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The strongly forbidden two-photon transition 1S,,,-+2P,,, between hyperfie components with total angular 
momentum F = 0 is considered. Estimates are obtained of the parity-nonconservation effects produced in this 
transition by the interaction between the electrons and the nucleus. The results are generalized to include 
multielectron atoms. 
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1. INTRODUCTION 

Allowed two-photon transitions in atoms a r e  being 
intensively investigated a t  present.1 It can be hoped 
that progress in l a se r  techniques will permit investiga- 
tion also of forbidden two-photon transitions, such a s  
1SlI2 - 2PIlz in hydrogen. The nonrelativistic ampli- 
tude of the IS, /, - 2P, two-photon transition in the 
hydrogen atom was obtained in Refs. 2 and 3. In this 
approximation, the amplitude of the two-photon tran- 
sition between the hyperfine components of the lSllz  
and 2P, 1z levels with total angular momentum F = O  
(the amplitude of the transition 0' - 0-) vanishes. A 
nonzero result i s  obtained when account is taken of the 
relativistic corrections to this amplitude. 

The amplitude of the transition IS, /, (F = 0) - 2Pl rz(F 
=0) contributes to the absorption of two photons of 
equal frequency; the contribution is investigated ex- 
perimentally by the method of Dopplerless spectro-  
scopy. The amplitude i s  also of interest  for  the study 
of parity-nonconservation effects that a r e  connected 
with weak interactions of the electrons with the atomic 
nucleus .3 

In Secs.  2 and 3 of this paper we calculate the ampli- 
tude of the two-photon transition IS, / ,(F =0) - 2Pl lz(F  
=0) in the f i r s t  nonvanishing approximation, using a 
relativistic calculation. The solution for  the hydrogen 
atom is obtained in analytic form. 

initial and final s t a t e s ,  and wl and wz a r e  the photon 
energies (K=c = 1). 

We calculate the matrix element (ME) M connected 
with the amplitude Alz by the relation 

Here A i s  the vector potential of the photon, (Y a r e  
Dirac matr ices ,  and G is the Green's function of the 
electron in the atomic field. The ME (2)  i s  written for 
absorption of two photons. The scattering case  is ob- 
tained from (2) by replacing A, by A$, which is equiva- 
lent to making in the final result the substitutions 
e2,k2,w2-e27, -k2, -w2. 

We consider f i r s t  the two-photon transition lSII ,(F 
= 0) - 2PI  Iz(F = 0) in a hydrogenlike atom (F i s  the total 
angular momentum of the atom). In this ca se  

1 
($~?lQl$,)= - ~ ( ~ P ~ , ~ , I Q I ~ s ~ I , , ~ , ) ,  

2 (3) 
m, 

where  IS,,^,^,) and 1 2 ~ ~ / ~ , m , )  a r e  the wave functions 
with the hyperfine structure nglected, m ,  i s  the projec- 
tion of the electron angular momentum j ,  and Q stands 
for  A z ~ A l  o r  A1cAz. 

We consider a region of photon energies of the order 
of the ground-state ionization energy. In this case  
k . r - WY - cuZ << 1 , and the exponentials in (2) can be 
expanded in powers of k. r. It was shown in Ref. 3 that 

The two-photon transition amplitude is generalized the amplitude of this transition has a smallness - ( c u ~ ) ~  
in Sec. 4 to include multielectron atoms with one nS compared with the amplitude of the allowed transition, 
electron in the outer  shell.  In Sec.  5 we obtain a quan- s o  that the expansion of each exponential in (2) should 
titative estimate of the parity-nonconservation effect extend to t e rms  -(k . r)3. For  transitions between states 
upon absorption of two photons of like helicity and with opposite negative parity, the ME containing even 
equal frequency from colliding beams. powers of (k r )  vanish. As a result we get 

2. AMPLITUDE OF THE TRANSITION lSl12 ( F z 0 )  M-M,+M,+Ms, 

+2PlI2 (F=O) M,=i<rp,l Ezk,r~E,+~2~E1k1r~$i)+ ( l c . 2 ) ,  
i 

M,=-,<$,lZ,(~r)2Ga,k,r+&(klr)GZi(k,r)zl$,)+(i*2), 
We denote by A12 the amplitude of the two-photon 

transition between the s ta tes  and 11~)~). The proba- i 
(4) 

M,=- -<$,lZ,(%r)YX,+Z1GdI (k,r)'I$,)+ ( I  -21, 
b i l i t y d ~ , ~  of the Raman scattering and the probability 6 

W,, of absorption of two photons a r e  connected with the where (1 -- 2) denotes the interchange (e l ,  k,,  w,) = ez,  
amplitude At, by the relations 

kz, wz). 

~ ~ , ~ = J ~ I A ~ ~ I ~ ~ ~ ~ s ( E ~ - E , + ~ ~ - ~ , ) ,  (2n)* The main difficulty l ies  in the calculation of the ME 
(1) linear in k r (M,). The main contributions from these 

Wir=Js3rlAtrIa2yt, [ ( E ~ - E ~ - o I - o ~ ) ' + ~ , ~ ~ ]  -'. ME (-cuZ) a r e  cancelled out by an  analogous contribu- 
Here J, and J2 a r e  the photon flux densities in the tion from the c ros s  t e rms ,  marked by the symbol (1 
beams,  yiz is the arithmetic mean of the widths of the -2). MI  must therefore be calculated with account 
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taken,of the relativistic corrections, so  as to preserve 
the terms -(aZ),. The ME M, and M, already have the 
required order ( C U Z ) ~  and can be calculated in the non- 
relativistic approximation. 

a. Calculation of ME linear in k, r (MI ) 

TO calculate the ME contained in MI we need the rel- 
ativistic Coulomb Green's function. We can use for 
this purpose the expression obtained in Refs. 4 and 5. 
As will be shown below, however, it i s  possible to 
transform M1 in such a way that the required accuracy 
will be reached using a nonrelativistic Green's function. 
We use for this purpose the following expression ob- 
tained in the Appendix for the ME M,: 

Here E , , E 2  , and E a r e  the energies of the electron in 
the initial, final, and intermediate states,  

V is the potential energy of the electron. We have in- 
troduced in (5) the auxiliary state vectors 

The state vectors (7) can be written in the coordinate 
representation in the form of sums over spherical 
spinors 

1 r,)= - x a E m  (sc~R,,E) ("bm) . 
i rm 

where the radial functions a r e  solutions of the equa- 
t ions 

Here gs(gl12) and fS(fll3) a r e  the large and small  com- 
ponents of the radial state function ISl 12 (2Pl 12): 

The coefficients a and b in (8) and (9) a r e  given by the 
formulas 

.111 

ajt - j ~ ~ A e ~ d l h o ~ , ,  
(13) 

b,?m-- dd8~,e2nSZiln. 

with the aGmi different from zero only at I = 1 , j  =$ and 
f ,  while b;Jm differ from zero at I = O , j  =+ and I = 2 , j  

3 -- 
- a .  

The solutions of Eqs. (10) can be written in the form 
of the ser ies  

where 
9 

I,= dm (g.&s+fda), 
e 

(15) - 
In.- j d t ~  (@hglx+f/,fn=) r 

0 

where g,, and f,. a re  the large and small  components 
of the radial state function with quantum numbers n ,  j, 
and I .  

Using the expansions (8), (9), and (14) and the ortho- 
gonality of the radial wave functions, we transform the 
ME (5) into 

where 

g,/, and f,,, a r e  the components of the wave function of 
the 2P312 state, and E312 is the energy of this state. 

We consider first the terms of (16) outside the inte- 
gral  and designate them by M ; .  In our  order  in a Z ,  
the energies of the states 2P3/,  and 2Pl12 a r e  equal to 
ES12 3E2,  snd their wave functions differ in sign, g3/2 

I-g, / 2 ,  s o  that J3 3-J1 /2 .  Therefore the principal 
terms -aZ in Mi cancel out the like cross  terms,  and 
only terms of order ( 4 ~ ) ~  a r e  left a s  a result: 

Here Zl =m -El ;  I, = m  -E2 a r e  the ionization energies 
of the initial and final states;  A?% = E  - E l  l2 is the 
fine splitting of the levels 2P1 and 2P3 12; &J= J1 l2 
+J3/ , ;  J is the nonrelativistic limit of the integral 
J1 lz; g, is the nonrelativistic limit of g1 12,  

9 

J- j drrgpg,. (19) 
I 

The integral terms in (16) a r e  already of the required 
order of smallness. It suffices to express in them the 
small components of the functions in terms of the large 
ones and take the latter to equal their nonrelativistic 
values 
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The functions S ,  and  P ,  i n  ( 2 0 )  sat isfy the inhomogene- 
ous Schradinger  equation 

It  is seen  f rom ( 2 1 )  that in  the relat ivis t ic  limit S ,  = S , , _ ,  
and P , = P _ , . , .  With the a id  of ( 1 8 )  a n d  ( 2 0 )  we rewr i te  
the ME ( 1 6 )  in the form 

Formula ( 2 2 )  is sui table  f o r  0'- 0 -  t ransi t ions in any 
cen t ra l  field. In the c a s e  of a Coulomb field V = - a Z / r  
formula ( 2 2 )  can be  simplified to 

In the derivation of ( 2 3 )  we took into account the equal- 
ity !; drP,gs = J l w , .  

An important factor  in ( 2 2 )  and ( 2 3 )  is that they con- 
tain only the nonrelativistic functions S, and P , .  which 
a r e  expressed in t e r m s  of the nonrelativistic Green 's  
function in a n  external  field. The relat ivis t ic  values 
a r e  needed only f o r  the wave functions of the s t a t e s  
IS ,  ,, , 2 P , , ,  and 2 P 3 / ,  in the calculation of AJ and 
ag. 

b. Calculation of the ME cubic in k . r (Mz and Mg ) 

The expressions ( 4 )  from which the ME M ,  and M 3  
a r e  calculated already contain the required smal lness  
- ( a ~ ) ~ ,  SO that the t ransi t ion to  the nonrelativistic ap- 
proximation is effected in  M ,  and M 3  directly. The 
Green 's  function G in M 2  and M 3  contains a s u m  over  
both the positive and the negative frequencies. 

In the nonrelativistic approximation the s u m  o v e r  the 
negative frequencies is calculated by replacing G by 
( 1  - p ) / 4 m .  It  can be  shown that fo r  the 0' - 0' t r ans i -  
tion the negative ME p a r t s  M:" and M:-' a r e  equal to  
ze ro  independently of the charac te r  of the transition. 

In the calculation of that par t  of the ME which c o r -  
responds to  the sum over  positive frequencies ,  the 
transition to the nonrelativistic approximation is v ia  
the substitution 

where  p=-iV; cp, and cp, a r e  the nonrelativistic values 
of the functions $, and $,. 

In the calculation of M ,  and M ,  we sha l l  need a l so  the 
nonrelativistic values of the functions 9 ,  and a, [Eqs. 
( 8 )  and ! 9)] 

where  x,, a r e  Paul i  s p i n o r s  and n = r/r. 

Using the t rans format ions  (A. 3 ) -  (A. 5 )  and  changing t o  
the nonrelativistic limit in  a c c o r d  with ( 2 4 )  we obtain, 
taking (25) and ( 2 6 )  into account, the  following expres -  
s ions  f o r  M ,  and M  ,: 

In the calculation of M 2  t h e r e  appear  in place of the 
functions 9 ,  and a2 the functions 

The i r  values a r e  obtained from ( 2 5 )  and ( 2 6 )  by the 
substitution e i  - k,, a s  c a n  be readily verif ied by com- 
paring ( 2 9 )  with ( 7 ) .  

Combining the formulas ( 2 2 ) ,  ! 2 7 ) ,  and ( 2 8 )  we obtain 
the sought mat r ix  element M  ( 4 ) .  It contains radial  
integrals  of the nonrelativistic wave functions and of the 
functions S and P that sat isfy the Schradinger  equa- 
tion ( 2 1 ) .  F o r  an a r b i t r a r y  field, these integrals  can  be 
calculated by numerical  methods.  In the c a s e  of the 
hydrogen atom the problem can  be  solved exactly and 
can be c a r r i e d  through to conclusion analytically. 

3. HYDROGENLIKE ATOMS 

All the calculations in  th i s  sect ion a r e  made  for  the 
Coulomb field V=-aZ/ r .  With the a id  of ( 2 3 ) ,  ( 2 7 ) ,  
and ( 2 8 )  we express  the mat r ix  element  M  in the form 

M=e,s,T(o,, o,) + (e&) (v2v,) Q ( o , ,  (0,) + ( I  -2) ,  

vl=ki/wi, s ,=[eivI] .  
( 3 0 )  

The  functions T ( w l ,  w 2 )  and  Q ( w , ,  w , )  a r e  given by 
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where 

J,- (P, lr - ' lga) .  J ~ = ( P t l g . ) ,  J,=(gpl?IS,),  
J 3 - ( P e l i l g ~ ) ,  h - - (Pz l? lg s ) ,  J ~ - ( A g I S , ) ,  (33) 

J,=(P, lr - ' lgs) ,  J . = ( g p l r ' l S l ) .  I - ( g p l r l g ~ ) ,  
AJ-(Aglr lg , )+(Af  l r l f . ) ,  

I,-ma'Z212, AE=ma'Z'/32, q-mu2.  

In formulas (33) we have used the notation 
- 

(lplr"l@>= jd r r"g( r )@(r ) .  (34) 
0 

The integrals J; a r e  obtained from J, by making the 
change w, -wz. 

The simplest matrix elements J and AJ a r e  calcula- 
ted by direct substitution of the corresponding wave 
functions 

To calculate the remaining matrix elements Jl-Js we 
need the explicit forms of the functions S, and P , ,  
which a r e  the solutions of the inhomogeneous SchrS- 
dinger equation (21). We use the nonrelativistic 
Green's function G ,(r , r l ) ,  which sat isf ies the equa- 
tion 

@ '('+') G, (r ,  r')  -15 (r-r')  , p2=E2-ma 
i r 

and is of the form4e5 

GI (r,  r') =- (rr1)'" f (th %) -" exp ( -q  ( r+r l )  ch z} 
0 

 XI,^+^ (29 (rr') % sh z)dz, 
q--ip, v-iaZE/p-qlq, q=maZ, 

(37) 

I,,,, is a modified Bessel  function of the f i r s t  kind. 

The solutions of (21) a r e  expressed in t e rms  G ,  in 
accord with the formula 

After substituting (37) and (38) in (33), the matrix 
elements J1J8 a r e  transformed into triple integrals. 
The double integration with respect to r and r' i s  c a r -  
r ied out by means of the usual formulas (e.g., Eqs. 
6.631.1 and 7.621.5 of Ref. 6). The remaining single 
integrals, af ter  making the change of variable tanh (x/2) 
= t lh and after  straightforward but cumbersome trans-  
formations can be expressed in t e rms  of three  simple in- 
tegrals  F, F, , and Fz : 

1 t'-"dt 
F- (3v) ' (v2-1)  J r, 

a-bt)' 

w h e r e a l = l + v ,  a z = 1 + v / 2 ,  a=a,a, ,  b l = l  - v ,  b z = l  
- v/2, b = blbz, and v =q /q  =(1 - W ~ / I , ) ' ~ ' ~ .  The final 
expressions for T and Q are :  

FIG. 1. Dependence of the amplitudes of T'= r n ( a ~ ) - ~  T and 
Q' = m ( f f ~ ) - ~  Q on the photon frequency w,. 

The photon energies in (39) a r e  in units of the ground- 
state ionization potential I,. The integrals F' and F; 
a r e  obtained from F and F, by the substitution w, -wz. 
The dependences of the amplitudes of T and Q on 52, 
a r e  shown in Fig. 1. 

If the energy of one of the photons i s  low, e.g., S& 
<< at, but s t i l l  4 >> M/I, =aZ.Z2/16, then the matrix 
element M (2) takes the form 

This formula can be obtained both from (39) and di- 
rectly from (2) by summing over the intermediate 
states.  When 512 - 0 ,  a nonzero contribution to the 
transition amplitude i s  made only by the intermediate 
s ta tes  1SIIz,  2S, 2P, and 2P3/,. The te rm -%I 

in (40) s t ems  from the expansion of the energy denom- 
inator in the intermediate state 2P3/,. 

4. MULTIELECTRON ATOMS 
The results  obtained in Sec. 2 can be applied to mul- 

tielectron atoms (atoms of alkali metals Cu, Ag, and 
Au, and ions of certain elements) which have, one nS 
electron on top of the closed shell.  Only a few of these 
atoms have t e rms  with total atom angular momentum 
F = O .  Examples of such atoms a r e  the stable s i lver  
isotopes 1 0 7 ~ g  and ' O s ~ g ,  and certain ions .' For  these, 
the formulas of Sec .  2 describe the two-photon transi-  
tion nSt Iz(F =0)  -n lP I I z (F  = 0) at  arbi trary frequencies 
and momenta of the photons. However, if we a r e  inter-  
ested only in absorption of two photons of equal fre-  
quency from colliding beams,  the results  can be applied 
to transitions between the levels nS, and n lP I  Iz with 
arbitrary but equal angular momenta F. Let us explain 
the foregoing. 

In the most general case  (without expansion in k .  r) 
the amplitude of the two-photon transition nStIz -n1Pll2 
contains eight sca lar  functions T, and can be written 
in the form 
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where 0/2 i s  the electron angular momentum of the 
transition. The amplitudes of the transitions between 
the hyperfine components of the levels a r e  obtained by 
projecting (41) on the corresponding hyperfine states.  
For  transitions between levels S1 /, and PI /, with F = 0 ,  
al l  the t e rms  of (41) that contain the electron angular 
momentum of the transition drop out, and only the te rm 
with T,, which was calculated in Sec. 2 ,  is left. As 
seen from (41), the s a m e  takes place when photons of 
equal frequency (w, = w , )  from colliding beams (v, 
=-v2) a r e  absorbed, independently of the total angular 
momentum F of the initial and final s tates.  Interest 
attaches here  only to transitions without change of F, 
for otherwise the entire transition amplitude vanishes. 
The photons in the beams should be circularly polari- 
zed and have an identical helicity, s o  a s  to exclude 
absorption of two photons from one beam. 

In the case  of atoms with large nuclear charge Z ,  
the expression obtained in Sec. 2 for  the matrix ele-  
ment M (4) can be greatly simplified. F o r  an  optical 
electron going from the ground to an excited state,  the 
nuclear charge is strongly screened and the important 
role in the matrix elements of the transition i s  played 
by k .  r - a. Therefore the integral t e rms  in (23), (27), 
and (28) a r e  of the order  of a 3 ,  just a s  in the hydrogen 
atom. At the same t ime the fine splitting AE =E(P312) 
-E (P l  /,) of the P levels increases rapidly with increas-  
ing nuclear charge Z (in hydrogen, for example, AE 
~ 0 . 3 6  cm-I and in cesium AE = 554 cm-', Ref. 7). The 
reason is  that the energy of the spin-orbit interaction 
responsible for the fine splitting is  proportional to 
(r-ldV/dr) - (Y'~) and is therefore determined by the 
region of short  distances, where the nuclear charge is 
weakly screened. As a result ,  for heavy atoms the 
t e rms  linear in k. r outside the integral a r e  not cancel- 
led out a s  in the case  when the P levels a r e  degenerate, 
and make the principal contribution to the matrix ele- 
ment M. 

Retaining in (16) only the t e rms  outside the integral, 
we obtain a simple approximate expression for  the 
matrix element of the two-photon transition nSI /,(F 
= 0 )  -n1PI 12(F = 0) in a heavy atom: 

When photons of like helicity and frequency a r e  ab- 
sorbed from colliding beam, formula (42), a s  explain- 
ed above, is  suitable for nS, /, -n1PlI2 transitions be- 
tween hyperfine levels with arb i t ra ry  equal angular 
momenta a t  the s t a r t  and at the end. Only the absorp- 
tion of E l  and MI  photons is taken into account in (42). 

5. EFFECTS OF PARITY NONCONSERVATION IN 
TWO-PHOTON TRANSITIONS 

The weak interaction of the electrons with the nucleus 
deprives the atomic levels of a definite parity. Inter- 
ference of amplitudes with different parity lead to a 
dependence of the probability of the atomic transition 
on such pseudoscalar quantities a s  the helicity (the 
sign of the circular  polarization) of the photon. It was 
shown in Ref. 3 that, large parity -nonconservation ef- 
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fects  can be expectedfor the two-photon transition lS,,, - 2Pl12 in the hydrogen atom, if photons of like parity 
and helicity a r e  absorbed from colliding laser  beams. 
The parity nonconservation in such a transition mani- 
fes ts  itself in a dependence of the absorption on the 
circular  polarization of the photons. Order-of-magni- 
tude est imates3 show that the relative difference be- 
tween the probabilities of the absorption of right- and 
left-polarized photons in this transition can reach 
-10-~-10". The results  obtained i n s e c .  5 make pos- 
s ible an exact calculation of this value. 

According to Ref. 3 ,  for  transitions between the 
IS1 /, and 2P1 levels of hydrogen with total angular 
momentum F we have 

where 6, is the value of mixing of the 2PIl ,  and 2S, 
s ta tes  with angular momentum F :  

x ,  and x, a r e  the weak constants of the electron-pro- 
ton interaction. In the WeinbergSalam theory, at  an 
experimental value sin20,=0.22 we have x , = $ ( l  
- 4 sin28,) a0.06 and =-1 .25x1 -0.075, therefore 

The quantity To in (44) i s  connected with the ampli- 
tude of the admixture two-photon transition IS,,, - 2S,,,, 
while a T 3  is connected with the amplitude of the tran- 
sition ISI - 2P l I2 .  In the notation of the present pa- 
per we have at  w,  = w, = (3/16)ma2, taking (39) into 
account, 

where F ,  F , ,  and F2 a r e  defined in (38) atSt=$ 

F=0.0966, F,=0.0456, Fz=0.0515, 

from which we get 

T , / a T , = - 4 . 7  loT.  

As a result ,  

Ao=-1.9.  lo-', A t z 0 . 8 .  lo-'. 

Fo r  the analogous transitions in deuterium (F = +,$), 
the parity nonconservation effects a r e  enhanced by the 
additional weak interaction of the electron with the 
neutron of the nucleus. Calculations yield 

A t 1 , ~ - 2 . 6 .  lo-', A ,,=-2,7. lo-'. 

Using the results  of Sec.  4 we can obtain analogous 
parity-nonconservation effects in heavy atoms. To this 
end, however, it i s  necessary to know (e.g., from ex- 
periment) the amplitudes of the allowed two-photon tran- 
sitions that become mixed-in with the ground transition 
on account of the weak interactions. 

In conclusion the authors than R. M.  Ryndin for help- 
ful discussions of the questions touched upon in the 
paper. 
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APPENDIX 

To transofrm the matrix elements that enter in MI  
(4) we use the operator equations 

and the identities 

With their aid one can prove the following equalities: 

i 
(%lEkrG--<*I (er) (kr) {I-(E-E,)G) 

2 

The purpose of the transformations (A.3)-(A.5) is to 
introduce, by changing the power of r, the required 
smallness directly into the expression from which the 
matrix element i s  calculated. The expression for M I  
(4) can be rewritten with the aid of (A.3) in the form 

MI--ma<911e,rGE, (k,r) I$,> 
- o , < ~ l b t ( k r r ) G e I r l ~ ) + ( 1 * 2 ) .  (A.6) 

The terms that did not contain G were cancelled out 
in (A.6) by the cross  terms.  We apply the transforma- 
tion (A.4) to (A.6) and take into account the fact that the 
following matrix elements vanish for the 0' - 0' transi- 
tion 

($11 (ed) (e~r) (k,r) I$,)-0, ($, letrG(e,r) (klr) I $,)=O, (A. 7) 
(hr) (kd) (e,r) 1g,)=0, (*I (ear) (kzr)GelrI$l)-O. (A.8) 

Indeed, in the 0'-0- transition the matrix elements 
(A.7) a r e  pseudoscalars made up of vectors e,, e,, and 
k,. However, the only nonzero pseudoscalar ez . e l  
xk, i s  antisymmetric in e l  and k,, in contrast to the 
matrix element (A.7). The vanishing of the matrix ele- 
ment (A.8) can be proved similarly. As a result we get 

M,-- {S ( (e*r)G[arl I*,) 

+~~($~ l [ar lG(e~r )  I$,)+(1--2)}, (A.9) 
~,=[e,v,], v,=kJw,. 

Applying now the transformation (A.5) and recogniz- 
ing that the following matrix elements vanish after in- 
tegration over the angles 

($,I [arl(e.r) l$,)=O (i-1, 2), (A. 10) 

we obtain expression (5)  for  M,. 
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