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An exact solution is obtained for the general-relativity collisionless kinetic equation that describes a gas in the 
field of a plane gravitational wave of arbitrary amplitude and polarization. The gas was at equilibrium prior to 
the arrival of the gravitational wave. All the macroscopic characteristics of the collisionless gas in the field of 
the gravitational wave are calculated for a Boltzmann gas, for a gas of massless particles, for a completely 
degenerate Fermi gas, and for a nonrelativistic gas of relict neutrinos. It is shown that the background tails of 
sufficiently strong gravitational waves with amplitude h > 6x lo-" o-li2 (w is the gravitational-wave 
frequency in kHz) can be relatively simply revealed by the anomalies in the spectrum of the relict radiation. It 
is shown that plane gravitational waves induce in a plasma a longitudinal electric field. The induced field is 
described by the system of the Vlasov general-relativity equations, which in the case of a cold plasma with 
degenerate electrons reduces to a single nonlinear differential equation of second order. A solution of this 
equation is obtained for a nonrelativistic plasma and describes plasma-frequency field oscillations modulated 
by the square of the amplitude of the gravitational waves. The amplitude of the current induced by the 
gravitational wave in a metallic beam with cross section area lo4 cm2 reaches A at a gravitational-wave 
amplitude 10-12. 

PACS numbers: 04.20.Jb. 04.30. + x, 05.30.Fk, 05.30.Jp 

$ 1. INTRODUCTION objects and collisional damping of GW (Refs. 4 and 10) 

The propagation of weak high-frequency gravitational 
waves (GW) in a collisionless gas has by now been in- 
vestigated in sufficient detail. The propagation of GW 
in a gas was previously ~ o n s i d e r e d l * ~  against the back- 
ground of a flat space. In Ref. 3, however, i t  was 
shown that when solving the propagation of gravitational 
waves in a medium one cannot neglect the proper back- 
ground of the medium itself. The interaction of the GW 
with the medium's own background, which leads to a 
change in the GW phase velocity, turns out to be no 
weaker (and stronger in a nonrelativistic gas) than the 
interaction of the ordinary type, a t  which scattering of 
the GW by individual particles takes place. With this 
fact into account, a local dispersion equation was ob- 
tained3 for high-frequency GW in a weakly inhomogen- 
eous gas: 

where w i  - xw2. This formula is only an estimate. 
The numerical factor of wi,  a s  well a s  the sign i f  w i ,  
turned out subsequently to depend significantly on the 
structure of the gravitational background of the gas. 

The local spectrum (1. 1) is applicable to GW of suf- 
ficient high frequency: 

02>o#2, (1.2) 

whose group velocity differs quite insignificantly from 
the speed of light. In Refs. 4-7, using the approxima- 
tion (1.2), a covariant WKB theory was developed, 
which described the propagation of weak gravitational 
perturbations in a collisionless and weakly collisional 
gas, i . e . ,  in the case 

' min ( 7 ,  w-'1 <lC, (1.3) 

where T i s  the duration of the gravitational-perturbation 
pulse and r, is the average time between the particle 
collisions. The covariant WKB theory was used a s  the 
basis for i n v e s t i g i t i o n ~ * ~ ~ * ~  of GW with astrophysical 

in a nonrelativistic and an ultrarelativistic plasma. 
In addition, the propagation of cosmological GW in a 
collisionless gas was investigated?'"'12 

The foregoing studies, while casting some light on 
the dynamics of the interaction of GW with a gas, have 
a more  pronounced astrophysical and cosmological 
rather than an experimental aspect. From the point of 
view of the problem of detection of gravitational waves, 
i t  is more important to study the behavior of a medium 
in the field of a given GW, when the reaction of the de- 
tector on the GW can be neglected. The necessary con- 
dition for this neglect is precisely the inequality (1.2), 
and more rigorous conditions will be obtained below. 
During the f irst  stages we can confine ourselves to the 
simplest type of GW, a plane wave, a l l  the more  since 
we have at  hand the corresponding exact solutions1S 
(although it i s  st i l l  not clear whether a plane GW is 
physically real). It i s  precisely the high degree of 
symmetry of the plane GW (three-parameter group of 
motions) which makes i t  possible to construct an exact 
solution of the collisionless kinetic equation and by the 
same token provides a unique possibility of rigorously 
investigating the nonlinear effects that the GW initiate 
in a medium. 

$2. VLASOVS EQUATIONS 

The motion of a collisionless gas of charged particles 
in a gravitational field is described by Vlasov's sys- 
tem of general-relativity equations14 

FJR , k - - 4 ~ l z / ~ ,  - F''b,k=u. (2.2) 

where 3Ca(x, P )  is the invariant Hamiltonian of a charged 
particle of species a: 
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A,  is the vector potential and P i  is the generalized mo- 
mentum. 

Since the Poisson brackets a r e  antisymmetrical, the 
invariant Hamiltonian is an integral of the kinetic 
equations ( 2 . 1 ) :  

so  that the distribution function of particles with fixed 
r e s t  mass ma is given by 

where fa(x ,  P )  is a function that is not singular on the 
mass  she11 ( 2 . 4 ) .  

We determine the macroscopic moments relative to 
the invariant distribution function: 

is the particle-number flux-density vector 

is the energy-momentum tensor of the a-th component 
of the gas, 

is the current-density vector, where 

is the invariant volume element in momentum space. 

In the synchronous reference frame, the metric of a 
plane GW with arbitrary polarization is described by 
the expression 

where A ,  B, and C a re  functions of u  and a r e  connected 
by a single differential equation. 

We consider f irst  a gas without a macroscopic elec- 
tromagnetic field. Then the equations of the charac- 
teristics for ( 2 . 1 )  in the metric ( 2 . 1 0 )  take the form 

for which follow immediately the independent integrals 

These integrals suffice to write down for ( 2 .  1 )  an exact 
solution that goes over, in the absence of GW, into an 
isotropic distribution. Indeed, a solution of ( 2 . 1 )  inde- 
pendent of the coordinates v ,  x 2 ,  and x S  is an arbitrary 
function of the integrals ( 2 . 1 2 ) :  

Fa(u, P )  =Fe(P,, Pt,  Pa, %*). ( 2 . 1 3 )  

Pr io r  to the arrival  of the GW ( u  S O )  we have 

Assume that prior to the arrival of the GW the distribu- 
tion ( 2 .  13 )  was equilibrium and isotropic, i. e.  , 

where p = 2 S  + 1, S  is the particle spin, T is the tem- 
perature, the plus and minus signs correspond to fer-  
mions and bosons, respectively, ga is the chemical po- 
tential of the component and is determined from the 
condition 

and Na is the density of the number of particles of spe- 
cies a prior to the arr ival  of the GW. 

Out of the independent integrals ( 2 . 1 2 )  we can con- 
struct  the integral 5,(u, P ) ,  which has the meaning of 
the total energy of the particle in the GW field: 

Indeed, in the absence of GW we have the relation 

Substituting in ( 2 .  1 7 )  the value of X ,  from ( 2 . 4 ) ,  we get 

where P :  = P g  + P i ,  from which i t  is seen that a t  
P ,  2 0  we have automatically 5,(u, P )  2 m a c 2 .  We thus 
obtain the exact distribution function of a gas in the 
field of a plane GW ( 2 .  l o ) ,  satisfying the initial condi- 
tion ( 2 .  15 ) :  

P Fa+ (u ,  P )  = , U+ (Po )  6 (%'* - 
(2nf i )  

-~h+ePo(u, P )  
x { e w [  ] * 1 ) - ' .  ( 2 . 2 0 )  

where T and k a  a r e  constants [ g ,  is determined from 
( 2 . 1 6 ) ] .  

It is possible to construct similarly also the distribu- 
tion function of a gas whose macroscopic velocity v 
prior to the arrival  of the GW was different from zero, 
i. e . ,  

where V' is the macroscopic four-velocity of the gas. 
The distribution function satisfying the initial condition 
( 2 . 2 1 )  is obtained f r o m ( 2 . 2 0 )  by replacing t a ( u ,  P) with 
expression 

&.(u, P )  (V1 -V1)  fc(2'-P,T7'+PIV'+PsV3),  ( 2 . 2 2 )  

which goes over into c (V ,  P )  at u  0 .  

53. MACROSCOPIC MOMENTS 

The Hamiltonian takes in the coordinates u ,  v, x 2 ,  
and x the form 

where 
APs'+BPz2+2CPzP, 

s,Z=-g,a"P,P, = 
A B - c  
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It is easy to show that St 0 a t  AB - C2 2- 0. We sub- 
stitute (3.1) in the mass-shell equation (2.4) and solve 
i t  with respect to P,; the expressions for the macro- 
scopic moments (2.6) and (2. 7) a r e  transformed into 

The integration in (3. 3) and (3.4) is easiest  to carry 
out by replacing P ,  by a new variable 

and then going over to a spherical coordinate system. 
In these coordinates 

8. (u, P) =8. (P) = c  (m.'c2+P2) '". (3.5) 

Calculating the integrals (3.3) and (3.4) relative to the 
distribution function (2.  21), we obtain after straightfor- 
ward but cumbersome manipulations expressions for 
the nonzero components ni and Ti , :  

where 

N ,  P ,  and & a r e  respectively the particle-number den- 
sity, the pressure, and the energy density of each gas 
component in the unperturbed state (the subscript a has 
been left out for simplicity). The numbers C, and 0, 
have no hydrodynamic analog. For  them we have 

where 5 must be replaced by 5,(p) from (3.5). In the 
ultrarelativistic limit 5, = mat/( p) - 0 these numbers 
tend to zero like In (,, and for massless particles 
they a re  strictly equal to zero. We write down the ex- 
pressions for these numbers in a number of important 
cases. 

1. Boltzmann gas ( f a  = const. exp(- (,/TI: 

where A = mc2/T, and Kn(A) a r e  MacDonald functions. 

2. Degenerate Fermi Gas (pF/T - "3): 

where p, and P, a r e  the Fermi  momentum and energy 
(with allowance far  the res t  mass).  

3. Gas of nonrelativistic relict neutrinos torn away 
from matter during the ultrarelativistic expansion 
stage. In the calculation of the integrals (3.7) in this 
case, the distribution over the momenta must be taken 
to be ultrarelativistic with a relict-photon temperature 
T,(t)(b,= 0), and the expression for 5,(P) should be 
taken nonrelativistic15: 

We proceed now to an analysis of the obtained for- 
mulas. In Cartesian coordinates x 1  and x 4  we have 
from (3.6) 

P r io r  to arrival  of the GW we have K =  1, i . e . ,  
?tl I,, , = 0, there i s  no gas  flow. When the GW appears 
K2 - 1 f O  and the flow sets  in. It is easily seen that this 
effect i s  nonlinear in the GW amplitude. For weak GW 
( A = l + p ;  B = l  - 0 ;  0 ,  C<<l ) (Ref .  16)we havefrom 
(3.111, 

where h2 = p Z  + C2. In addition, this flux has a purely 
relativistic character. In a l l  the considered cases a s  
5, - - we have yn - 1 and the flux vanishes, and at 
5, - 0 the flux is maximal. Since the particle-number 
flux depends only on the variable u, the GW transports 
the perturbation of the particle-number density a t  the 
speed of light. The kinematic velocity uf =na/n4  of the 
medium ,I7 however, is equal to 

and a t  hZ << 1 we have 

After passage of the GW packet13 

therefore a t  u < 2u* we have K Z  - 1 >0. From the cases 
considered above i t  f o l l ~ w s  that Yn 1 always: thus, a t  
u < 2u, the GW drags the particles in the direction of its 
propagation (u,>O). At the point u=u*  - l/hl'cr (Ref. 
13), a singular state (u, - c )  sets  in behind the GW front 
the gas i s  stopped a t  the point u =  2u,, and at u >2u, the 
gas moves in a direction opposite to the propagation of 
the GW, the gas velocity being constant a t  u - m(t - + m) 
and equal to -c for an ultrarelativistic gas. An analy- 
sis of the components of the energy-momentum tensor 
(3.6) also reveals the presence of a singularity a t  
L2= 0. It is  easily seen, e. g . ,  that the dynamic gas 
velocity, defined a s  the eigenvector of the energy-mo- 
mentum tensor," also tends to the speed of light at 
U = U*. 

The presence of a singularity in the distribution of 
matter makes it necessary to analyze the main assump- 
tions of 82. There were two such assumptions: 1) the 
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gas is collisionless and 2 )  the GW propagates invacuum. 
Inside the GW packet ( h # O )  these two assumptions a r e  
valid if conditions ( 1 . 2 )  and ( 1 . 3 )  are  satisfied, how- 
ever, consideration of the wave a t  times t  - t ,  = u , / c  
presupposes a sufficiently large amplitude of the GW. 
An analysis of the Einstein equations in the medium 
yields a criterion for  the vacuum and collisionless de- 
scription of a GW in a gas a t  times t - t , :  

These relations a re  not satisfied under laboratory con- 
ditions, but may be satisfied under cosmic conditions 
for sufficiently strong GW. For  relict massive neu- 
trinos, these conditions take the form 

where w,  is the frequency of the GW in kHz, 7, is the 
duration of the GW pulse in microseconds. From Ein- 
stein's equations we can obtain also an estimate for 
L,,,, at  which the vacuum character of the GW is vio- 
lated: 

$4. RELICT RADIATION IN  THE FIELD OF A 
STRONG GW 

Strong GW with amplitude satisfying the conditions 
( 3 . 1 4 )  are  revealed by anomalies in the electromagnetic 
relict radiation (RR). Indeed, the condition ( 3 . 1 4 ) ,  
when applied to the cosmic background, means that the 
time of arrival of the singular front t ,  should be much 
shorter than the cosmological time t  - l / w , .  Thus, GW 
with phonon tails should have local and not cosmological 
origin. We consider the gas of relict photons after the 
passage of a GW packet (K = 1 / L 2 ) .  A geodesic obser- 
ver  at rest  in the metric (2 .10 )  will register, according 
to  ( 3 . 6 ) ,  the following orthogonal-reference projec- 
tions of the energy-momentum tensor of the relict ra- 
diation: 

Directly behind the GW packet we have L  == 1  and the 
RR is isotropic; in the course of time, the observer will 
record an increase of the pressure, of the energy den- 
sity, and of the anisotropy of the flux. At L  << l ( t  --&) 
the RR is strongly anisotropic. Thus, when ( 3 . 1 5 )  is 
satisfied, the observer records an increase of the RR 
density by a factor 

Even under the weak condition (3 .151,  formula ( 4 . 2 )  
will show discernible bursts of the RR. An observer 
with a high-directivity and narrow-band antenna will 
register, however, not the components of the RR en- 
ergy-momentum tensor, but the spectral distribution 
of the RR energy. Putting c P ,  = wf t  in ( 2 . 2 0 )  and 
changing over to the orthogonal reference projections 
of the momentum, we write down the spectral distribu- 
tion of the photon energies after passage of the GW pac- 
ket: 

ho3 sin 9 dB do 
d.8 ( 0 )  = 

2nZc3[exp (hol/T) - I ]  ' 
(l-cos O)'+LZ (sin") 

ol=o 
2(1-cos6) ' 

where 9 is the angle between the propagation direction 
of the GW and the momentum of the photon (a - 9 is the 
angle between the directions of the GW and of the an- 
tenna). Directly behind the GW packet we have L =  1  
and w' = w .  At 9 = a and a t  arbitrary L  we have again 
w' = w ,  and the distribution does not differ in any way 
from the initial one. At L  << 1 ,  however, the distribu- 
tion is strongly anisotropic: 

w ' = w ( l -  cos9) at 9 >> L  and w'=  wL2  at  9 r; 2 L .  

Thus, a t  9 r; 2L  the maximum of the RR energy shifts 
towards higher frequencies: 

Since the characteristic time scale t ,  of the back- 
ground tail of the GW is usually, a s  can be readily seen, 
larger than the terrestrial  time scales, passage of a 
strong GW in the past ( t =  - t , )  will lead a t  present to 
establishment of anisotropy of the RR. 

$5. ELECTRIC FIELD INDUCED IN  A PLASMA BY A 
STRONG GW 

We consider the action of a GW on a collisionless 
plasma that was isotropic and electrically neutral 
prior to the arrival of the GW. When the GW enters 
such a plasma there is produced, according to ( 2 . 8 )  
and ( 3 . 6 ) ,  a longitudinal electric current. 

which vanishes in a nonrelativistic ( 5 ,  - m) and ultra- 
relativistic plasma (all 5, - O), and is maximal for a 
plasma with ultrarelativistic electrons and nonrelati- 
vistic ions. It follows from (3 .8)  and (3 .9 )  that at 
0  < u < 2 u ,  the GW induces in a collisionless plasma a 
negative charge density and carr ies  the latter a t  the 
speed of light. l8 

Since an electric current and the associated longitudi- 
nal electric field a r e  produced in the plasma, it is nec- 
essary to solve the self-consistent system of Vlasov's 
equations ( 2 .  1) and ( 2 . 2 ) .  We seek stationary solutions 
of this system, assuming 

As seen from Maxwell's equations ( 2 . 2 ) ,  the necessary 
and sufficient condition for the satisfaction of ( 5 . 2 )  is 
isotropy of the current-density vector, i. e .  , 

The continuity equation takes in the coordinates u  and v 
the form 

from which we get 

But since j ,= 0  prior to the arrival of the GW, the con- 
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stant is zero and consequently ( 5 , 3 )  is automatically 
satisfied on account of the kinetic equations ( 2 . 1 ) .  We 
put E(u) = dA,/du, where A,  is the potential of the elec- 
tric field in the Hamiltonian 

This potential does not satisfy the Lorentz gauge condi- 
tion, but by means of the gauge transformation 

a Lorentz gauge can be attained. 

It is easily seen that an exact solution of (2 .  1) with 
the Hamiltonian ( 5 . 4 )  is again (2 .20 ) .  Just  a s  before, 
the condition that selects the states in momentum space 
is P , a  0 ,  since P ,  i s  an integral of the motion. Thus, 
we write down the exact value for the current-density 
vector of the charged collisionless particles in the GW 
field (2 .10 )  and in a longitudinal electric field E(u) :  

n,. = 2(2nA)*L' nP r d ~ , ' ( m ~ ~ c ~ + ~ ~ , ' )  , f agn (P. 
0 

e. -pa+&. -1 ( 5 . 5 )  
- - A . ) ~ P .  {(P.-$A.)'[..P() * l]) . 

As follows from the results of 04, the flw of nonrela- 
tivistic particles in the GW is proportional to I / [ :  - 0 ,  
therefore the ion current can be neglected in the expres- 
sion for the total current. 

To simplify the procedure, we consider a plasma con- 
sisting of fully degenerate electrons and cold ions (me- 
tal a t  T  - 0 ) .  [ ~ t  T=O the GW does not displace the ion 
core of the plasma (nq i ,  =0)]. Under condition of com- 
plete degeneracy ( p / T  b ~ ) ,  all the states with { ( P )  - p  
>O a re  unoccupied. Putting 

and integrating in ( 5 . 5 )  inside the Fermi surface, we 
reduce the only nontrivial Maxwell's equation to the 
form 

The solution of this equation under the initial condi- 
tions 

describes exactly the electric field induced by a plane 
GW in an unbounded electrically neutral plasma with 
degenerate electrons. 

We consider now a nonrelativistic Fermi gas 
(p ,<<rnc)  and a weak electric field )eA,I<<mc2. Ex- 
panding the right-hand side of (5 .  7) in a Taylor ser ies  
in powers of I / $  and retaining terms up to I / $ ' ,  and 
then linearizing the equation with respect to A,, we re- 
duce i t  to the form 

where w, i s  the plasma frequency. The solution of this 
equation, satisfying the initial conditions ( 5 . 8 )  inside 
the GW packet (L -- l ) ,  is of the form 

where E=ct - x .  Substituting the value of A,(u) from 
( 5 .  10) in the value of the induced current [right-hand 
side of ( 5 . 7 ) ] ,  we obtain the current induced by the GW, 
with allowance for the plasma response. 

where we have put w  << w,. Thus, the current induced 
by the GW constitutes oscillations with plasma fre- 
quency, propagating a t  the speed of light and modulated 
by the function K2(K) - 1  +: h2(zT). The amplitude of the 
total current excited in a metal beam with cross section 
area lo4 cm2, a t  N =  lo2* ~ m - ~  and h =  10-12, amounts to 
1.4X 10'' A. Although the amplitude of the current i s  
appreciable, i ts  frequency is also high (w,  - 6 x 10'' 
sec'), so  that the possibility of its detection remains 
uncertain. 

It i s  easy to obtain also an exact solution of Eq. ( 5 . 9 )  
after the passage of the GW packet: 

where A, B, and a r e  certain constants. 

In conclusion, the author thanks the participants of 
the seminar on general-relativity statistics and astro- 
physics of the ~ a z a n '  State University for a helpful dis- 
cussion of the work. 

'A. G.  Polnarev, Zh. Eksp. Teor. Fiz. 62, 1598 (1972)  [SOV. 
Phys. JETP 35, 834 (1972)l .  

2 ~ .  Chesters, Phys. Rev. D7, 2863 (1973) .  
3 ~ ~ .  G. Ignat'ev, Izv. vyssh. ucheb. zaved., Fizika No. 12,  

136 (1914) .  
4 ~ ~ .  G .  Ignat'ev, in: Gravitatsiya i teoriya otnositel'nosti 

(Gravitation and Relativity Theory), Kazan' Univ. Press, 
No. 13,  1976, p. 7 3 .  

5 ~ .  V. Zakharov and Yu. G .  Ignat'ev, Izv. vyssh. ucheb. 
zaved. Fizika No. 9 ,  36 (1976) .  

6 ~ .  V. Zakharov and Yu. G .  Ignat'ev, in: op. cit. 4, p. 49.  
*A. V .  Zakharov, Ukr. Fiz. Zh. 22. 812 (1977) .  
*YU. G .  Ignat'ev and A. V. ~Zakharov, Phys. Lett. 66A, 3 

(1978) .  
$A. V.  Zakharov, in: op. cit. 4, No. 16, p. 4 4 . ,  1980. 
'OYU. G. Ignat'ev and A. Z. Fazleeva. Ukr. fiz. zh. 26. 47 

(1981) .  
"E. Asseo, D. Gerbal, I. Heyvaerts, and M. Signore, Phys. 

Rev. D13, 2734 (1976) .  
I2A. V. Zakharov, Zh. Eksp. Teor. Fiz. 77, 434 (1979) [Sov. 

Phys. JETP 50, 221 (1979)l .  

5 Sov. Phys. JETP 54(1), July 1981 Yu. G. Ignat'ev 5 



13c. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravita- Theory of Fields), Nauka, 1972 (Pergamon 1978). 
tion, Vol. 3, H. W. Freeman, 1973. 'IJ. Synge, Relativity, the General Theory, Wiley, 1960. 

14yu. G. Ignat'ev, in: op. cit. 4, No. 14, p. 90. 1978. ' 8 ~ ~ .  G. Ignat'ev and A. B. Balakin. Izv. vyssh. ucheb. zav. 
15yu. G. Ignatev. Izv. vyssh. ucheb. zaved. Fizika No. 9, Fizika, No. 7 (1981). 

49 (1980). 
1 6 ~ .  D. Landau and E. M. Lifshitz, Teoriya polya (Classical Translated by J. G. Adashko 

6 Sov. Phys. JETP 54(1), July 1981 Yu. G. Ignat'ev 


