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An exact expression is obtained for the electronic thermal conductivity of an anisotropic metal under 
conditions when scattering of electrons by phonons predominates in the low-temperature limit (when the 
the& momentum of the phonons is smaller than all the characteristic dimensions of the Fermi surface). 
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The electronic thermal conductivity of metals a t  low with the function c(dr) the same a s  in (I) ,  but ~(1;) can 
temperatures, under conditions when scattering of elec- be found in explicit form. This yields a closed equa- 
trons by phonons predominates, was considered long tion for the thermal conductivity of a metal with an a r -  
ago by Peierls' and is constantly a center of attention. bitrary Fermi surface and with an arbitrary phonon 
The usual method of calculating the thermal conductivity spectrum. 
consists of determining from the kinetic equation the 

The kinetic equation for the electrons under conditions 
nonequilibrium electron distribution function 

of perdominant electron-phonon scattering is  of the 
8 afto 

ft-ftL-@t for m2 
ae,  

- ek-)c afto -- 1 
and of a determination of the heat flux associated with vt~~=---C (@r-@r*  [n,?6(&kf 

T ae. 
this function. In the calculation of cPk there ar ise  in * keq& 

- e r - t i ~ ~ r ) 6 r * - r - ~ , o +  (1+nq10)6(er~-~r+h~.r)6t~-r+q.olt 
(4) 

natural fashion two problems, that of the dependence of *, on the energy ck and that of the dependence of a, on 
where dk, i s  the matrix element of the electron-phonon 

the direction of the wave vector k. For an isotropic 
interaction, q and X a r e  the wave vector and the polar- metal, only the first  of these problems exists, since 
ization of the phonon, and G is  the reciprocal-lattice th: angular dependence of a, is trivial, viz. , 

a kVT (k=k/k).2 vector. 

If we substitute in the kinetic equation We introduce in place of k the variables e ,  and f,  
where f i s  a vector having the same direction a s  k, but 

@.=C(E~)~VT, . (1) terminating on the Fermi surface. As a function of f ,  
changes significantly over intervals Zk,,in, and var- we obtain for c (ck)  an integral equation similar to 

ies substantially a s  a function of c ,  over the width of Bloch's equation in the electric conductivity problem1t3: ,-. the thermal smearing of the Fermi distribution. Inas- 
21 en+ 1 e-n+l v) much a s  in the low-temperature limit Ikl-kl -q ,,= f &- ex-, { .- eq+e-z[c(q+x)-c(q) I+- [c(tl-x) -dl,) 1 } , << kmin and ck* - E -fiuq - T, the angular dependence of 

0 a, is weak compared with the energy dependence5; where q = (ck - I*)/ T and C( is the chemical potential. 
we can therefore put in (4) 

This equation cannot be solved analytically; only the 
temperature dependence of the thermal conductivity, Q ) ~ - Q ~ ~ . = @ ( E ~ ,  f )  -0 ( ~ r . ,  f) 
~ C C  T-', can be established.' Equation (2) is usually 

In addition, we can put c , = e ,# = e, in the slowly varying 
solved by a variational method, but the convergence of energy functions (such a s  v,).  These assumptions a r e  
the result i s  slow and a rather large number of trial  

equivalent to neglecting the terms -(~q,/0k,~,,)~ and functions must be used. An exact solution of (1) was 
-TI+ (qD i s  the Debye wave vector of the phonon) and obtained by Klemens3 by numerical integration. 
a r e  fully justified for the calculation of the thermal 

The energy dependence of a, in the isotropic case has conductivity; we note that in the case of electric con- 
thus been sufficiently well investigated. In the case of ductivity these terms play a principal role and cannot 
an anisotropic metal, the angular dependence of a, is be neglected. - 
also important. Apart from several variational calcula- 

As a result of the approximations made, the kinetic tions (e. g. , Ref. 41, however, there a r e  no reported 
equation acquires the following structure: studies of this question. 

It will be shown in this paper that in the general aniso- V~VT=-  I d a f [ @  (e, f)-@ (E', I)]Q~(E, a ' )  (5) - (&-I4 ae 
tropic case, in the low-temperature limit (when the 

and is not an integral equation in the angle variable f .  wave vector of the thermal phonon q, is less than the 
The expression for the kernel Q,(E, E I )  is obtained from 

smallest of the characteristic dimensions of the Fermi ,,,. 
surface k ,,) the energy and angle variables can be ( * I :  

separated in the kinetic equation. Therefore a, is  Q E E )  = dSf' 2n ,,,,vf, T l g i r l ~ ( & )  1 
represented a s  the product 
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We note that under the assumptions made we need not 
worry specially about the umklapp processes: for open 
Fermi surfaces the choice of G in (4) i s  uniquely deter- 
mined by the requirement that k and k' be close, and 
transitions through a finite gap in the case of closed 
surfaces a r e  frozen-out. 

Since f and f' a r e  close, all  the functions f'  in (6) can 
be expanded in terms of q = f' - f, with only the prin- 
cipal term retained. The section of the Fermi sur- 
face near f can be regarded a s  planar and we can go 
from integration with respect to f '  to integration with 
respect to q: 

Here q; i s  an angle in the plane tangent to the surface a t  
the point f ;  the upper limit in the first  integral was set  
equal to infinity in view of the rapid convergence. We 
use also the fact that a t  small q the phonon frequency 
wq,=s,,q, while the matrix element is 

where s b  and e'($ a r e  the phase velocity and polariza- 
tion vector of the phonon, AU i s  the deformation poten- 
tial, and p is the density of the metal; summation over 
repeated indices i s  implied. As a result, the expres- 
sion for Q,(E, c ') reduces to 

The kernel of the integral equation i s  thus degenerate, 
so that we can find in explicit form the angular depen- 
dence of a,: 

For the function c(q) we obtain the universal equation 

which reduces after simple transformations to the form 
(2). Since the solution of (2) was obtained by KlemensS 
(Fig. I ) ,  it follows that (10) yields the complete solu- 
tion of the kinetic equation (4). 

Calculating with the aid of (10) the heat flux 

we obtain the thermal conductivity tensor in the form 

The first integral yields a universal constant whose 
numerical value can be obtained with the aid of the 
Klemens solution: 

We obtain thus for the thermal conductivity of the metal 
the closed expression 

Expressing qq in terms of the deformation potential, 
we obtain finally 

We recall that the integration with respect to f is  over 
the Fermi surface, and the integration with respect to 
cp; i s  in a plane tangent to the surface a t  the point f. 

In the foregoing calculations we disregarded the dis- 
equilibrium of the phonons, i. e. , we used Bloch's hy- 
pothesis. It is  known, however, that in the case of the 
thermal conductivity the dragging of the phonons i s  of 
little importance.' In fact, eliminating the phonon dis- 
tribution function from the kinetic equation for the elec- 
trons (with the aid of the kinetic equation for the phon- 
ons) and substituting a, in the form (3) with odd C((E 
- p ) / T )  and G(li),  we easily verify that the terms con- 
nected with dragging have an additional smallness 
-(T/0I2 o r  T/cF compared with the principal term, 
i. e.  , of the same order a s  the terms discarded in the 
calculation. Compensated metals constitute a special 
case: in which a divergence appears in the terms of 
higher order in T/ cF (which a r e  neglected in the present 
paper) if no account i s  taken of the umklapp processes. 
When umklapp i s  allowed for, these terms turn out to 
increase exponentially a s  T - 0, and a t  extremely low 
temperatures they become the principal terms and lead 
to an exponential temperature dependence of the thermal 
conductivity: x-exp(T/T*) (T* i s  the temperature at 
which the umklapp process freeze out). This, however, 
occurs only a t  temperatures low enough to allow the 
large value of the Peierls exponential to compensate for 
the initial smallness of these terms, i.e., 

(see Ref. 6). Except for this temperature region, for- 
mula (12) is valid also for compensated metals. 

It i s  easy to obtain a preliminary estimate for the 
thermal conductivity of noble metals. Inasmuch a s  the 
deformation potential i s  large on the necks,' while the 
Fermi velocity i s  small, we can neglect in (12) the in- 
tegrals over the necks. Using the cubic symmetry of 
the metals, assuming for simplicity the phonon spec- 
trum to be isotropic, and assuming that the deforma- 
tion potential 1 A,, I = ( 2 / 3 ) ~  .8,, on the spherical part of 

FIG. 1. Solution of the integral equation (21, obtained by 
~ l e m e n s ~  by numerical integration. 
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the Fermi surface, i. e,  equal to the value for the free 
electrons, we obtain 

(restoring the dimensionality of the Boltzmann constant 
k), where s, is  the speed of sound for the longitudinal 
mode, S, is  the area  of the essentially spherical part of 
the Fermi surface (without the necks), and So is  the 
area  of the free-electron sphere. Putting S, =0.6S0 and 
taking s, to be the speed of sound for the most symme- 
trical direction [loo], we obtain for W / p  (W is  the 
thermal resistance) the values 1.3, 2.7, and 2.1 (in 
units of lo4 cm/W -K) for Cu, Ag, and Au, respectively. 

To compare these values with experiment it i s  neces- 
sary first to separate the temperature interval for which 
such a comparison i s  correct. The upper bound of the 
temperature is determined by the principal assumption 
q,<< k,,, . In noble metals, k,, corresponds to the di- 
mension of the neck and amounts to 9 d 5 ,  s o  that ex- 
pression (12) i s  valid at  T<< 8/ 5 = 40-60 K. On the 
other hand, a t  the very lowest temperatures scattering 
by impurities always predominates and distorts the tem- 
perature dependence of the thermal conductivity (owing 
to the deviations from the Matthiessen rule). The lower 
bound of the temperature is  therefore determined by the 
requirement that the thermal conductivity due to scat- 
tering by phonons be substantially larger than that con- 
nected with the impurities and with the lattice defects. 
For the purest samples of Cu and Ag this i s  satisfied a t  
T > 7-10 K. 

For extremely pure Ag samples, the relation Woc 
is observed in the interval 5-16 K (Ref. 8); the value 
W / p  = 3.0 x lo5 cm/W - K obtained in this case (see 
also Ref. 9) agrees with the estimate above. The 
available experimental data for copper a r e  insufficient 
for a reliable determination of the temperature depen- 
dence of W in the pure metal. The thermal resistance, 
however, obtained by an estimate at  T - 10 K, is close 
to the experimental values for the purest samples (Fig. 
2). 

An estimating formula of the type (13) can be obtained 
also for metals described by the pseudopotential theory. 
In the general case it cannot be stated that the defor- 
mation potential A,, is large near a Bragg plane. How- 
ever, even from the fact that its off-diagonal compon- 
ents differ from zero and have the usual value -E, (as 
well a s  because of a certain decrease of the Fermi vel- 
ocity), the contribution made to the integral (12) from 
the vicinities of the Bragg planes turns out to be sever- 
a l  times weaker. Inasmuch a s  in many metals the free- 
electron sphere is  strongly cut up by the Bragg planes, 

can be considerably smaller than for a spherical 
Fermi surface. These simple considerations explain 

FIG. 2. Experimental data on the thermal conductivity of CU: 
0 )  Powell etd."; 0) Schriempf (see the table in Ref. 11); 
dash-dot) ~ u r n b o . ' ~  W is the measured thermal resistance, 
W,=p,/LT (L is  the Lorentz number); the numbers indicate 
the residual resistivitypo of the sample in units of lo-' a-cm. 
Dashed line--temperature dependence of Wfor a pure metal 
a s  estimated from formula (13). 

why the experimental values of W / T Z  for noble metals 
turn out to be among the lowest ones3 (in accordance 
with the fact that these a r e  the best conductors a t  room 
temperature). Indeed, for these metals, that part of 
the Fermi surface which i s  far from the Bragg planes 
has a relatively large area; a t  the same time they a r e  
characterized by a high density and speed of sound. 
For example, the value of ps4 for copper (according to 
the data for the polycrystal) a r e  larger than for all  the 
nontransition metals except Be (A1 has practically the 
same value of s: a s  Cu). 

The author thanks Yu. K. Dzhikaev, N.V. ~avar i t sk i i ,  
and M. I. Kaganov for a discussion of the results. 
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