch criterion is  satisfied. It suffices therefore to 
calculate the average force exerted by one defect on the 
vortex lattice. Averaging (1 ) over the coordinates, we 
obtain 

[ i .xBl= -n (jf d s T )  (3) 

where n is  the defect density and ( f d 3 r f )  is  the average 
force of interaction of one defect with the vortex lattice. 
On the other hand, the force produced when the defect is 
displaced relative to the lattice, is  

- a ~ / a u ( - ) ,  (4 

where F i s  the free energy of the superconductor with 
the defect. From formula (4) it follows that the average 
force differs from zero only if metastable states exist, 
and consequently F i s  not a single-valued function of u. 
Averaging Eq. (4) over the displacements, we get 

j,B=n6FlrZI, (5) 

where 6F is  the discontinuity of the free energy on going 
from one metastable state to another, and ii, is  the aver- 
age distance over which such a transition takes place. 

For a large defect in the form of an ellipsoid with suf- 
ficiently sharp boundary, the metastable states are due 
to the barrier that prevents the vortex layer from going 
into the region of the defect from the matrix. The vor- 
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tex layer is in contact with the defect surface. When the 
lattice moves relative to the defect, the continguity re-  
gion and the elastic-deformation force increase until the 
elastic forces exceed the force that prevents the vortices 
from entering the defect. At that instant the vortex lay- 
e r  becomes detached from the surface of the defect, and 
the free energy of the deformed vortex lattice decreases 
jumpwise. We shall consider below the case when the 
displacement of the vortex lattice is small compared 
with the radius of the defect. This i s  possible if the bar- 
r i e r  to the entry of the vortices i s  not very high. The 
problem of the contiguity of the vortex layer and the de- 
fect surface has much in common with the Hertz problem 
of the contiguity of elastic b ~ d i e s . ~  The difference is 
that the lattice vortex is not an elastic isotropic medium; 
furthermore, the vortex lattice fills all of space, and 
not a half-space a s  in the Hertz problem. 

In places where the defect surface crosses a surface 
layer a t  an angle, the force averaged over dimensions 
that a re  large compared with the lattice period is zero. 
We assume that it differs from zero only in the places 
where the vortex layers and the defect surface a r e  con- 
tiguous. For such a layer, the displacement in the con- 
tiguity region is 

~ , . - - ~ - s ~ / 2 R , - z V 2 R ~ ,  (6 

where R, and R,  are  the curvature radii of the defect 
surface a t  the place of contiguity with the vortex layer. 
On the other hand, the value of the displacement i s  ex- 
pressed in terms of the force with the aid of Eq. (1). As 
a result we obtain for the distribution of the forces the 
integral equation 

uo-z2/2R,-z2/2Rz=M ( P ) ,  

M ( P ) =  dx, ~Z,{K,?[K,~(C,.~~~+C~~K~) I-' (7 ) 
S 

where 

S i s  the region of the contiguity of the vortex layer with 
the defect surface. We assume that the region S i s  an 
ellipse with semiaxes a and b, and the function P(x, z )  
depends on only one argument: 

In this case the integral in the right-hand side of (7) 
takes the form 

I 

X J ~ P  pp(pZ) (pLpZ) -", 
LI 

( zcos  (p/a+Kz sin (plb)' 
cos2 y+K2 sinz (p . (10) 

It follows from (9) that the solution of the integral 
equation (7) i s  of the form 

P ( 2 ,  z )  =Po(l-p')". (11 

Substitutirg (11 ) in (9) and (7), we get 

where the integrals I, and I ,  a r e  equal to 

We present the values of the integrals I,  and I, in limit- 
irg cases: 

By equating the coefficients of x2 and z2 in (12), we ob- 
tain the semiaxes (a, b) of the ellipse as functions of the 
pressure Po. With increasirg u,, the pressure Po reach- 
e s  a critical value P, Integrating with respect to the 
coordinates in (3), we obtain for the critical current, 
taking (11) into account, 

where n is the bulk density of the defects. The aver- 
aging in (16) i s  over all possible displacements u,, and 
the summation is over all the vortex rows in contact 
with the defect surface. 

The main contribution to the critical current is made 
by the vortex rows located along the unit-cell vectors. 
Taking into account also the rows perpendicular to them, 
we find that the summation in (16) leads to the appear- 
ance, in the expression for the critical current, of a 
factor G(cp) that depends on the angle q between the di- 
rection of the current and one of the unit-cell vectors. 
If the distribution of the. curvature radii of the defects 
does not depend on the angle cp, then 

G ( y )  =( I cos y I + I cos((p+n/3) I + I c o s ( ~ - n / 3 )  I j (17) 
+a( I sin y 1 + 1 sin(y+n/3)  I + lsin((p-n/3) I ). 

The coefficient a in (17) will be determined later on. 

If the value of uo a t  which the break takes place i s  
much larger than the lattice period, then the pressure 
Po in (16) i s  close to i t s  critical value PC, which can be 
obtained from Eqs. (2) and (8). The quantity PC deter- 
mines the critical current density for  a plane infinite 
boundary. Its value i s  determined essentially by the 
thickness of the transition layer between the metal and 
the defect. If the thickness of this layer is large com- 
pared with the lattice period, then a is small. 

Assuming PC to be known, we obtain the dependence 
of the critical current on PC and on the defect dimen- 
sions in various limiting cases. To this end we must 
express the contiguity a rea  rab, which enters in (16), 
in terms of the curvature radii of the surface and of the 
value of PC with the aid of formulas (12) and (13): 

In most cases the elastic modulus C,, i s  small com- 
pared with the moduli C,,  and C,,. Therefore Eq. (14) 
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i s  valid for defects whose curvature radii are  of the 
same order, o r  for defects that are  oblate o r  not too 
strongly prolate along the magnetic field. For defects 
that a re  strongly prolate along the magnetic field we get 

We obtain thus for the critical-current density 

where the value of ab i s  determined by (18) and (19). 

Using (12) we can study the pinning of vortices by 
large defects in a film. These defects have the same 
curvature radius R,, and to find the length 2a of the con- 
tiguity region we must put in (12) 

In analogy with (20), we obtain for the critical current 
density in a film 

where n i s  the number of defects per unit surface. 

In the case of a diffuse boundary whose thickness ex- 
ceeds the lattice period, the coefficient a in (17) i s  
small. For a sharp boundary, in magnetic fields not 
close to He,, the coefficient a is determined by the dis- 
tance between the vortices in the contiguous layer, and 
i s  equal to 

~ -3 - "~ ,  a=,/, 

for a bulky superconductor and for a film, respectively. 
For a film it i s  necessary in this case to take into ac- 
count in (17) the contribution from the inclined vortex 
layers. 

Equation (20) for the critical-current density i s  valid 
if PC i s  not too large, so that the dimensions of the con- 
tiguity regions are  less than the corresponding curva- 
ture radii of the defect. Otherwise the deformation of 
the vortex lattice i s  large and plastic flow of the vor- 
tices may set in. An onset of plastic flow should be ex- 
pected near the critical field H,,, where the modulus 
C, is small. 

Formula (20) for the critical current density was ob- 
tained using the theory of elasticity for the vortex lat- 
tice. To this end it i s  necessary that the dimensions a 
and b of the contiguity region be large not only compared 
with the lattice period, but also compared with the depth 
of penetration of the magnetic field. Otherwise it i s  ne- 
cessary to take into account the spatial dispersion of the 
elastic modulie: 

B' k,' c 
64 - 4n Kt+khz . 

Near the transition temperature we have 

If the Ginzburg- Landau parameter x2  >>l, then the modu- 
lus 

L,,=C". (25) 

This equality i s  violated only in the region where the 
momentum i s  large, K>k*,  where kS1 i s  the correlation 
length for the modulus of the order parameter. 

The integral equation for the pressure P(x, z) has the 
same form (71, in which Eq. (24) must be substituted 
for the moduli C,, and C,. We do not know the exact 
solution of the resultant integral equation, and find 
therefore the order of magnitude of its solution for the 
case of strong dispersion: 

For a defect that is very strongly elongated along the z 
axis we obtain 

in the derivation of (28) we have assumed that the dimen- 
sion a of the contiguity region i s  larger than the lattice 
period a,. 

We consider now briefly the case of the presence of a 
barrier to the departure of the vortices from the defect 
region into the superconducting matrix. Assuming that 
the defect covers a region with dimensions larger than 
5 ,  we find that the displacement i s  determined by the 
right-hand side of Eq. (7). Assuming also that the bend- 
ing of the captured vortex layer i s  large and that the cor- 
responding curvature radii are smaller than the curva- 
ture radii of the defect, we obtain an expression for the 
dimensions of the captured area: 

a) with allowance for the dispersion of the elastic 
moduli : 

b) with allowance for the dispersion of the elastic 
moduli : 

where Rf is the effective radius of the forces on the 
boundary between the defect and the matrix. It follows 
from (29) and (30) that an increase of the barrier to the 
emergence of the vortices from the defect leads to a de- 
crease of the area of the capture region and to a de- 
crease of the critical-current density. With decreasing 
P, the capture region increases and perturbation theory 
takes over at R, >a2/Rf and R, > b2/Rf. 

Since the displacement u, turned out to be of the order 
of the radius Rf of the interaction forces, estimates are 
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incapable of providing a final answer to the question of 
formation of a metastable state in the presence of a bar- 
r ier  for the emergence of the vortices from the defect 
region into the superconducting matrix. 

4. CURRENT-VOLTAGE CHARACTER ISTIC AT LOW 
LATTICE VELOCITIES 

We consider first low lattice-vortex velocities, such 
as to satisfy the condition 

where V i s  the average velocity of the vortex lattice. If 
condition (32) is satisfied, Eq. (1) can be solved by per- 
turbation theory. At low velocities V, the motion of the 
lattice can be jumplike: the layers come in contact with 
the defect, followed by the jump. If the defect-induced 
lattice displacement u, i s  large in the static case com- 
pared with the lattice period a,, then the jump i s  accom- 
panied by landing of a new vortex layer on the defect, 
and the displacement at the instant of the jump changes 
by an amount equal tothe distance between the layers. 

Taking the foregoing remarks into account, Eq. (1) for 
the Fourier component can be reduced, in the absence of 
dispersion of the elastic moduli, to the form 

where M(P) is defined in Eq. (7) and 6, i s  the size of the 
jump, equal to the distance between the vortex layers, 

The pressure P(x, z, t) on the surface of the defect i s  
equal to 

p (x ,  z, t )  = CP, ( 2 , ~ )  exp ( - i o , t ) .  
N 

The semi-axes a and b of the contiguity ellipse depend 
on the velocity V and are determined from the condition 
that at the instant of the break the pressure at the cen- 
ter  of the defect reaches the maximum value PC: 

P, ( 0 )  + C pN (01 exp ( t o r s )  = P., 
N+B 

(34) 

with 6 = +0, since the break was taken by us to occur at 
t=O .  

Using expression (9) for M(PN), it i s  easily seen that 
the solution of (32) i s  of the form 

pN (x ,  z) =PN(l-xz/az-z2/b')-' .  (35) 

Substituting (35) in (9) and (32), we obtain 

Substituting the expression for PN from (36) in (34), 
we obtain an expression for P,(O): 

where [(x) i s  the Riemann zeta function. 

The quantity Po(%, z)  satisfies the static equation (7), 
and the semi-axes a and b a re  determined, a s  before, 
from relations that follow from (12). These relations 
together with Eq. (37) determine the current-voltage 
characteristic of a superconductor with defects. 

As follows from (20) and (22), jc i s  proportional to 
PCS. Allowance for the lattice motion calls for replace- 
ment of PC by P,,(O), the latter being expressed in terms 
of PC and E in accord with Eq. (37). At_E=O a renor- 
malization of the critical current (PC - PC) takes place, 
due to the fact that the average pinnihg force is some- 
what smaller than the maximum. This renormalization 
i s  small if the static deformation i s  large compared with 
the lattice period. With increasing velocity, the aver- 
age force decreases further. The friction in motion i s  
less than the friction at rest. At small E 

j=aE+j.(E),  j . (E)  =ie( l -3pE'") .  (38) 

The j , ( E )  dependence i s  not single-valued. This means 
that voltage jumps should take place in a circuit with a 
given current. The square-root singularity in the de- 
pendence of the current on the voltage o r  on the velocity 
i s  the result of the diffuse character of the lattice mo- 
tion. The size of the deformation region i s  of the order 
of v-'12. 

With increasing vortex-lattice velocity, condition (31) 
i s  violated and we obtain first the two-dimensional and 
then the one-dimensional case. 

If the condition 

~ , , / b ~ ~ a B 2 2 n V / & ,  (39) 

i s  satisfied, then the equation for PN(x, z) takes the form 

El i dK. 
-=- - exp ( i K ( z - x , )  ) 
2niN 2oSarN i n  

where a(z)=a(l - z2/b2Y/2. We solve the integral equa- 
tion (40) in the following limiting cases (a, b, and c) :  

a- a-'BoB2.2n Wa",Css. 
(41 

If condition (41) i s  satisfied, the solution of (40) takes 
the form 

We substitute (42) in (40) and obtain an explicit expres- 
sion for the coefficients P,(z). We obtain next from (34) 
an expression for the coefficient P,(O): 
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where lnY=0.577 i s  the Euler constant; 
. b. oB2~2nV/CIH1,9a-'<oB2.2nV/C,sd,. 

(44) 

t ic modulus C,,, the form 

If condition (44) i s  satisfied, the solution of the integral 
equation (40) i s  

Pw (x,  z )  = P N ( a z ( z )  -xZ)", PN=-2oBzV. (45) 

where f(u)=-f, + w 2 ,  and ~.~=$a'f/%x~ is a derivative tak- 
en a t  the extremum point of the function f. Putting 

The expression for Po(0) takes the form 

Po (0) =PC-2oB2Va, (46) 
c .  a-2<oB2.2rtV/C1,E,. (47) 

When condition (37) i s  satisfied we arrive at the one- 
dimensional case: 

we reduce (57) to the form 

ay/atr-yz-t'-o. 

A solution of Eq. (59), satisfying the condition 

y(-t') +-(- t ' )"  

at -*, i s  

p - a ' ( - t f ) / 0 ( - t ' ) ,  

2'1C 
P,(O) =PC- -(Cl,d,oBa.2nV) ". 

We consider now the situation when the condition 

C,,/az<oB= . 2 n ~ / i i , .  (49) 

i s  satisfied. In this case the equation for P,(x, z )  takes 
the form 

where @ ( x )  i s  an Airy function. 

The current surface density i s  given by 

where KO is a Bessel function. 

In the region 

b-'BoBL. 2nV/C,,dI (51 
the solution of (50) i s  

P N ( x ,  Z )  = P N ( x ) / ( b 2 ( x )  -zZ)'", b ( x )  =b (I-x'/aC) ',, (52 

From (60) and (61) we get 

where f=2.338 (- 2 i s  the first  zero of the Airy function). 
The second term in (62) is connected with the delay of 
the vortex lattice near the extremum of the functionf. 
I t  is necessary to add to the right-hand side of (62) the 
contribution from regions fa r  from the extremal &id. 
For  a functionf with a sharp extremum, this contribu- 
tion can be obtained by the method described above: 

- ~ B ~ T ~ C , ~ .  (63) 

Substitutirg Eq. (53) for P,(x) in (34), we obtain 

The critical density of the surface current i s  then In the other limiting case 

the Kernel KO in (50) can be replaced by a 6-function, 
and the result i s  the one-dimensional case c. 5. CONCLUSION 

It follows from (1) that the motion of the vortex lattice 
cuts off the interaction with the defect at a distance pro- 
portional to v-'~'. A similar screening of the interac- 
tion results also from the presence of other randomly 
distributed defects. Estimating the radius of this screen- 
ing, we find that the previously obtained formulas for  
the current-voltage characteristic a re  valid under the 
condition 

V>2nn2bZa2i,C,41aB2. (56) 

The value of the critical current and the shape of the 
current-voltage characteristic depend stroiigly on the 
character of the pinning centers. In the limiting case of 
weak pinning centers, when the pinning area is small 
compared with the lattice period, the Labusch criterion 
i s  usually not satisfied, and an individual center does 
not produce metastable lattice states. The critical cur- 
rent i s  small in this case and i s  proportional to the cen- 
t e r  density raised to a high power. The current-voltage 
characteristic has the universal form (I), and the pin- 
ning force increases as the velocity is increased. This 
case i s  apparently not realized in experiment, since a 
small number of strong pinning centers is always pres- 
ent. In the opposite limiting case of sufficiently large 
centers with properties that differ greatly from those of 
the matrix, plastic deformation of the vortex lattice 
takes place. The character of the motion of the vortices 
and the form of the current-voltage characteristic in 
this case a re  not clear. 

Equations (31)-(56) were obtained without allowance 
for the spatial dispersion of the elastic moduli. Similar 
formulas can be obtained also under conditions of a 
strongly pronounced spatial dispersion of the elastic 
moduli. We confine ourselves to consideration of the 
current-voltage characteristic in the one-dimensional 
case. 

Equation (1) near the extremum of the functionf takes, 
under conditions of strong spatial dispersion of the elas- 
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We have considered above an intermediate case when 
the dimension of the pinning center i s  large, but its pro- 
perties differ little from those of the matrix, for exam- 
ple a dislocation cluster o r  regions with increased im- 
purity density. The vortex-lattice deformation due to 
such a defect i s  small and can be described by elastici- 
ty theory. However, owing to the large size of the de- 
fect, the lattice displacement can exceed the lattice per- 
iod, so that metastable states can exist for an individual 
pinning center and the critical current has therefore a 
term linear in the defect concentration It is assumed 
that an energy barrier to the entry of vortex layer into 
the region occupied by the defect exists (the barrier to 
the departure of the vortices from the defect into the 
matrix i s  much less effective). The maximum pressure 
at the barrier PC can be expressed in terms of micro- 
scopic characteristics of the defect and of the matrix, 
and can be regarded as  a phenomenological parameter. 
When the vortex lattice moves, the vortex layer be- 
comes contiguous with the defect surface before it en- 
ters  the defect. The contiguity region i s  an ellipse 
whose area i s  proportional to P:, so that the average 

force and the critical current are  proportional to  p:. 
With increasing lattice velocity, the average force de- 
creases, and at low velocities this decrease i s  larger 
than the viscosity force. Voltage jumps should there- 
fore appear on the current-voltage characteristic. This 
was observed in  experiment^.^" 
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