
The relaxation mechanism proposed in this article 
for the formation of the giant echo cannot claim to 
explain its properties fully. At present, however, it is 
the only possible feature of the dynamics of spins with 
DFS which can lead to s o  appreciable a deviation of the 
properties of the giant echo from the developed theory 
of FM echo in systems with DFS. A possible alternative 
of the relaxation mechanism is participation of other 
resonant systems in the formation of the giant echo. 

It must be noted that systems with coupled electron- 
nuclear precession a r e  analogous to a number of other 
systems in which an external action leads to  the onset 
of coherent states. Examples a r e  the coherent state of 
paramagnetic impurities under the action of an R F  
field" o r  the superradiant transitions in laser systems.13 
The echo-signal formation mechanism proposed in this 
article and connected with induced violation of coherence 
can also be effective in those systems. 

In conclusion, the authors a re  deeply grateful to A. S. 
Borovik-Romanov for guidance and constant interest in 
the work, a s  well as to E: A. Turov, L. L. Buishvili, 
A. S. Mikhailov, B. S. Dumesh, V. P. Chekmarev, and 
G. I. Mamniashvili for helpful discussions. 

"A recent paper by Tsifrinovich and ~ r a s n o v ~  reports an in- 
vestigation of the influence of the DFS on the microinhomo- 
geneous broadening for a line with a Lorentz shape. Their 
results,  however, agree poorly with the experimental data, 

possibly a s  a result  of the choice of the form of the broaden- 
ing. 
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An exact quantum-mechanical solution is obtained for the one-ion problem for a magnet with one-ion 
isotropy, located in a magnetic field of arbitrary direction, for a spin S = 1. The solution is based on the 
formalism of the theory of unitary symmetry, in particular on the properties of SU(3) Lie algebra, to which 
belong the operators that characterize the state of an individual ion. After a number of exact transformation, 
the one-ion Hamiltonian is reduced to a form for which the determination of the eigenvalues and eigenvectors, 
of the partition function, of the magnetic susceptibility, of the thermodynamic functions, and others is a 
trivial problem. 

PACS numbers: 75.10. - b, 03.65. - w 

INTRODUCTlON 
h,, and h, in (1) a r e  the magnetic-field components paral- 

The simplest model of a system consisting of mag- el and perpendicular to the z axis; for simplicity, the 
netic ions in lattice si tes,  in the presence of one-ion perpendicular component is  assumed directed along the anisotropy (OA) and of a magnetic field of arbitrary 

x axis. The one-ion anisotropy described by* takes 
direction, is  described by the Hamiltonian into account the presence of a crystal field that distorts 

%=.%,+%,., %,=%+Zh; the states of the isolated ion, and the spin-orbit and 
%=d C (~;*) '+e  ~ [ ( S i = ) c ( S i Y ) 2 1 .  spin-spin couplings of the electrons of the magnetic 

# 1 (1) ion in the site i. In the case S = 1, the Hamiltonian* 
a h = - h , , z  ~ , ' - h , z  S.', as, = z J.jaAS,"S~. written above has the most general form (* is  con- 

I 
= B - = , V , ~  stant a t  S = i). At S > 1 operators of higher degrees 
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in the spin operators can appear. 

If the density of the magnetic ions is  low and there- 
fore J<< d, an important characteristic of the system 
a r e  the eigenvalues and eigenvectors of the one-ion 
Hamiltonian 8. For example, the EPR and EAR spec- 
tra a r e  determined by the energy levels of %. When 
Frenkel magnetic excitons in such systems a r e  in- 
vestigated, the eigenvectors of the one-ion problem 
are  the basis for the construction of the exciton Hamil- 
tonian. The solution of the one-ion problem i s  a t  any 
rate a necessary stage in the investigation of any char- 
acteristic of such a system. 

The energy levels and their pertinent eigenvectors 
of the Hamiltonian can be easily obtained when the 
magnetic field is  parallel to the anisotropy axis. In 
this case the secular equation of degree 2s + 1 breaks 
up onto equations that a r e  quadratic for half-integer S 
and quadratic and linear for interger S. On the other 
hand, in the case of an arbitrary direction, the one-ion 
problem has not been solved and, a s  noted repeatedly in 
the literature, difficulties ar ise  when it comes to de- 
scribing the EPR spectra,' to construct a theory of 
magnetic excitons: etc. In these cases it was neces- 
sary to confine oneself to the use of perturbation theory 
in terms of the field o r  of the angle between h and the z 
axis, or to the use of a two-level scheme (Set = i). 

Similar difficulties ar ise  when higher-concentrated 
magnetic systems ( J z  d) with OA a r e  used, which ad- 
mit of ferromagnetic (or antiferromagnetic ordering 
at  low temperatures. In the simplest (molecular-field) 
approximation the problem reduces to the one-ion prob- 
lem, and the same difficulties a r e  encountered in the 
presence of a field of arbitrary direction. These in- 
vestigations were confined therefore to "trivial" cases 
h(lz at d <  0 ("easy axis" of the OA type; and h l  z a t  
d > 0 ("easy plane" of the OA type;4 perturbation theory 
was also used. The problem of taking exact account of 
the OA in the presence of a transverse field and at  d 
< 0 (in the molecular field approximation relative to 
the exchange interaction) was posed in Ref. 6. The 
approach proposed, however, was limited to the case 
of zero temperature and E =  0. 

In this paper we solve the one-ion problem in the 
presence of one-ion anisotropy of @ of type (1) (the 
signs of d and E a r e  immaterial) and of a magnetic 
field of arbitrary direction, using unitary-symmetry 
formalism, particularly the properties of the SU(3) Lie 
algebra (see e.  g. , Ref. 7) for S = 1, and indicate a 
method for solving the problem at arbitrary S. 

SYMMETRY OF SU(3) ALGEBRA AND HAMILTONIAN 
OF THE PROBLEM 

In the case S = 1 the ion can have three states, and al l  
possible transitions between them a r e  described by 
eight independent operators belonging to the ASU(3) al- 
gebra. They a r e  linearly connected with operators of 
two types-linear and quadratic in the spin operators. 
It i s  convenient to choose the generators of this algebra 
in our case to be the zero-trace operators Of" (I i s  the 
rank of the tensor and m = 0 , i1 , .  . . ,*I): 

The tensor operators Of" realize the irreducible repre- 
sentations of the group of 3-dimensional rotations. At 
2 =  1 they coincide with the spin operators. They a r e  
also convenient because of the simple commutation re- 
lations (without cumbersome coefficients) and their clear 
meaning, namely: the operators OT a r e  connected with 
transitions that change the projection of the spin on the 
z axis by m. 

We present the representation of the operators Or in a 
cyclic basis, which we shall need later on1' 

1  0  0 0 -1 0 (0 0  0) 
S'= 0  0  0 S+= 0  0 -1 S-= 1 0 0 , 

0  0 - 1  0  0  0. 0 1 0, 

0 1 0  1 0  

With this choice of the generators, the initial one-ion 
Hamiltonian takes the form (accurate to a constant that 
i s  immaterial in this case) 

The rank of the Sq3)  algebra i s  equal to two. This 
means that its generators (3) include two linearly in- 
dependent commuting operators. In our case these 
a r e  the operators S* and 0'. Any other operator is  
unitarily equivalent to some linear combination of 
them. At our choice of the generators, all  six inde- 
pendent Hermitian operators, viz. S +  -S-, 0' - 0-', 
0-' - d*, -i(S+ +S-), -i(ol + 0-'), and -i(OZ - 0-') a r e  
unitarily equivalent to t he operator S,. It i s  clear 
therefore that any operator A of the considered space 
can be represented in a certain basis in the form 

Our problem is  to find such a basis for the Hamiltonian 
K. 

This problem is  solved in principle by carrying out 
all the unitary transformations generated by the fore- 
going six operators: 

exp [cp,(S++S-) I ,  exp [~,(O'+O-') I ,  exp [cps(Oz-0-7 I ,  
exp[icpi(S+-S-) 1, exp[icps(O1-0-I) 1 ,  e~p[irp~(O~+O-~) 1 

and by determining the transformation parameters q, 
from the condition that the corresponding terms of the 
Hamiltonian vanish. It is necessary for this purpose 
to establish the explicit form of the matrices of the in- 
dicated unitary transformations and the law of trans- 
formation of the op.erators OF, 

If, a s  in our case, the initial Hamiltonian does not 
have a y-component of the field, it suffices to carry 
out three of the six unitary transformations, namely2): 
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UNITARY TRANSFORMATION 

The first transformation is  well known. It i s  the ro- 
tation through an angle cp about the y axis in 3-dimen- 
sional space. The operators O? a r e  then transformed, 
a s  is  well known, in accord with bl-irreducible repre- 
sentations of dimensionality 21 + 1: 

where DFm' is  the Wigner D-function. The law of 
transformation of the operators OF for the remaining 
two unitary transformations can be obtained in two 
ways. The first is the explicit construction of the ma- 
trices V, and using (3) on the basis of the Cayley-Hamil- 
ton theorem or the Sylvester theorem1' and next finding 
directly the V,OTVi transformation laws. According 
to the Sylvester theorem 

where n i s  the order of the matrix A, Xi a r e  the eigen- 
values of A, and I is a unit matrix. By this method we 
have obtained V,: 

cosL 0 sin L 
v,=( 0 I 0 ) .  

-sin L 0 cos L 

All the operators 0: a r e  then transformed a s  follows: 

S'=P cos 2L- (Oa+O-') sin 2L, 0°=00, 

- 1 P = - S sin 2L+02 cosq-0-' sinZL, 
2 (9) 

S+-S' cos L+O-I sin L, 0'--S- sin L+O1cos L, 

We can proceed similarly with respect to V,. There 
is, however, a simpler method. It i s  seen from (9) 
that at L =x/2 we have the following unitary transfor- 
mation of the vectors: 

so that we can form a subalgebra isomorphic to ASU(2) 
(or, equivalently, to A0(3)] by the triad of operators 
d, a', and 0 -' in place of S', S', and S- a s  usual. 
The unitary transformation generated on this algebra 
and analogous to exp(2-' /'cp(s + + s-)] i s  then 
exp(2" '2cp(0' + 0-I)]. The operator transformation law 
i s  the same in this case a s  in the Vl transformation. 
Its matrix form is  

Dl and D, a r e  Wigner D matrices. (Their explicit form 

is too cumbersome to be presented here.) The explicit 
form of V, is  

'1% ( I  + cos K )  -2-'I' sin K '1, (cos K - I )  
2-'!' sin K cos K 2-"'sin K . 

'/a (cos K - I )  -2-"'sin K '1% (l + cos K) 
) (12) 

Thus, after making al l  three unitary transformations 
we obtain on the basis of Eqs. (71, (91, and (11) 

i 

h ( 9 ,  K, L )  =H(cp, K )  cos 2L-Dl ( c p ,  K )  sin 2L, 

H(cp, K )  = (h ,  sin cpfh,, cos cp)cos K-(d- sin cp cos cp sin K, 

Dz(cp, K )  = ( h ,  cos cp-hi, sin cp)sin K cos K 

+'/&(I-2 cost cp+cos2 K cos'cp) 

+'/za ( 2  cos' cpf 2 cos2 K-I-cosZ cp cosz K ) ,  

d ( 9 ,  K )  -3 (h ,  cos cp-h,, sin p) sin K cos K 

+'l,d(3 cos' cp cosZ K- l )  +'/,e (2  cos' K-I-cos2 K cost c p )  . 
The angles p, K, and L a r e  determined from the con- 
dition that the terms proportional to Sf  -S-, O1 -0-', 
and d + 0-' vanish in the Hamiltonian, i. e . , from the 
system of equations 

H(cp, K)sin 2L+D,(cp, K)cos 2L=0; 

I ( c p ,  K )  - (e-d) sin cp cos cp cos K- (h,, cos cp+h, sin c p )  sin K,  (15) 
m(cp, K )  =- [d cosz cp+e (I fs in '  c p )  ]sin K w s  K 

+ (h ,  cos cp-hi, sin cp)cos 2K. 

We note that although the initial Hamiltonian did not 
have terms containing 0'- 0-', it i s  necessary to carry 
out all  three transformations, for the performance of 
even the first of them (V,) leads to the appearance of 
all the operators from ASU(3). 

The determination of the eigenvalues and of the eigen- 
vectors of is now trivial. The eigenvalues a r e  [see 
Eqs. (311 

El--h(cp, K, L)+'l,d(cp, K ) ,  Et--'/d(cp, K ) ,  
(16) 

The eigenvectors in the new basis a r e  eigenvectors of 
the operator SL, i. e. , 

The eigenvectors i, in the initial basis a r e  specified by 
a matrix that diagonallzes the Hamiltonian, i.e., by 
the matrix V = VlV2V,. Their explicit forms a r e  

Formulas (16), (17), and (141, together with (Is), corn- 
plete the solution of the problem of finding the eigen- 

[(cos K + sin K sin cp) (cos L + sin L )  + cos cp (cos L -sin L)]/2 
e= 1 [sin cp (cos L - sin L) - sin K cos cp ( w s  L + sin L ) I I ~ ~  P 

[(cos K -sin K sin c p )  (cos L + sin L )  - eoscp(cos L - sin L)]/2 

(sin K - cos K sin cp)/fr 
cos K coa cp 

I 
(17) 

(sin K + sin cp cos K ) / ~ T  
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values and eigenvectors of the one-ion problem. 

If we a re  interested only in the eigenvalues of the 
Hamiltonian, we can confine ourselves to a simpler 
program-perform only two transformations V, and V,, 
a s  a result of which the Hamiltonian 

takes the form 

where D,(p,K) =d(p,K) and d(p,K), H(p,K) a n d D z ( ~ , ~ )  
a r e  defined by formula (14). 

Since [O;,%~,K)]= 0, the eigenvectors of the Hamil- 
tonian a r e  classified in accord with the eigenvectors of 
the operator 0°, i. e.  , only the states I I )  and 1-1) re- 
main entangled. The eigenvalue equation therefore 
splits into a quadratic and a linear equation and can be 
easily solved: 

The angles p and K a r e  determined from the equations 
(e -d )  sin cp cos cp cos K- (h,,  cos cp+h, sin (F) sin K=O, 

- [dcos2cp+ e (l+sin2 cp)] sin Kcos K+(h,  cos cp-h,, sin q)cos 2K=0. (20) 

CONCLUSION 

The obtained solution of the one-ion problem can be 
used directly in the interpretation of the fine structures 
of EPR and EAR, and after simple additional operations 
also to determine the magnetic susceptibility, the ther- 
modynamic function, and any other characteristic of 
a system with paramagnetic ions in a diamagnetic ma- 
trix. In addition, the developed approach can be used 
to solve, in the molecular-field approximation, the 
problem of the behavior of a ferromagnet (antiferromag- 
net) with OA of the type (1) in an arbitrarily directed 
magnetic field. Indeed, by making the same unitary 
transformations (in the simplified second variant) in 
8 and &q,, , and then replacing the operators in the ex- 
change part of the Hamiltonian by their mean values in 
the spirit of the molecular-field approximation (MFA), 
we obtain a Hamiltonian in the form (18). The for- 
mulas (14) for H(p,K), D,(p,K) and d(cp,K) and the 
Eqs. (20) for p and K acquire then additional terms 
connected with the mean values characteristic of the 
problem, namely the order parameters. The equations 
for them can be easily obtained in explicit form by 
starting from the Hamiltonian (181, for which the cal- 
culation of the partition function and of the free energy 
entails no difficulty. Together with the equations for 
p and K they form a complete system of self-consistent 
equations, which provides the solution of the problem 
in the MFA. 

To construct the spectrum of the elementary excita- 
tions on the ground state of a ferromagnet (antiferro- 
magnet), determined in the MFA, o r  else the spectrum 
of magnetic excitons in a paramagnet, it i s  necessary 
to use the f i rs t  and most detailed variant of the tsans- 

formations, since knowledge of the explicit form of the 
eigenvectors is essential. Inasmuch a s  the elementary- 
excitation spectrum is invariant to unitary transforma- 
tions, it i s  convenient to carry out all the operations in 
a basis defined by the angles p ,  K, and L ,  where the 
eigenvectors have the simplest possible form. 

All the transformations were made in the present pap- 
e r  for S =  1. In the case of arbitrary S, the Hamilton- 
ian* can contain in addition to (or in lieu of) the quad- 
ratic terms also terms of higher order in the spin oper- 
ators. In the general case the complete set  of opera- 
tors  that characterize the state of the ion makes up a 
Lie algebra SU(2S + 1): whose rank is  equal to 2s. This 
means that the one-ion Hamiltonian can be reduced to 
the form 

The unitary transformations needed for a reduction to 
this form a r e  generated by the remaining operators 
from ASU(2S + 1). They can be carried out explicitly by 
the same method a s  used for the transformations of V, 
and V, for S = 1. 

The author thanks V. M. Adamyan, I. E.  Dzyaloshin- 
skfi and D. E. ~hmel 'nitskii  for a discussion of the re- 
sults. 

 ere and elsewhere we omit for brevity the subscript Z =  2 of 
the operators 07, and write, as  usual, Sm in place of the op- 
erators Oy . 

2'~ntroduction of the coefficient 2-'I2 is aimed at an exact re-  
duction of V1 to a rotation around they axis. 
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