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It is shown that a conformally flat gravitational field can produce gauge bosons through the anomaly in the 
trace of the energy-momentum tensor. An equation is obtained for the single-particle wave function of a 
photon with allowance for the electromagnetic corrections in an arbitrary conformally flat gravitational field. 
The solution of this equation determines the amplitude for photon production by the field. The production of 
scalar particles is discussed. It is shown that the theory can be formulated in such a way that the production 
of massless scalar particles, in contrast to photons, is forbidden. 
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1. INTRODUCTION 

It i s  well known that a variable gravitational field (like, 
for that matter, any other force field) can produce ele- 
mentary particles from the vacuum.' However, it was 
already noted in the first   paper^^-^ devoted to this ques- 
tion that in the physically interesting case of a confor- 
mally flat metric, which includes, for example, the 
Friedmann and de Sitter metrics, the production of 
particles i s  strongly suppressed, and in the case of 
zero mass i s  forbidden altogether. Massless particles 
can be produced in a nonisotropic space,5 leading to 
rapid isotropization6 of the space. With regard to the 
assertion that there i s  no production of massless parti- 
cles in conformally flat space, i t  is  valid only for non- 
interacting particles and i s  based on the conformal in- 
variance of the theory. It i s  however known that inter- 
action breaks conformal invariance despite the fact that 
the original Lagrangian can be formally conformally in- 
variant. A well-known example of the breaking of con- 
formal invariance i s  the anomaly in the trace of the en- 
ergy-momentum tensor in the theory of gauge fields, 
which in flat space has the form 

where a=2/4a i s  the gauge coupling constant, G;, is 
the field tensor of the vector field A;, and P i s  a numeri- 
cal coefficient and depends on the form of the theory. If 
SU(N) i s  a gauge group with N, families of fundamental 
fermions, then in the lowest order in a 

Gauge-invariant regularization by means of analytic 
continuation with respect to the dimension of space (by 
transition to dimension d=4 - E )  i s  also not conformally 
invariant, since a Lagrangian which i s  conformally in- 
variant in a space of dimension d=4 i s  no longer such 
for d + 4 .  In the limit &-0, the deviations from confor- 
mal invariance in the Lagrangian a re  formally small 
(" E ) ,  but the loop graphs can contain poles with respect 
to E , SO that finite noninvariant corrections arise in 
some amplitudes. 

It i s  easy to see that in the limit of a weak conformally 
flat gravitational field the particle production amplitude 
i s  proportional to the trace of the operator of the energy- 
momentum tensor of these particles. Indeed, for an ap- 
propriate choice of the coordinates, a conformally flat 
metriccan be written in the form 

where q,, =diag(l, -1, - 1, - 1) i s  the metric tensor in 
Minkowski space, and a(x,) i s  a function of the coordin- 
ates. 

The Lagrangian of the interaction of particles with a 
weak gravitational field has the form 

where T,, i s  the energy-momentum tensor of the quan- 
tized fields, and h,,=g,,- q,, i s  the deviation of the me- 
tr ic from flatness. In (1.3), summation with the metric 
tensor 17," i s  understood. 

p=11N/3-2N,/3.  It can be seen from (1.2) and (1.3) that the amplitude 

We recall that in the tree approximation T,,=O for 
massless particles, but this equation i s  violated in loop 
diagrams because of the divergences. The point i s  that 
the gauge-invariant regularization of the divergent dia- 
grams i s  not conformally invariant. In particular, in 
the case of Pauli-Villars regularization one introduces 
into the theory unphysical massive fields which are chos- 
en to make the result finite, and in the final result the 
masses are  taken equal to infinity. The violation of con- 
formal invariance (due to the fact that the regular fields 
a re  massive) in the intermediate stage of the calcula- 
tions i s  reflected in the final result in, for example, the 
form of the anomaly (1.1). 

for the production of particles by a weak conformally 
flat gravitational field is proportional to T,,. Be- 
cause of the anomaly (1.1), T,, does not vanish even 
for massless particles and, thus, the production of 
massless gauge bosons (and, in higher orders in the 
coupling constant a, other particles a s  well) becomes 
p o ~ s i b l e . ~  

A similar circumstance has also been noted8 for mass- 
less  scalar particles in the A q 4  theory (see also Ref. 9). 
However, in this case the situation i s  not so unambigu- 
ous as  in gauge theory. The point i s  that when the diver- 
gent parts a re  regularized in the energy momentum ten- 
s o r  of the scalar  field an anomaly can also arise in T,, 
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but, in contrast to gauge theory, in which the require- 
ment of gauge invariance fixes the magnitude of the ano- 
malous term, the corresponding term in the @4 theory 
is not determined and may be arbitrary, including zero. 
The last requirement does not seem natural, since the 
logarithmic remrmalizations clearly introduce into the 
theory a dimensional parameter, breaking thereby the 
conformal invariance, but formally i t  cannot be elimin- 
ated. 

It i s  natural to consider whether it might not be possi- 
ble to construct a theory in which P'O [see (1.1)], so that 
an anomaly does not arise in T,,. It i s  possible that 
supersymmetric theories provide an example of this. 
It was shown in Ref. 10 in a definite supersymmetric 
model that P=O up to the three-loop graphs. The future 
will show if this property i s  preserved in all perturba- 
tion orders, and also whether supersymmetric theories 
bear a relationship to the real world. If the answers to 
these questions are  in the affirmative, we may conclude 
that massless elementary particles are  not produced by 
a conformally flat metric. But if P O ,  then particles 
will be produced, in disagreement with the current point 
of view. 

Below, the results of Ref. 7 on the production of mass- 
less vector particles obtained in the lowest order in the 
gravitational field are  extended to the case of an arbi- 
trary gravitational field. In Sec. 2, we derive a wave 
equation with radiative corrections for photons in the 
metric (1.2). Pauli-Villars regularization i s  used in 
the calculation. Although the gauge invariance makes it 
possible to establish the form of the equation from the 
known charge renormalization in flat space, an explicit 
calculation of the diagrams in the metric (1.2) i s  given 
in the Appendix. In Sec. 3, we discuss the rate of photon 
production near the singularity in a Friedmann cosmolo- 
gy, and in Sec. 4 we briefly consider the production of 
particles with spin 0. 

2. WAVE EQUATION WITH RADIATIVE 
CORRECTIONS FOR PHOTONS IN CONFORMALLY 
FLAT SPACE 

It is well known (see, for example, the reviews of 
Refs. 11 and 12) that the amplitude for the production of 
particles in an external field i s  determined by the solu- 
tions of the single-particle wave equation in this field. 
Suppose that in the limits t - i * the field is switched off 
and the asymptotic behavior of the solution of the wave 
equation has the form 

where q k  i s  the particle wave function in the momentum 
representation, w= %I, and I (rkI2 - I &I2= 1. Then the am- 
plitude for the production of a pair of particles with mo- 
menta k and - k i s  &/(YE. 

Let us consider interactingelectron-positron and elec- 
tromagnetic fields in the metric (1.2). The Lagrangian of 
of the system together with the massive regulating fermi- 
ons fields has the form1' 

where F , , = a d , -  a,A,; y?' are  the ordinary Ymatrices - 
satisfying the condition (9, yY)=2qvY; $ = $+p; and 

6=a-1y' (3+3/ ,a ,  In a ) ,  
s - 

where the arrow under the derivative indicates the direc- 
tion in which i t  acts, $, i s  the operator of the physical 
electron-positron field, and $,,, are  the heavy regular- 
izing fields. We set m,=O and m,,,- *. The constants 
C, satisfy the conditions 

In deriving the expression for the spinor part of the La- 
grangian, we have used the tetrad formalism, the de- 
tails of which can be found, for example, in Weinberg's 
b00k.l~ 

Going over to new operators of the spinor fields in ac- 
cordance with 

we rewrite the Lagrangian in the form 

(2.4) 
Here and below, summation i s  performed with the Min- 
kowski metric 3,,. 

It can be seen that for massless fields L reduces to 
the ordinary Lagrangian of quantum electrodynamics in 
flat space-time. It follows from this in particular that 
in the tree approximation there i s  no production of mass- 
less particles in the metric (1.2). 

The radiative corrections change the situation. The 
equation for the single-particle photon wave function 
with radiative corrections due to the interaction with the 
electron-positron field has the form 

avf',v(xr) f i e Z  ~ ~ x , I I , , ( x , ,  2,) A, (sz) =O, (2.5) 

where II,,(x,, x,) i s  the photon polarization operator. In 
the lowest order in the electromagnetic interaction, it i s  

where Gj i s  the propagator of the fermion with mass m, 
in the metric (1.2); it satisfies the equations 

For m=O, Go i s  equal to the propagator of a free elec- 
t ron in flat space. If m ,*O, and explicit expression for 
G,  cannot in general be found. However, since m j  must 
be set  equal to infinity in the final result, the answer 
will contain G,(x,, x,) in the limit x = (x, - x,) - 0. 

We expand a(x,) in Eq. (2.7a) in powers of x: 
a  ( 2 , )  = a ( x , )  +x,a,a ( x , )  + i / , ~ , ~ z a , a , a ( ~ , )  + . . . 

= a ( x , ) + v ( x ,  x i ) .  (2.8) 

It i s  clear from dimensional considerations that in this 
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expansion i t  i s  sufficient to consider only the terms 
quadratic in x. The contribution to II,, from terms of 
higher order vanishes a s  m j- *. 

One can find the expansion of Gj(xl, x,) corresponding 
to (2.8). This i s  done in the Appendix, since the calcu- 
lation can be instructive for other models. However, in 
our case this i s  not necessary, since, by virtue of the 
gauge invariance, II,, can be recovered from the first  
term in the expansion of Gj, namely, from the function 
G ~ o ) ,  which satisfies the equation 

and i s  equal to 

By virtue of the gauge invariance and the transversal- 
ity of II,,, Eq. (2.5) can be written in the form 

where [(x)=lna(x). It can be concluded from dimension- 
al arguments that the result does not contain the second 
derivatives of 5, since a25 must on dimensional grounds 
be multiplied by the potential A , ,  which contradicts 
gauge invariance. Note that the result depends on k=lna 
but not on a ,  since a i s  always contained in the combina- 
tion ma. 

The functiond-'(k2, 5) can be calculated in exactly the 
same way a s  the corresponding quantity in Minkowski 
space with the only difference that the cutoff parameter 
(or regulating mass) depends on the coordinates: A - Aa(x). In other words, all the calculations are  made 
as  in the ordinary theory, but the renormalization con- 
stants are functions of the coordinates. This depen- 
dence of the renormalizations on the point of space i s  
observable and, in particular, leads to the production 
of massless particles. In the lowest order in a=e2/4s 

where A2= (mlC'm2C2)-2, and NF i s  the number of charg- 
ed fermions. Integrating in (2.10) and extracting the 
factor (1 - (cyN,/37~) In k : / ~ ' )  in the renormalization of 
the inverse photon propagator ( k ,  i s  an arbitrary nor- 
malization point in the momentum space), we obtain 

the wave equation for the single-particle wave function 
of a photon propagating in the metric (1.2) with allow- 
ance for the radiative corrections of order (1. Because 
of the last term in this equation, a solution having the 
asymptotic behavior expiwt in the limit t - -  * will con- 
tain in the limit t-+- both positive and negative fre- 
quencies [see (2.1)], i.e., particle production will occur. 

Note that in (2.12) we have omitted the nonlocal term 
1 a k r'n J d ~ ~ d k e " l * - ~ ~ )  ln a v ~ p F . .  ( x 2 ) ,  

(-kZ) (2.13) 

which makes a contribution of second order in a on the 
iteration of (2.12). This term i s  important when higher 

corrections in a! are  taken into account. In particular, 
for strong gravitational fields, when a5 a! lna  = I ,  the 
leading logarithmic terms in d" can be summed. How- 
ever, it i s  known that the result in this case i s  equal to 
the lowest order (2.11) of perturbation theory, and there- 
fore Eq. (2.12) with the correction term (2.13) i s  also 
valid for a l n a z l ;  at the same time, the correction 
terms are of order aa lna.  One can also have a situa- 
tion when a l n a < < l  but aB, l n a a l .  Then one can also 
use Eq. (2.12) provided cuaa,lna << 1. 

Using the well-known results of quantum electrodynam- 
ics, we can take into account the corrections of order 
a2 to d-' (two-loop diagrams) and, accordingly, the cor- 
rections of the same order in Eq. (2.12) [with allowance 
for (2.13)l. 

Note also that Eq. (2.10) with obvious modifications 
holds not only in quantum electrodynamics but in any 
gauge theory. In particular, for the gauge group SU(N) 
with N, generations of fermions belonging to the funda- 
mental representation, Eq. (2.12) i s  as  before valid if 
we make the substitution 

2Nr 11 2Np Po= - -+BN=-N-- . ,  
3 3 3 (2.14) 

For appropriate choice of N and N,, the coefficient P, 
may vanish, so that particles will not be produced, but 
this i s  true only in the lowest order in a. Allowance 
for terms of higher order in a! again leads to particle 
production. 

3. PRODUCTION OF GAUGE BOSONS IN  COSMOLOGY 

In Sec. 2, we derived Eq. (2.12), which describes the 
propagation of a photon in conformally flat space. In 
accordance with the general theory,"'12 to determine the 
probability of particle production i t  is necessary to cal- 
culate the coefficient Pk [see (2.1)], i.e., the negative- 
frequency part of the wave function. We note immediate- 
ly that without allowance for the radiative corrections, 
i.e., when the second term in (2.12) i s  ignored, photon 
propagation i s  described by the free equation, so  that 
P ,, = O  and particles a re  not produced. 

In what follows, we shall work in the Lorentz gauge, 
in which Eq. (2.12) with allowance for the additional 
term (2.13) has the form 

where [(x)=lna(x) and x =2crN,/3r. 

A further simplification ar ises  if a ( x )  depends only on 
the conformal time 17 and not on the spatial coordinates. 
In this case, scalar and longitudinal photons are not pro- 
duced by the gravitational field. Indeed, for the time 
component of the vector potential we have the free equa- 
tion 

a2Ao=o, 

and the longitudinal part A 11 is related to the scalar com- 
ponent by the gauge condition 

ilklA,,(tl, k)+aJo(tl, k)=O, (3.2 
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where A,, i s  the Fourier transform of the potential A, 
with respect to the spatial coordinates: 

Note that All  defined in accordance with Eq. (3.2) satis- 
fies Eq. (3.1). 

Because of this, we can ignore A, and A 1 1 ,  and restrict  
ourselves to "normal" transverse photons, i.e., ones 
described by a potential A, such that k A, =O.  If the 
scale factor a(x) depends on the spatial coordinates, 
this would be incorrect and it would be necessary to 
take into account not onlythe transverse but also longi- 
tudinal modes, i.e., the photon would appear to acquire 
a mass in the gravitation& field. 

Returning to the case a£ a homogeneous and isotropic 
metric a=a(q) and assuming that the field is weak, i.e., 
a l n a s  a[ << 1 (but not necessarily cyan[ << I ) ,  we obtain 
from (3.1) 

This equation describes the production of photons in 
the considered gravitational field. In particular, in the 
lowest order in the field we readily obtain for the co- 
efficient P t [see (2.1)] 

An explicit expression for Bk can also be readily obtain- 
ed for short-wavelength photons; i t  is related trivially 
to the coefficient of transmission through the potential 
barr ier  in the quasiclassical limit. 

Note that in the weak-field limit i t  i s  possible to speak 
of the local rate of particle production14 in unit volume 
in unit time: 

(in this approximation, the conformal time q i s  equal to 
the physical time t; the exact connection between them 
i s  dt=adq). 

If we use this formula near the cosmological singular- 
ity, where 5 - In t, we find that the rate of particle pro- 
duction is proportional to t -4. Such behavior i s  well 
known for the case of an anisotropic 

Comparing the energy density p of the produced parti- 
cles with the cosmological energy density in a Fried- 
mann cosmology, p, = (3/32n)(tpt)-', we find for their 
ratio 

where tp i s  the Planck time, P, i s  determined by (2.14), 
and cu = 0.02 is the gauge coupling constant at energies of 
order t;'. Unfortunately, p becomes of order p, at  t 
%O.1tp, i.e., outside the region of applicability of formu- 
l a  (3.5), which is based on perturbation theory with re- 
spect to the gravitational field. 

We note in conclusion t h 2  for  a,[ =const, i.e., for a 
=exp Ht, Eq. (3.3) shows that particle production does 
not occur (in the approximation described by this equa- 

tion). However, this i s  due to the employed approxima- 
tion and does not hold in higher orders in a. 

4. REASONS FOR THE OCCURRENCE OF THE 
CONFORMAL ANOMALY AND THE POSSIBILITY OF 
PRODUCTION OF SCALAR PARTICLES 

In the calculations made above, we used Pauli-Villars 
regularization, which is gauge invariant but conformally 
noninvariant. It may be asked to what extent the result 
we have obtained above is unambiguous or,  in other 
words, whether there exists a regularization that would 
preserve both invariances. The answer to this question 
i s  negative, which can be seen best by considering the 
imaginary part of the amplitude for the transition of a 
virtual graviton into two photons, A(g- 27 )= h,,T,,, 
through a real electron-positron pair following the treat- 
ment in Ref. 15 of the anomaly in the Ward identity for 
the axial current (in this section, gravitation i s  consid- 
ered in the lowest order of perturbation theory). 

As we note above, conformal invariance i s  not vio- 
lated at the level of the tree diagrams, and for this rea- 
son it also holds for the imaginary part A ( g -  2y). It 
would appear that, recovering the total amplitude from 
its imaginary part by means of a dispersion relation, 
one could also achieve conformal invariance for the am- 
plitude a s  a whole. In reality, however, the situation i s  
different, and conformal invariance i s  broken even for 
the imaginary part of the amplitude, and this shows that 
there is no way in which such breaking can be elimin- 
ated. The point i s  that, as  a direct calculation shows, 
the imaginary part of the energy-momentum tensor of 
the photons contains, because of e'e- in the intermedi- 
ate state, a term proportional to 

where q i s  the graviton momentum, and m i s  the elec- 
tron mass. It i s  obvious that SpIm T;,=O for m=O, so 
that formally the requirements of conformal invariance 
are  observed. However, because of the pole at q2=0 the 
transition to the limit must be made more accurately. 
It is readily seen that the dispersion integral 

tends to q" as m-0, and this means that 

Thus, the theory contains a singularity corresponding 
to a massless scalar particle, and this necessarily 
leads to an anomaly in the trace of the energy-momen- 
tum tensor. 

Taking into account this circumstance, let us consid- 
e r  the production by a gravitational field of scalar par- 
ticles in the X q 4  theory. The energy-momentum tensor 
in such a theory has the form 

Using the equation of motion 
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FIG. 1. 

we readily see that the tensor T,, satisfies the conserva- 
tion law a,T,,=O and for 5 =$ and rn = O  the condition 
T,, = O  of a vanishing trace. 

In accordance with what we have said above, we shall 
seek breaking of conformal invariance in the loop dia- 
grams, analyzing their imaginary part  with respect to 
the momentum q transferred to the gravitational field. 
In the first order in A, only diagram a in Fig. 1 i s  rele- 
vant. Its imaginary part i s  

where 

and d ~ ( k , ,  k,) i s  the element of phase space. We can re- 
cover the total amplitude A:) from its imaginary part if 
we write down for g(q2) a dispersion relation, which for 
5=+ can be an unsubtracted relation. The subtractional 
constants are  arbitrary if no additional requirements 
a re  imposed on the theory. If these constants a re  set 
equal to zero (which corresponds to a conformally in- 
variant augmenting of the definition of the theory), no 
anomalies arise in A:;). For  rn = 0, this amplitude van- 
ishes. Therefore, the theory can be formulated in such 
a way that no particles are produced in the first  order 
in A. 

In the second order in A, diagrams b and c in Fig. 1 
are  relevant. The second of them, which corresponds 
to transition of a graviton into four scalar particles, 
obviously cannot lead to an anomaly, since i t  diverges 
only logarithmically. For the imaginary part of the 
quadratically diverging diagram b we can write down 
the following representation after charge renormaliza- 
tion: 

where rr= kl - k2 and we have set  [=*. Integrating over 
the phase space, we readily obtain 

It can be seen that ~ m ~ L b , ) d o e s  not acquire a singular- 
ity of the form which in the limit rn-0 goes over 
into 6(q2)  (or into 9"' in the total amplitude). Therefore, 
in the calculation of A::' by means of the dispersion re- 
lation we can always choose the subtraction constants to 
make A;;) vanish for m =O. In fact, this i s  true for any 
amplitude for  transition of a graviton into two scalar 
particles and is based solely on dimensional arguments, 
To see this, we note that the general structure of the 
imaginary part of the amplitude i s  

where the functions g, and g, are dimensionless. If for 
Img, we have the condition 31mgl(0)=Img,(O), which i s  
a consequence of the vanishing of T,, for m=O, then it i s  
obvious that this condition can also be recovered for the 
real parts by means of a suitable polynomial subtraction. 

Thus, for scalar particles it i s  always possible to 
make a regularization which ensures that the matrix 
elements of the trace of the energy-momentum tensor 
vanish. As a result, scalar particles will not be pro- 
duced by the field (1.2). 

I thank A. I. ~Gnsh te rn ,  V. I. Zakharov, and Ya. B. 
Zel'dovich for helpful discussions. 

APPENDIX 

Explicit calculation of the polarization operator of a 
photon in conformally flat space 

In the lowest order in a, the operator II,, is deter- 
mined by Eq. (2.6), so that the problem reduces to de- 
termination of the functions Gj using Eqs. (2.7) (in what 
follows, we shall omit the subscript j ) .  We shall seek 
G(x,, x,) in the limit x X,  - x2 -0 in the form of the ser-  
ies  

1 2 , - m a ( x , )  ]G("(x , ,  x,)  = 6 ( x , - X A ) ,  (A.2) 
[ a , - m a ( x , )  ]G(') ( x i ,  z,) = m [ a ( x , )  -a($ , )  ]G'L-l' (x , ,  X Z ) .  (A. 3 

The solution of Eq. (A.2) is determined by (2.9). For 
known G'o),  the functions G(') can be found in accord- 
ance with the equations 

G'" (x , ,  xz)  = m J  dyG('"(xr, xI+z2-y)  [ a ( y ) - a ( z , )  ]G(L-lJ (r,, y ) .  (A.4) 

The difference - a(x,) must be expanded in the ser-  
ies  (2.8), and i t  clear from dimensional arguments that 
the final results can contain terms of not higher than 
the second o r  the square of the f i rs t  derivative of a(x ). 
Therefore, we shall be interested in only G"' and G", 
and in the latter function take into account only the con- 
tribution a,a(x,) (but not a,a,a). 

We introduce the notation 

where Y =PI - P,, Here, IIp) i s  known, and i ts  contribution to Eq. (2.5) is 
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jr 

(for one fermion species) 

dk " x c ,  J ~ , ~ P - % -  (-kz) ( a u a v - ~ ~ v a z ~ ~ v ( x 2 ~ .  
3n I-0 

mG2 (x,) 

It is only this contribution that was needed to recover 
Eq. (2.12). One can however show directly that gauge 
invariance holds. This is done in the following calcula- 
tions. 

The contribution to Eq. (2.5) from II$) is (we do not 
write out the sum over the different regularizers j=1,2)  

A:")= j ~ ~ I A . ( x ~ )  +z.aoA.(z,) I j dy [ Y , ~ ~ M + ~ / , Y ~ Y ~ ~ . ~ P M ~  

(A.6) 

exp (ip, (y-x) -ip,y+ikx) 
SP rv(Pt+M) (Pz+M) yu(k+M) 

(pi2-W) (pla-Mz) (k2-P) ' 

where M=ma(x,); the function A,(x,) in (2.5) was expand- 
ed in powers of x =x, - %,, and it  was only necessary to 
retain the f i rs t  two terms. 

Replacing multiplication by xu and y, by differentia- 
tion of the last factor (in the square brackets) with re- 
spect to a/ak, and a/aP2,, respectively, noting further 
that the integration with respect to axay gives 6(k-PI) 
x 6(p1 - p,), and calculating the trace of the product of 
the y matrices, we obtain 

The integration with respect to d p  can be readily per- 
formed; a s  a result, as one would expect, the terms 
proportional to a,aeM disappear, and we obtain 

We have here summed over j [see (A.5)] and used the 
condition C,+C,=- 1. It is easy to see that A : ' O ) = A ~ ~ ' ;  

this leads to a doubling of the considered contribution. 

It can be verified similarly that the contributions of 
11'11' PU 7 II'zo' (I, and II:$?' vanish. In the expansion of A ,(x,) 
[see ( ~ . 6 ) ]  i t  i s  necessary to take only the zeroth term 
A,,&), and in the Green's functions ~ ( ~ ' ( x , ,  x,) only the 
terms quadratic in a,a(x,). After a fairly long calcula- 
tion i t  can be shown that zero i s  finally obtained, a s  one 
would expect on the basis of the requirements of gauge 
invariance. 

To fix the gauge, it is necessary to add to the Lagrangian 
the term -1/2(DpA,- 2AXa,ln a)' whichensures the condition 
tfAaAA, =a&, = 0 [here, D p  i s  the covariant derivative in 
the metric (2.1)]. 
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