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The quasienergy method is used to analyze the problem of the interaction of a two-level system with two 
classical monochromatic fields. A general expression is obtained for the absorption coefficient at the 
frequency of the scanned field for the case when the amplitudes of the two fields are equal. To solve the 
quasienergy problem for a two-level system interacting with a strong monochromatic field, a perturbation 
theory in the free (without field) Hamiltonian is developed. The results of a numerical calculation in 
accordance with the obtained expressions agree well with the experimental data. 
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T h e  problem of the  interact ion of a two-level s y s t e m  1. POSSIBLE WAYS OF TREATING THE PROBLEM 
with two given c lass ica l  monochromatic fields has T h e  equation for  the density mat r ix  p ( t )  of a two-level 
been posed and studied in a number of It  has  s y s t e m  interacting with two rotating f ie lds ,  whose in- 
been shown that  formally the problem with two fields 

tensi t ies  and frequencies  we denote by E, E l ,  w, o,, 
is analogous (when the resonance approximation for  

respect ively,  has  t h e  fo rm 
each of the fields is valid) t o  a problem with periodic 
coefficients. T h i s  analogy can b e  used, in part icular ,  a 

i h - p ( t ) = [ H ( t ) , p ( t )  l-ir(p(t)--po). 
for  the  experimental  study of a two-level s y s t e m s  under at 

conditions when the resonance approximation i s  not 
applicable. T h i s  l as t  c i rcumstance is part icular ly in- Here ,  p, = (1 +48,)/2 i s  the equilibrium density mat r ix  

teresting in the optical par. of the spectrum, since here (-1 SD 11, and E/Y  is the t i m e  of relaxat ion of the ma- 

the resonance approximation is violated in fields with t r i x  t o  the equilibrium value. 

intensities near  the intra-atomic  field^.^ 

Considerable interest  a t taches t o  a n  effect obtained 
experimentally and considered theoretically in Ref. 6 ,  
namely, the occur rence  of a s t r u c t u r e  in the  absorption 
spectrum a t  the  frequency of one of the fields when 
both fields become fair ly  intense and capable of sa tura t -  
ing the  homogeneously broadened t ransi t ion.  T h i s  effect 
general izes  the well-known nonlinear interference 
effectS to  the  c a s e  of a n  a r b i t r a r y  amplitude of the 
scanned field. T h e  s t ruc ture  consis ts  of a sequence of 
peaks in the absorpt ion (amplification) spec t rum whose 

T h e  Hamiltonian H(t) of the  problem can  be  wri t ten 
in the form 

H ( t )  =Ao8,/2-FP, ( t )  -F,P. , ( t ) ,  (2 

v.(L) ==*/2(d-e'U'+ h.c.). (3) 

In  Eqs. (1)-(3), F/E =dE/E,  F,/B =dEl/B a r e  t h e  Rabi  
frequencies of the  fields E and El ,  and 6,, 6, ,6,, 6- 
= (8, - id,)/2 a r e  the Pau l i  mat r ices .  In  accordance with 
t h e  experimental  s i tuat ion,  the  frequency of one of the 
fields is taken equal to  the t ransi t ion frequency w . ~  

intensity and half-width depend on the peak number. We denote by p,,(t) the s teady solution of Eq. ( I ) ,  i.e., 
Beginning a t  a cer tain number,  the peak half-width may the solution of (1) t o  which t h e  general  solution tends 
be appreciably l e s s  than the  homogeneous half-width a t  t i m e s  longer than t h e  field switching-on t i m e  and the 
of the line. It was pointed out in  Ref. 6 that this  effect relaxation time: 
could be used for  frequency stabilization. 

The  theory developed in Ref. 6 fo r  solving the  kinetic 
equation for  the  density m a t r i x  of the two-level s y s t e m  
in the two fields is based on adiabatic perturbation 
theory. In the  c a s e  of fields with different amplitudes, 
the theory gives good agreement  with experiment. How- 
e v e r ,  a s  is noted in Ref. 6 and is demonstrated below, 
in the case  of fields with (nearly) equal amplitudes t h e r e  
exis ts  a broad range of variat ion of the  frequency of the 
scanned field in which adiabatic perturbation theory is  
invalid. Nevertheless ,  th i s  c a s e  is  of physical interest ,  
since it is precisely in this  situation, a s  has been 
shown e ~ p e r i m e n t a l l y , ~  that the s t ruc ture  in the absorp-  
tion is most c lear ly expressed. Thus ,  in  the  c a s e  of 
fields with (nearly) equal amplitudes a special  t rea tment  
that goes beyond the f ramework  of the method proposed 
in Ref. 6 is required. T h i s  is presented in the present  
paper. 

- 
dftr 

p.,(t) = e-'*'"G(t, t - 6 )  pit?+ ( t .  t -6 ) - .  
h  (4) 

0 

Here  c ( t ,  to) = C(t)$(t,), where c ( t )  is the  evolution 
operator :  

The  experimentally measured  quantity is the power 
dissipated by one part ic le  f rom the field of frequency 
w,; it is related t o  p,,(t) (4) by9 

W-,=-F+ {SP (p,,  (t)av., ( t )  / a t ) ) .  (6) 

T h e  braces  in (6) denote averaging over  a long t ime 
interval (the observation time). T h e  absorption coef- 
ficient a t  the frequency wl is related t o  this quantity by 
the  s imple  equationg 
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Here, c is the velocity of light, and N is the number of 
particles in unit volume. By analogy with (6) and (7), 
we can define W, and K, 

We rewrite the operator of the interaction with the 
two fields in (2) in the form 

Here, we have introduced the complex (in the general 
case) amplitude 

and the ca r r i e r  frequency 

If 
l e l = l o - o l l / 2 < o  

(near-resonance fields), the amplitude y(t) will be a 
slow function of the time. This makes it possible to  in- 
troduce a quasienergy operator of the problem (5), its 
eigenvalues (the quas ienergies) being slow functions of 
the time. Adiabatic perturbation theory for the case of 
a slow t ime dependence of the quasienergies1° is analog- 
ous to ordinary adiabatic perturbation theory for the 
case of slow time dependence of an energy level." 

We fix the "slow" time in (8) and construct the quasi- 
energy operator of the problem (5), performing a 
unitary transformation by means of the periodic opera- 
tor (transition t o  a coordinate system rotating at the 
car r ier  frequency) 

We obtain the quasienergy operator in the form 

6 ( t )  =heB,/2-  ( O - S ( t )  +h.c.) . (10) 

On the basis of (101, the eigenvalues of G(t) a r e  

Q -  - ( t )  =*[ ( h e ) 2 i I " ~ F : ' + 2 F F ,  cos 2 ~ t ]  / 2 .  (11) 

At the points (11) 

the quasiterms Q+(f) and Q -(t)  have their closest ap- 
proach in accordance with (11). 

In the regions around t,, nonadiabatic transitions 
a r e  possible. Let us estimate the relationship between 
the parameters at which the quasiterms (11) can be 
adiabatically followed. For this ,  using the standard 
criterion," we find that adiabatic perturbation theory is 
valid if 

On the basis of (131, it is natural to distinguish the 
three following intervals of values of the parameter E: 

In the intervals (14a) and (14c), the probability of non- 
adiabatic transition between the quasiterms (11) is  
small ,  and the solution of (5) can be constructed using 

adiabatic perturbation theory. In the interval (14b), the 
applicability of adiabatic perturbation theory breaks 
down in the neighborhoods of the points (12). Under the 
condition IF-F, I<< F +F, (fields with nearly equal 
amplitudes) there is in the second interval the region 

( F - F , ) ~ ! ( F + F , ) ~ ~ ~ E  I<F+F,. (14d) 

in which it is possible to  use perturbation theory in the 
diabatic basis I +), I -) (the basis in which 6, is dia- 
gonal): 

o=!*>=*l*) .  (15) 

This possibility is due to the circumstance that the 
probability of a nonadiabatic transition in the neighbor- 
hoods of the points (12) when (14d) is satisfied becomes 
comparable with unity, and the system varies in accord 
with the diabatic term. In the intermediate cases,  per-  
turbation theory cannot be used. 

The probabilities of the nonadiabatic transitions in 
the neighborhoods of the points (12) can be calculated 
approximately on the basis  of the Landau-Zener model. 
We expand f ( t )  in a Taylor ser ies  in the neighborhood 
of the point to, and write down the operator ~ ( t )  (10) 
in the basis (15), retaining in the s e r i e s  the constant 
t e rm and the t e rm linear in the time. We obtain 

F+FI , h e ,  F-F, .. 
Q(t )m--e ta . - -a ,+-  2 2 am. 

This matrix is characteristic of the exactly solvable 
Landau-Zener model problem1': The re  a r e  linear 
crossing diabatic t e r m s  and a constant interaction be- 
tween them. T o  construct the solution in a time inter- 
val equal t o  half the field period, it is necessary to 
fit the solution in the region of nonadiabaticity to  the 
solutions that describe the adiabptic development to  the 
left and to  the right of the point to (12). In the ear l ie r  
Ref. 14, this method was used to solve the quasienergy 
problem of a two-level system in a very strong linearly 
polarized field. In the limiting situations (14a), (14c), 
and (14d), the solution constructed in this manner goes 
over into the solutions obtained by means of the cor- 
responding perturbation theories. 

In the present paper, we study the relatively simple 
case F = F,. In accordance with what we have seen 
above, the interval (14a) disappears for F =Fl, and the 
interval (14d), in which perturbation theory in the dia- 
batic basis is valid, covers almost a l l  of the range of 

*variation of the parameter 0 Q (Kc I< F +F, that is of ex- 
perimental interest.' 

2. GENERAL EXPRESSION FOR THE DISSIPATED 
POWER 

We now consider the important special case of fields 
with equal amplitudes: E =El. In the coordinate system 
rotating at the ca r r i e r  frequency Q [the transformation 
(9)], the problem (5) goes over into the problem of the 
interaction of an effective two-level system with a lin- 
early polarized field: 
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We denote by - 
~ . , ( t )  =6,+ ( t ) p . , ( t )  f i p ( t )  = e - : * / ~ ( t ,  t - ~ ) ~ , k +  ( t .  t - P ) ~ O  $ (17) 

the s teady-state  solution in the rotat ing coordinate 
sys tem [the mat r ix  p, does not change under the  t r a n s -  
formation (9)]. Using (17) and the s imple  relat ions 

we obtain expressions fo r  Wwl and W, in  t e r m s  of the  
solutions t o  the problem (16): 

Here 

a r e  the powers dissipated by one part ic le  from the 
right- and left-circularly polarized components of the 
linearly polarized field (16). 

Thus ,  to  calculate P,,(t), it is necessary  t o  find the 
evolution operator  C ( t )  of the problem (16), which, by 
vir tue of the periodicity of Eq. (16), we represen t  in 
the form7 

i ( t )  =i lp ( t )  exp { - i Q ( F )  t lh ) .  

Here ,  2ip(t) is the ST/.-periodic evolution opera tor ,  and 
Q(F) is the quas ienergy operator .  

In  (19), it is convenient to  wri te  out S p  in the r e p r e -  
sentation of the  quasi:nergy operator  Q(F). In the bas ic  
zone,'' the operator  Q(F) has  two eigenvectors I a ) ,  
a = f l ,  and two eigenvalues Q,, Q,=-Q-,. We intro- 
duce the periodic opera tors  

We denote by ozB and D:~(*E) the  Four ie r  components of 
the mat r ix  e lements  of_the opera tors  (20) with respec t  
to  the eigenvectors of Q(F): - 

After integration over 9 and averaging over  t, we obtain 
from (19), (201, and (21) the genera l  express ion  for  the 
dissipated powers W,, : 

3. PERTURBATION THEORY FOR F>> Ihc] 

T o  find ozB  and DZ8(*c), we must  solve the  quasi- 
energy problem 

Here ,  cpo,-,,(t) is  the periodic quasienergy s t a t e  fo r  
the quasienergy Q,- mRc.15 Introducing the s c a l a r  
product ((. . . )),I5 and using the property of a periodic 
quasienergy s t a t e  

( F Q ~ - , , , ~ ~ ( ~ )  =e-""" ( F Q -  ( t )  =e-7"'s'fip(t)  l a ) ,  

where l a )  is a n  eigenvector of the  operator  G(F) in  the 
bas ic  zone, we e x p r e s s  a:' and D;~(*&) in t h e  fo rm 

We can  obtain a solution of (23) and calculate (24) nu- 
merically. However, under the condition /ti&(<< F, 
which is sat isf ied experimentally, '  we can  use pertur-  
bation theory in  the opera tor  R&3,/2 t o  solve (23). In 
the zeroth o r d e r  in fic6,/2, the quasienergies  a r e  
doubly degenerate  and equal t o  z e r o  in the  bas ic  zone. 
T h i s  degeneracy is a consequence of the symmetry  of 
theproblem (23). Indeed, the Hamiltonian (23) is in- 
var iant  under the  o p e r a t ~ r ' ~ ~ ' ~ . ~ ~  

C=To,,  (2 5) 

where is the opera tor  of a displacement in  t i m e  
through the field half-period n/c, and 6, is ' the opera- 
t o r  of spa t ia l  par i ty  (in the two-level ca:e). Since 
6' = 1, we can introduce the  concept of C symmetry  
have t h e  following f o r m  in the  bas ic  zone [ I  +), 1 -) a r e  
introduced in (15)] : 

lo'  f (  1 :  1 I 
( F Q ;  ( t ) = - - ; -  exp iTzs i inet  1+>-2exp { - i - z s i n e t }  2 ->I. (26) 

z=?F/he. 
I t  is readi ly verified that 

- ( 0 )  
C C ~ a  ( t ) = b ~ g ( :  ( t ) ,  a=* 1. 

T h e  solution of the  s e c u l a r  problem in the  bas i s  (26) 
gives the  f i r s t  o r d e r  f o r  the quasienergy7: 

- Q , = ' ~ ~ h e a J , ( z ) .  (27) 

H e r e  and in what follows, J,,,(z) a r e  Besse l  functions. 
Using (24) and (26), we obtain in the  zeroth o r d e r  

@)an 
a ,  ='/,($+ ( - 1 )  " a )  J, ( 3 ) .  

Perturbat ion theory in tic8,/2 fo r  (23) was c a r r i e d  out 
to  the f i r s t  o r d e r  inclusively. However, because they 
a r e  cumbersome,  we do not give the  f i r s t -o rder  resul ts .  
T h e  final expressions fo r  W,, (22) in the leading o r d e r s  
of perturbation theory a r e  

Here ,  
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We note that the nonstationary problem of the interac- 
tion of a two-level system with a very strong electro- 
magnetic field was solved by perturbation theory in Ref. 
7. It was pointed out in Ref. 18 that the smal l  param- 
e ter  of the perturbation theory is not z-', but the values 
of ser ies  of the type 

In Ref. 19, a similar  perturbation theory was used t o  
solve the quantum problem of the interaction of a two- 
level system with a quantized radiation mode. In the 
present paper the quasienergy problem has been 
solved by stationary perturbation theory in the exten- 
ded Hilbert space T 8 R  (where T is the space of func- 
tions that a r e  periodic with the field period, and R is 
the space of the Hamiltonian) in the spir i t  of the idea 
of Ref. 15. Such an approach has methodological 
interest. 

4. DISCUSSION OF THE RESULTS 

We consider some properties of the relative absorp- 
tion coefficient K,/K [where K = K , ~ ' / ( ~ '  +F), and KO 
is the absorption coefficient for a weak field at the line 
center] that follow from Eqs. (22), (28), and (29). The 
denominators in Eqs. (22) and (291, which contain the 
homogeneous width y, do not have a resonance nature. 
More precisely, Q, - Q 8 -  mA& cannot vanish when rn # 0 
for any values of E (except E =O).  This follows directly 
from the analytic expression (27) for the quasienergy. 
The case rn =0 ,  a! # j3 i s  elifflinated by the selection 
rules that follow from the C symmetry (25): ozB and 
D;'(*&) a r e  nonvanishing only for o! =,¶ (m even) and 
for a! # ,3 (m odd). Thus, the structure in the absorption 
spectrum is not due to the denominators of the expres- 
sions (22) and (29) but t o  the oscillating behavior of 
ogB, D;'(&C), and the quasienergy a s  t varies. The  
important parameters of the structure (the half-width 
of the peaks and their positions on the frequency 
scale) a r e  entirely determined by the field intensities 
and their frequency detuning E and a r e  virtually indepen- 
dent of y ,  which can affect only the height of the struc- 
ture. These conclusions differ qualitatively from those 
that can be drawn if the expressions of Ref. 6 a r e  applied 
to the case of equal fields. 

The listed features a re  confirmed by numerical cal- 
culation in accordance with Eqs. (28) and (29), the 
results of which a re  given in Fig. 1. The analytic ex- 
pression for K,,/K has its simplest form in the case 
y<< IEcI << F. From (7), (18), (28), and (29), we obtain 

K., -F --- -1 4F 
I ,  ( 2 )  1, (2) - - cos - . 

K 2fre 2n tie 

In this limiting case,  the absorption regions a r e  re-  
placed by amplification regions. The zeros of the 
absorption coefficient correspond to  zeros of the quasi- 
energy and zeros of the Fourier component upB [ the 
function J,(z)]. If we define the height of a peak a s  the 
distance between the neighboring maximum and minimum 
of the absorption coefficient, then the peak half-width 
will correspond approximately to the distance between 
the successive zeros of the function J,(z)J,(a). These 

FIG. 1.  Calculation of the relative coefficient for the following 
values of the parameter y/F:  1) y / F < < l ,  2) y /F=O. l ,  3) 
y/F=O.2. 

zeros correspond to  the following values of t, (for 
z >> 1): tic, = 4F/nn; n = l , 2 , 3 , .  . . . Hence, the half- 
width of the peak between the n-th and (n + 1)-th zero 
will have the form 

The boundaries of the region in which a l l  the peaks 
have approximately equal height a r e  given by the in- 
equality y s IRE I s F. At the lower boundary when Itit 1 
-y the peak half-width (30) corresponds to 

The value  ti^,),,,,, (31) can be taken a s  the minimal 
peak half-width attainable for given F and y. In ac- 
cordance with (31),  tic,),,,,, is 4F/ny times less than 
the homogeneous half-width y .  It can be seen  from Fig. 
1 that a s  y increases only the height of the peaks 
changes, this being most rapid in the direction of 
smal l  c. The  structure is smeared out to  complete 
disappearance at about y / ~  - 0.2. 

In Fig. 2,  we compare the results  of the experiment 
in Ref. 20 and the numerical calculation in accordance 
with the expression (28) proposed here. As follows 

FIG. 2 .  Comparison of the experimental (dashed curve) and 
theoretical results. The theoretical curve is  plotted for 
F / y  = 5 .9 .  
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f r o m  Fig. 2 ,  t h e  posi t ions  of t h e  t h e o r e t i c a l  and experi- 
men ta l  abso rp t ion  peaks  o n  the  e n e r g y  scale a g r e e  well. 
T h e  d i s c r e p a n c y  between t h e  m e a s u r e d  and calcula ted  
abso rp t ion  coeff ic ients  (especia l ly  in t h e  r e g i o n  of t h e  
min ima) ,  which i n c r e a s e s  with i n c r e a s i n g  c ,  c a n  b e  
a t t r ibu ted  to  t h e  g rowth  in  t h e  error of pe r tu rba t ion  
t h e o r y  when t h e  p a r a m e t e r  2 E / F  i n c r e a s e s .  

We are g ra t e fu l  to T. A. Var tanyan  and N. A.  Chig i r '  
f o r  n u m e r o u s  and f rui t fu l  d i s c u s s i o n s  of t h e  r e s u l t s  of 
t h e  paper .  
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