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The temperature dependence of the critical current of superconductor-semiconductor-superconductor 
junctions is investigated at various densities of the semiconductor doping impurities. The tunnel resistance of 
the junction is determined in the nondegenerate case and it is shown that this temperature dependence is the 
same as for an ordinary tunnel element. If the semiconductor is degenerate, the critical current first increases 
exponentially with decreasing temperature, and then quadratically (at a large electron mean free path) or 
logarithmically (in the dirty case). In the intermediate impurity-density region the temperature dependence of 
the critical current is determined by the fluctuations of the bottom of the conduction band in the 
semiconductor. 

PACS numbers: 74.50. + r, 74.40. + k 

1. INTRODUCTION basis of a microscopic approach, we obtain the tem- 
perature dependence of the critical current of an S- 

Superconductor -semiconductor -superconductor Sm-S junction at various free-carrier-densities in the 
(Sam-S)  a re  intensively investigated of late."2'3 The semiconductor. 
properties of these junctions depend essentially on the 
density of the free ca r r i e r s  in the semiconductor: at 
low density they a re  similar to ordinary Josephson 
S -I-S (superconductor -insulator -super conductor) ele - 2. GENERAL EXPRESSION FOR THE JUNCTION 

ments, and at high density they a r e  close to supercon- CRITICAL CURRENT 

ductor -normal metal-superconductor (S -N S )  junc- 
tions. 

The free carr iers  in the semiconductor can be pro- 
duced both by introducing impurities (doping) o r  by 
eliminating the junctions. In the latter case, after 
turning off the light there remain in the semiconductor 
(usually, CdS) long-lived conduction electrons, while 
the holes a r e  captured in traps.2 By varying the i r r a -  
diation time (or the impurity density) it is possible to 

The current density j is expressed in terms of the 
Green's function G,(r , r l )  of the system in accordance 
with the formula5 

where z i s  the coordinate perpendicular to the plane of 
the junction, j i s  the projection of the current density 
on this direction, and w = (271 + l ) n ~  i s  the Matsubara 
frequency over which the summation is carried out. 

vary the density of the free ca r r i e r s  in the semicon- The Green's function i s  determined from the Gor'kov 
ductor and thereby influence the effective transparency 

equations,' whose integral form i s  of the barrier through which the superconducting elec- 
trons tunnel. The properties of thi junction (critical G.(r, r') =Gen(r, r') - Gan(r, r,) A (r,) F*+ (rI, r') d3r1, (2)  
current, current-voltage characteristic, and others) 

Fa+ (r, r') = j G-," (r, r2) A' (rl) Gr (r2, rr) d3r2, a r e  altered in this manner, and this uncovers new pos- (3) 

sibilities for using the junctions in cryoelectronics. where G",r,rf) i s  the Green's function of the system in 

Greatest interest attaches to the region of intermedi- 
ate carrier densities, when the barrier i s  already 
quite low and the thickness of the semiconductor layer 
can greatly exceed the distances between the atoms 
(this makes these junctions stable), and a t  the same 
time the junction has a large normal resistance, a fac- 
tor of importance in practical utilization. 

The theory of the Josephson effect in S-Sm-S junc- 
tions is at  present only in the initial development stage. 
To interpret the experimental data, use was made pre- 
viously of theoretical results  obtained for S - I S  and 
S - N S   junction^."^ A microscopic description of the 
properties of S-Sm-S junctions, capable of determining 
the critical current of the junction in a wide range of 
free-carrier density a t  temperatures close to the criti- 
cal temperature of the superconductors, was proposed 
in our preceding paper.4 In the present paper, on the 

the normal state, and F:(r,r') i s  the anomalous 
Green's function. The order parameter A(r) i s  deter - 
mined by the formula 

A ( r ) = ~ k l ~ z ~ ~ + ( r , r ) ,  (4 

and the electron-photon interaction constant X, and 
hence also the order parameter A in the semiconductor, 
will be assumed equal to zero. 

In the S a m - S  junction there appear near the bound- 
a r i e s  charged interfaces (Schottky barr iers)  which lead 
to a bending of the bottom of the conduction band, with 
a curvature described by the potential V(z ) .  To calcu- 
late the current in such systems it i s  convenient there- 
fore to use a Green's function that depends on the longi- 
tudinal coordinates z and z ' ,  and change over to the 
momentum representation with respect to the trans- 
verse coordinates p and p' .  
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The solution of Eqs. (2) and (3) for the Green's func- 
tion G, can be expressed in t e rms  of the Green's func- 
tion of the system in the normal state in the form of a 
s e r i e s  

Substituting (5) in Eq. (1) for the total superconduct- 
ing current  through the junction, we obtain 

. . . dzpz,'A(pl-pI1; zl)A'(p,-p~'; z;). . . A ( ~ , ~ - I - P ~ - I ;  hi-1) 
XA'(p,l-p2~'; z2i)G-."(pr',pz; zt, zz)Grn(pt', Pa; Zz, za). . . 

. . . G - ~ ~ ~ ( ~ Z : - I , P Z ~ ;  221- t ,  Z Z L ) ~ ,  (6) 

*= JflP (?--A) Gmn(p,p,; :, z,)Ga"(pzl', p; zzt, z r )  l z - z 9 .  
dz' dz (7 

As seen from (7), the differential operator ac t s  only on 
the product of two Green's functions, and this  product 
must be calculated. 

The Green's function of the system in the normal 
state i s  obtained from the equation 

where the te rm with the impurity potential V,,,(z;p) 
has been separated. The potential V(z), which de- 
scr ibes  the bending of the bottom of the band in the 
semiconductor, does not depend on the coordinate in 
the plane of the junction; p i s  the chemical potential. 
The solution of (8) can be expressed in t e rms  of the 
Green's function G v p ;  z ,  z,) without impurities, in the 
form of the s e r i e s  

'2," (P, PI; z, zi)=Gen (P; z, z,) 6 (P-P,) - - 

- 1  
+ zc- ,Jdz, ' .  . .dz,'I d2p,'. . .dZpk'Vl,,(z,'; p-p,'). . . 

k = 1  
(2n) 

. . .Vimp(zk'; p,',-pkl)~,"(p; z,z,')G,"(p,'; z,' ,~?'). . . 
. . . Gmn(pk'; zi',zl)6(p,-p,'). (9) 

Substituting (9) in ('I), we easily see  that to find Y w e  
must calculate expressions of the type 

a N = (z- %) Gan(p,; z, z,)Gan(p,; ZZ, zt) lz=ze. (10) 

where z ,  and z, lie in the superconducting regions z,,, 
< -a and z,,,>a [only these regions contribute to ex- 
pression (6) for J,, for otherwise A(z,,,)= 0 in accord- 
ance with formula (4)]. The point z a t  which the super- 
conducting current i s  calculated i s  situated inside the 
junction: - a < z < a .  

Expression (10) can be obtained by writing down the 
Green's function of the system without impurities in 
t e r m s  of two linearly independent solutions of the equa- 
tion 

in accordance with the formula 

where 

i s  the Wronskian of Eq. (11). A s  a result  we get 

i ~ = r n ~ , "  (p,, zz, z,) [sign 2,-sign zzl. (13) 

The expression for Y does not depend on z and i t  is 
convenient to calculate i t  a s  z - a: 

9=mG," ( P ~ ~ ' ,  p,; ZZI, Z I )  [sign a,-sign ~211. (14) 

Substituting (14) in (6) and using expression (5), as well 
a s  the property 

GWn(p, p'; 3, z') =G,"'(-p', -p; z', z ) ,  (15) 

we obtain 

l , = - i t . ~ C  da, dz, jdzp, d2pz~p~'dZp,'G,"(p,, p,; z,, z ~ ~ - . ( P ~ ' , P , ' ;  zz, z,) 

X A  (P,'-pI; zl)A'(p2-pz'; zl) [sign z,-sign zl]. (16) 

A similar  formula was obtained by Kulik and Gorbon- 
osov6 for the case of a one-dimensional 6-function bar-  
r i e r  without impurities. 

When the current  is determined for the case of a weak 
mutual influence of the superconductors (this condition 
i s  usually satisfied for S-Sm-S junctions), formula 
(16) allows us  to regard the order parameter in the su- 
perconductor regions a s  constant. Allowance for the 
coordinate-dependent corrections to A adds t e rms  of 
higher order  to the current; since quantity 
G~(z,,z,)G~,(z,z,) in the integrand of (16) i s  small. 

3. CRITICAL CURRENT OF JUNCTION IN  THE 
PURE CASE 

We consider f i r s t  the case when the mean f ree  path of 
the electrons in the semiconductor I i s  large compared 
with the coherence length 5. This condition can be sat-  
isfied even in the case of appreciable doping of the 
semiconductor (the mean free path in a semiconductor 
is usually larger than the distances between impurities), 
and makes it possible, when finding the superconduct- 
ing current ,  to neglect scattering by impurities. In 
this  case the Green's functions depend only on the dif- 
ference p -p' of the transverse coordinates and we ob- 
tain from (16) in the momentum representation 

FIG. 1. Band structure of superconductor- semiconductor- 
superconductor junction a t  various densit ies  of the free  car- 
r i e r s  in the semiconductor. 
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where 5 = p2/2m - j~ is the transverse-motion energy 
reckoned from the level of the chemical potential. 

To find 6,(5 ; z,, 2,) we use the Gor'kov equations in 
matrix form5 : 

The solution of this  system can be sought in the form7 

( G.",zz) ) -I a,(z,)f ,  (2,) + a 2 ( ~ , ) f 2 ( ~ 2 ) ,  ZI>ZZ 

F- (z,, zz) ds(zr)fs(zz) + & ( z r ) f , ( ~ 2 ) ~  Z ~ < Z Z  ' 
(19) 

where u,,,,,,, a r e  linearly independent solutions of the 
corresponding homogeneous system [the system (18) 
without the right-hand side], while f,,,,,,, a r e  obtained 
from the conditions for the continuity of the functions 

a t  z, = z, and from the jump of the derivative 

The solutions of the homogeneous system can be ob- 
tained under certain assumptions concerning the form 
of the potential V(z). This potential depends substan- 
tially on the impurity density in the semiconductor. 

At low densities, the thickness of the ba r r i e r  layer8 
is large compared with the thickness of the semicon- 
ductor layer,  and a l l  the f ree  electrons go off from the 
semiconductor into the superconductors. A s  a result ,  
the semiconductor layer turns  out to be uniformly 
charged and, solving the Poisson equation, we obtain 
for the dependence of the potential on the longitudinal 
coordinate the expression 

where N, and Na a r e  the densities of the donors and ac-  
ceptors in the semiconductor, H. is the dielectric con- 
stant, and U, determines the value of the potential a t  
the interfaces between the semiconductor and the su- 
perconductors (see Fig. 1 ,  case a). Formula (21) i s  
valid up to densities 

when the thickness of the bar r ie r  layer becomes com- 
parable with the thickness of the semiconductor layer 
(a, i s  the Bohr radius of the impurity, and Eo is the 
ionization energy of the impurity). 

At densities N >: No, only thin semiconductor layers  
with dimension d near the interfaces (Schottky bar r ie rs )  
a r e  charged, and in the r e s t  of i t s  bulk the semiconduc- 
tor  i s  electrically neutral. Then the potential V(z) 
takes the form 

where U i s  the position of the bottom of the band in the 
neutral semiconductor. Depending on the density of the 
f ree  c a r r i e r s  in the semiconductor, i t  can be either 
nondegenerate or  degenerate (see Fig. 1 ,  case c). 

To find the solution of the system (18) it i s  necessary 
a l so  to lcnow the dependence of the order  parameter  
A(z) on the longitudinal coordinate z. Inasmuch a s  the 
penetrability of the Schottky ba r r i e r s  remains  small  up 
to densities on the order  of the Avogadro number, we 
shall assume that the superconductors influence each 
other little, and the value of the order parameter  at  z 
< -u i s  equal to the constant value i A, l exp(ix,), and a t  
z > a  i t  equals correspondingly to 1 A, I exp(ix,). In the 
semiconductor region -a < z  <a the value of the order  
parameter  is zero,  since i t  i s  assumed that there is no 
interaction in the semiconductor [ E ~ .  (4)]. 

In the semiconductor region -a < z  <a one can find 
quasiclassical solutions of the homogeneous system 
(18) (the de Broglie wavelength of the electron is much 
l e s s  than the thickness of the bar r ie r  layer). Matching 
these quasiclassical solutions to plane waves in the su- 
per  conducting regions, we obtain four linearly indepen- 
dent solutions of the homogeneous system, and with 
their  aid, using (IS), we obtain the Green's function of 
the system (for the case of interest  to us, when the co- 
ordinates z ,  and z, lie in the superconducting regions). 
Fo r  the critical current  j ,  of the junction we obtain in 
th is  case from (17) 

The branch of the square root in (24) i s  chosen such 
that the imaginary part  of the root i s  positive. In the 
derivation of (24) we used the fact that the integral with 
respect  to 5 in (17) receives i t s  principal contribution 
f rom the region close to the value 5 = -p  (the electrons 
passing with maximum probability a r e  those having a 
longitudinal momentum), and the significant role in the 
sum is played by the values w -  T. 

The critical current  determined by (24) depends sub- 
stantially on the position of the chemical potential C( 

relative to the bottom of the conduction band U, which 
is determined by the density of the f ree  c a r r i e r s  in the 
semiconductor. The f ree-car r ie r  density n i s  given in 
turn by the time of illumination of the semiconductor o r  
by the degree of i t s  doping. Several characterist ic  s i t -  
uations a r e  possible in this case. 

a )  The cri t ical  current  i s  determined by the tunneling 
of the electrons through the charged layer of the semi-  
conductor. At impurity densities N << No, where No is 
determined by formula (22), the layer of the semicon- 
ductor is uniformly charged, and the potential V ( z )  i s  
obtained from the Poisson equation in accordance with 
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formula (21). In this  case we get for the critical cur -  
rent from (24) 

-2,2 m>,a(uo-p) l / ,  -- i. = 
n a p  ( ",I I ( A I *  A*). 

cc=2nx-' ( U , - p ) - ' e 2 a 2 N < i ;  (25) 
I ( A , , A 2 ) = l A , l  lA , lT  x[ ( 0 2 + l A l 1 2 )  (02+1A21')  I-'"; 

1111 IAl 
I ( A , A ) - - t h - .  

2 2T 

In the derivation of (25) we used the fact that the quanti- 
ty Uo - 1L i s  large compared with the temperature. 

This formula can be expressed in t e rms  of the tunnel 
resistance of the junction (just a s  for the S-I-S junc- 
tion) : 

1 e Z  a ]  dJk,, 
ic = ? [ ( A , .  A , ) ,  -= - S ~ E - S  -7DZ(E,  k,,), (26) 

R, R, a d E  ( 2 n )  

where DZ(E, k,,) i s  the transparency of the ba r r i e r  to an 
electron with total energy E and momentum k,, in the 
plane of the junction, and f ( E )  i s  the Fe rmi  distribution 
function of the electron e n e r g i e ~ . ~  Thus, the increase 
of the critical current  with increasing impurity density 
in the region N<< No i s  due to the increase of the effec- 
tive transparency of the bar r ie r .  

b) The cri t ical  current  i s  determined by the tunneling 
of the electrons through the Schottky ba r r i e r s  and 
through the neutral layer of the semiconductor. 

At a density N >: No, Schottky ba r r i e r s  appear near 
the interfaces, and the semiconductor is in the main 
electrically neutral. 

In this case, fluctuations of the bottom of the conduc- 
tion bands set  in,  and the value of U cannot be regarded 
a s  constant.'' However, so  long a s  the impurity density 
o r  the irradiation time i s  s t i l l  not too large,  the free-  
ca r r i e r  density in the semiconductor i s  low and the 
average position of the bottom of the conduction band 
l ies  much higher than the level of the chemical poten- 
tial. The effect of the fluctuations on the critical cur-  
rent  i s  then insignificant, and by using expression (23) 
for the potential we obtain from (24) the critical current  

The last  t e rm in the argument of the exponential in (27) 
i s  small  (it becomes significant only a t  a very high de- 
gree of doping, when the impurity density i s  of the o r -  
der of the Avogadro number). 

Corresponding to (27) is a lso  the tunnel expression 
(26), where the resistance R ,  is determined by the tun- 
neling both through the Schottky bar r ie r  and through the 
neutral layer of the semiconductor, in which the aver - 
age level of the bottom of the band l ies  above the chem- 
ical-potential level. A similar  formula was obtained by 
Alfeev and Kolesnikov" by starting from the assump- 
tion that the tunnel expression (25), previously derived 
only .for tunnel junctions, i s  valid also for S-Sm-S 
junctions. 

can be assumed in the semiconductor by hopping con- 
duction.1° If the length of the hop, however, exceeds 
the thickness of the semiconductor layer,  this  charge- 
transport  mechanism can be disregarded. 

c) The critical current  i s  determined by the tunneling 
through the Schottky ba r r i e r s  and by the loss of coher- 
ence in the neutral  semiconductor. 

With increasing f ree  -car r ie r  density, the average 
level of the bottom of the band, relative to the chemi- 
cal-potential level, i s  lowered and the fluctuations of 
the bottom of the conduction band becomes substantial. 
These fluctuations a r e  due to the large-scale potential1' 
and therefore, if the thickness of the semiconductor 
layer in the S-Sm-S junction i s  too large, i t  can be a s -  
sumed that the position of the bottom of the conduction 
band changes only in the t ransverse  directions, and U 
is constant along the z coordinate. The critical current  
i s  then determined from the formula 

where g ( U )  i s  the distribution function of the random 
potential U. It turns  out in this case  that the main con- 
tribution to the current  i s  made by deep fluctuations, 
when the bottom of the conduction band U i s  much lower 
than the level of the chemical potential p. For these 
fluctuations, the screening of the excess  impurity den- 
sity by electrons is nonlinear, so  that the function f ( U )  
i s  not Gaussian and can be expressed in the form 

where U, i s  a typical value of the potential fluctuation. 
In the case of an uncorrelated distribution of the im- 
purities we obtain (Y = 5/2 (the est imates a r e  given a t  
the end of the article). 

Using formula (28), we obtain for the critical current 

The significant values of U in (30) a r e  large compared 
with U, (in this  formula U is reckoned from the chemi- 
cal-potential level). These fluctuations a r e  r a r e  (the 
second t e rm in the argument of the exponential is large) 
but the semiconductor here is degenerate (T << U,) and 
the critical current  i s  substantially increased (the f irst  
t e rm in the argument of the exponential increases). 

The essential values of w in (30) a r e  small  compared 
with U, so  that the argument of the exponential can be 
expanded in powers of w and only the f irst  te rm need be 
retained. As a result  we get 

We note that in this  density region an important role where the following change of variables was made in 
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the integral with respect to U: 

and the characteristic temperature is T*, = u,'"/ 
?ra(2m)lh. In the derivation of (31) it was assumed that 
max[T, T*,] << Uf, for otherwise it is impossible to ex- 
pand the argument of the exponential in powers of w 
(this condition is usually satisfied even in weakly com- 
pensated semiconductors). 

Expression (31) has different asymptotic forms, de- 
pending on the relations between the parameters T, 
T*,, and A. At T*, << T, only the first  term i s  signifi- 
cant in the sum over w in (31), and the integral with 
respect to z can be calculated by the saddle-point 
method. As a result we obtain for the critical current 

The exponential damping of the critical current with in- 
creasing thickness of the junction has a simple physical 
explanation. The electrons passing through the semi- 
conductor lose their coherence a t  distances on the or-  
der of 5, and cannot produce a superconducting current 
at thicknesses a >> 5. The value of 5 is determined by 
the velocity v of the electrons with energy -Uf, reck- 
oned from the bottom of the conduction band: 

At low temperatures T << T*, <<A, to find the asymp- 
totic form of the critical current it i s  necessary to cal- 
culate the sum of the exponentials in (31). As a result 
we get 

Thus, the critical current decreases quadratically with 
increasing temperature. We note that in the low-tem- 
perature region the values U - Uf a r e  significant, so  
that the asymptotic formula (29) for F (U)  can strictly 
speaking not be used to calculate the current. The form 
of the distribution function of the random potential, 
however, influences only the coefficient of the quadratic 
term in (33). 

We note also that for short junctions the condition T*, 
>: A may be satisfied. In this case we find from (31) 
that the temperature dependence of j ,  i s  determined by 
the pre-exponential expression and is the same in the 
entire temperature region a s  for the tunnel junctions. 

We consider finally the region of large electron densi- 
ties, when the bottom of the conduction band in the sem- 
iconductor is much lower than the chemical-potential 
level and the fluctuations of the bottom of the band a re  
no longer significant in the calculation of the critical 
current. Then, using (24), we obtain 

where the characteristic temperature i s  

We present also the corresponding asymptotic expres- 
sions for the critical currents 

j.=A21A,l lAz lT(nZTZ+IAt l l ) -" '  

X(nzTz+lAz12)- '"  e x p ( - T / T , ) ;  TWT, ,  (354  

j .='/J,T,  [ I - ' / .  (:)'I ; T<T,<A,  (35b) 

The decrease of the argument of the exponential in (35a) 
with increasing free-carrier density i s  due to the in- 
crease of the electron velocity and correspondingly of 
the coherence length. 

4. CRITICAL CURRENT I N  THE CASE OF A 
DIRTY SEMICONDUCTOR 

At considerable impurity density, the electron mean 
free path 1 in the semiconductor can become smaller 
than the coherence length 5. In this case, when calcu- 
lating the superconducting current through the junction, 
i t  i s  necessary already to take into account the scatter- 
ing by the impurities. To find the critical current it i s  
again convenient to use formula (16), which must be 
averaged over the position of the impurities. In the 
case of weak mutual influence of the superconductors, 
we have 

where the bar denotes averaging over the impurity po- 
sition. 

The calculations that follow a r e  for the case of a de- 
generate semiconductor, inasmuch a s  even in the inter- 
mediate density region, when the chemical potential 
l ies near the average position of the bottom of the con- 
duction band, the largest contribution to the current, 
just a s  in the pure case, is made by the deep fluctua- 
tions of the bottom of the band (in the nondegenerate 
case, the impurity density i s  low and the electron mean 
free path usually exceeds 5). 

Using the Gor'kov equations, just a s  in the theory of 
superconducting  alloy^,^ we can average the product of 
the Green's functions that enter in (36). We then obtain 
the system of integral equations 

1 - + .- ~ d ~ ~ ~ ~ : ( p , ;  z , ,  zOr)G- . (p , ;  z,', z,) d2p,II2(p2; z,', 22) 
Z p o ~ r r  -a 

where II, and II, a r e  defined by the formulas 
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1 - 
11, (p,; z,, z2) = -5 d2p,Gen (P,, PZ; z1,z2) G-,(p,. PI;  za,zi), 

S 
I - (38) 

II,(p,; zl ,z2) = s j@p&."(p,. PZ; 21, zZ)F-.+(pz, pi; z ~ . z I ) ,  

S i s  the a r e a  of the junction, p, = [2m(p -u)]''~ i s  the 
electron momentum on the F e r m i  level, and T,, i s  the 
transport time of scattering by impurities. In the de- 
rivation of the system (37) we used the fact that the or -  
der  parameter  differs from zero  only in the supercon- 
ducting regions, and the potential V(z)O, on the con- 
t ra ry ,  only in the semiconductor region, and a lso  the 
fact that there a r e  no impuri t ies  inside the Schottky 
bar r ie rs .  

For  the averaged single-particle Green's  functions in 
(37) we have the expressions 

where v(c) = [2( iw - c - ~) /m] '" ,  and G,(pl; z,, z,) i s  the 
Green's function of the system without impurities. 

In the case of low transparency,of the Schottky bar r i -  
e r s ,  the quantity F-,(pl; z',, z,) i s  smal l  for both coor- 
t ina tes  lying in the semiconductor region, and 
G_,(pl; z lo, z,) can be regarded a s  coinciding with 
G",(p;z',,z,). Therefore, a t  -a <z,  <a the f i r s t  equa- 
tion of the system (37) can be easily solved (the last  
t e rm in this  equation is small): 

ink 
P [ ] yo= 12 ( P - ~ ) / m ] , * .  

Substituting (40) in the-'system (37), we can obtain n, 
for  z, and z, lying in the superconducting regions, a i d  
then use (36) to calculate the cri t ical  current  

The expressions obtained for the current  must be aver-  
aged, just a s  in the pure case, over the positions of the 
bottom of the conduction band. In the case when the 
chemical potential l ies  near the average position of the 
bottom of the conduction band, we obtain with the aid 
of (28) and (29) the following expression for the critical 
current of the junction: 

The asymptotic forms of this expression a r e  given by 

We note that the logarithmic growth of the cri t ical  cur-  
ren t  a s  T- 0 i s  limited by the condition of weak mutual 
influence of the superconductors, a t  which formula (43) 
is valid. 

Fo r  short  junctions, the relation T*, >> A can be sa t i s -  
fied. In this  case  we obtain 

In the case of a degenerate semiconductor, the chemical 
potential l ies  much higher than the average position of 
the bottom of the conduction band, and the fluctuations 
of the bottom of the band become insignificant. The 
cri t ical  current  is then determined by Eq. (41), in 
which we must put U = (this result  agees with that 
previously obtained for an S - N S  junction1'). We pre-  
sent a l so  asymptotic formulas for the critical current  
in the case of strong doping: 

j.-B~lA,liA.l (z)"' (n2Tz+lA,I')-L 
n T,, 

( 4 5 4  

where the characterist ic  temperature is T, = (g - Z)T,/ 
12nma2, and B 2 =  B ( p  -E) .  

5. DISCUSSION OF RESULTS 

The resul t s  show that various mechanisms govern 
the value of the cri t ical  current of S - S m S  junctions. 
If the semiconductor i s  not degenerate, the chemical 
potential l ies  much lower than the bottom of the con- 
duction band in the semiconductor, and the weakening 
of the superconducting current  in the junction i s  due to 
the tunneling of the pa i rs  through the entire thickness 
of the semiconductor. In a degenerate semiconductor, 
the chemical potential l ies  above the bottom of the con- 
duction band, and the weakening of the superconducting 
current i s  due mainly to the loss  of coherence of the 
electrons in the semiconductor layer, where there is 
no pairing. In the intermediate region, the chemical 
potential i s  near the bottom of the band U, and large- 
scale fluctuations of the potential, whose value a t  low 
temperature exceeds the temperature, become signifi- 
cant. The two mechanisms that weaken the supercon- 
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ducting current compete with each other, and flow of 
the superconducting current turns out to be favored 
through the r a r e  conducting channels that a r e  formed in 
the semiconductor layer a s  a result of the strong fluc- 
tuation decrease of the bottom of the band. 

Corresponding to the described mechanisms a r e  three 
forms of the temperature dependence of the critical 
current of the junction. For a nondegenerate semicon- 
ductor, the tunnel formulas (25) and (27) a r e  valid. 
Formula (25) then describes the temperature depend- 
ence of the critical current for junctions with a suffi- 
ciently thin semiconducting layer that is uniformly 
charged (all the electrons go off from the semiconduc- 
tor into the superconductors), Formula (27) describes 
the case when the semiconductor-layer thickness ex- 
ceeds substantially the dimensions of the Schottky bar- 
r i e r s ,  s o  that the semiconductor i s  in the main elec- 
trically neutral. 

For a degenerate semiconductor, the temperature de - 
pendence of the critical current i s  described by formu- 
las (35) in the pure case and (45) in the dirty one. If the 
semiconductor -layer thickness i s  large compared with 
the minimum value of the coherence length in the semi- 
conductor [a > t (T,)], then the critical current increases 
exponentially, -exp(-a/[), when the temperature drops 
below Tc [formulas (35a) and (45a)l. The coherence 
length, however, increases with decreasing tempera- 
ture, and a t  a certain temperature (T, in the pure case 
and T, in the dirty one) becomes comparable with the 
thickness of the semiconductor layer. At low tempera- 
tures [a <t (T)] the increase of the critical current is 
slower, quadratically in the pure case [formula (35b)l 
and logarithmically in the dirty one [for mula (45b)l. 
For short junctions [a <t (T,)] the temperature depend- 
ence of the critical current is determined by the tun- 
neling of the electrons through the Schottky barr iers ,  
and formulas (35c) and (35c) a r e  valid. 

The temperature dependence of the critical current 
in the region of intermediate densities i s  given by (32) 
and (33) in the pure case and (43) and (44) in the dirty 
one. It is seen that a t  not too low temperatures this 
dependence is exponential but the argument of the ex- 
ponential i s  proportional to the temperature raised to 
some power that depends on the statistics of the fluc- 
tuations of the bottom of the conduction band in the 
semiconductor. At low temperatures, the dependence 
is the same a s  in the degenerate case. 

For a qualitative explanation of the results ,  we con- 
sider the case of a strongly doped (Nda s >: 1) compen- 
sated (K = Nd/Na - 1) semiconductor. With increasing 
degree of compensation, the large-scale fluctuations of 
the potential become stronger (their amplitude and spa- 
tial size increase). The electron density then decreas- 
es,  and the chemical potential drops into the interior 
of the forbidden band. In the compensation region K 
> Kc- 1 - (N&,~)"", the chemical potential lies below 
the average value of the bottom of the band by precise- 
ly the value of the typical fluctuation, so that electron 
drops a r e  produced a t  places where the bottom of the 
band is lowered.1° Long drops (channels) that inter- 
connect the superconducting region have a low probabil- 

ity of being produced. It turns out that the supercon- 
ducting current flows mainly through deep channels, in 
which the electron density i s  much higher than in a 
typical drop. 

The probability r ( U )  of formation of such a channel 
can be easily obtained by assuming that the impurities 
have a Poisson distribution: 

9(U)- -ZZ 
In--- 
9 (0) Ndro2a 

where Z is the excess number of impurities in the chan- 
nel, and ro is i ts  radius. The lowering of the bottom of 
the band in the channel relative to the chemical-poten- 
tial level U is equal to the energy of the electron in the 
potential produced by a cluster of impurities: U= e2Z/ 
xa. The radius of the channel is determined by the 
screening length: yo-a,' hn'1/6 at electron densities n - As a result we find that the channel-forma- 
tion probability i s  given by Eq. (29), in which a! = 5/2 
and uf - E ~ ( N ~ U , ~ / U ) ~ " .  

The deeper the channel, the less  probable i t s  forma- 
tion, but a t  the same time the less  the weakening of 
the superconducting current in it, since the coherence 
length 5 - v/T- ~ ' / ~ / r n ' / ~ ~  increases in this case. The 
optimal channels have a depth U- ~ ~ ( a / 5 ~ ) l / ~ ,  where ef 
= ~ ~ " / r n " ~ T .  As a result, at a >  tf the critical cur- 
rent of the junction i s  

and formula (32) i s  valid [or (43a) in the dirty case]. 
At a <5 the temperature dependence of the critical 

f '. current is determined by the formulas (33) and (43b). 

Thus, the fluctuations alter  the temperature depend- 
ence of the critical current of an S-Sm-S junction in 
the case of a strongly doped semiconductor a t  compen- 
sations K> Kc and semiconductor layer thicknesses a 
> 5,. We note that formulas (32) and (43) for the cri t i-  
cai current cease to hold a t  very high compensation for 
two reasons. Fi rs t ,  the dimension of the Schottky bar- 
r i e r s  increases with increasing compensation and can 
exceed the thickness of the semiconductor layer. Sec- 
ond, the excess impurity density in the channel can be- 
come comparable with the density Nd(l - K) that deter- 
mines the thickness of the Schottky barriers,  and it i s  
then necessary to take into account the change of their 
transparency on account of their fluctuations. How- 
ever,  the corresponding compensations 

a r e  certainly larger than the compensation Kc at a >  5,. 

Experiment revealed both a tunnel temperature de - 
pendence of the critical current of the S S m S  junction 
in the case of a nondegenerate semiconductor, and an 
exponential dependence in the case of strong 
In experiment, the impurity density Nd even in 
the case of strong doping, so  that for weak compensa- 
tion the chemical potential i s  higher than the average 
value of the bottom of the conduction band only by a 
value of the order of the fluctuation scale. The results  
explain why the temperature dependence absorbed in 
this case is close to that corresponding to the S-N-S 
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junction: the main contribution to the current  is made 
by the fluctuation channels with strong degeneracy. 
More accurate measurements of the temperature de- 
pendence of the cri t ical  current  of S-Sm-S junction 
would reveal  the deviation and by the same token yield 
experimentally the value of a that determines the s ta -  
t is t ics  of the deep fluctuations of the bottom of the con- 
duction band in the semiconductor. 

Another convenient possibility of observing the change 
of the character  of the temperature dependence of the 
critical current i s  provided by light-sensitive junctions. 
When these junctions a r e  illuminated, long-lived con- 
duction electrons appear in the semiconductor (the pro- 
cesses  of recombination with impurities and with holes 
at  low temperatures a r e  very slow). The stat is t ics  of 
these electrons a r e  determined by the Fe rmi  quasilevel, 
whose position relative to the bottom of the conduction 
band depends on the irradiation time. At short  t imes,  
the electron density i s  low and the F e r m i  level l ies  
much lower than the bottom of the conduction band. The 
temperature dependence of the cri t ical  current  i s  then 
the same a s  in a tunnel junction. With increasing i r -  
radiation, however, the Fe rmi  level r i s e s  and may 
turn out to be in the region of the fluctuations of the 
bottom of the conduction band. The type of the temper-  
ature dependence of the critical current  becomes cor - 
respondingly fluctuating. A s imi lar  transition from a 
tunnel to a fluctuating temperature dependence of the 
critical current can be observed in junctions with weak- 
ly doped semiconductors when the compensation i s  in- 
creased. 

The theory developed makes i t  possible to determine 
the critical current  of S-Sm-S junctions in which 
Schottky ba r r i e r s  a r e  produced a t  the interfaces be- 
tween the semiconductor and the superconductors. For  
certain superconductors, ohmic contacts may be pro- 
duced if electron-enriched potential wells appear a t  the 
interfaces in place of the bar r ie rs .  However, the size 
of these wells becomes of the same order a s  the inter-  
atomic distances even a t  very  smal l  impurity densities, 
and these wells have little effect on the passage of the 
electrons through the interfaces. In the case of a non- 
degenerate semiconductor, the temperature depend- 
ence of the critical current  i s  determined by the tunnel 
formula (25). In the degenerate case,  however, the 

mutual influence of the super conductors becomes sig - 
nificant and leads to a dependence of the order parame- 
t e r  on the coordinates. The cri t ical  current  for this  
case  was calculated by ~ i k h a r e v ' ~  and by Barone and 
Ov~hinnikov. '~ 

The authors thank A.A. Abrikosov, A.I. Larkin, and 
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