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The space-time properties of the intensity correlator for light scattered by resonant atoms are studied. It is 
shown that in the measurement of such comelators by the optical mixing technique an important contribution 
arises from the anomalous scattered-field amplitude correlator. The simplest way of observing this correlator 
is in the field of a standing wave by measuring the correlation of oppositely scattered beams. The spectral and 
polarization properties of such a correlator are studied. Its investigation is of interest for high-resolution 
spectroscopy since it may yield information on the natural line width under conditions of strong Doppler 
broadening. It should be emphasized that this is possible in an approximation linear in the intensity of the 
external field, in contrast to the laser-spectroscopy techniques, which are based on nonlinear effects. 
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$1. INTRODUCTION 

We consider in this paper the space-time correlation 
properties of scattered radiation. In experiments on 
light scattering one usually investigates the spectral 
function of the scattered radiation (the normal correla- 
tor of the field amplitudes). Yet a contribution to the 
correlator of the intensities of the external and scatter- 
ed fields [see Eq. (I)] i s  made also by the anomalous 
correlator of the complex field amplitudes. There is no 
such correlator in thermal radiation sources, and the 
correlator i s  not equal to zero only in an external co- 
herent field. We discuss below the conditions under 
which it would be possible to observe this correlator. 
Its investigation is of interest for high-resolution spec- 
troscopy, since it can yield information on the natural 
linewidth under conditions of strong Doppler broadening. 
It i s  important to emphasize that this i s  possible even 
in an approximation linear in the external-field intensi- 
ty. 

The spatial structure of the scattered light is deter- 
mined by the configuration of the pump field, variation 
of which makes it possible to separate and measure the 
ordinary or  the anomalous correlator. These correla- 
tors a re  calculated below in an approximation linear in 
the density of the atoms of the medium; the medium is 
taken to be a gas of resonant atoms. 

A nonzero anomalous correlator of the dipole mo- 
ments in an external field was noted by Klysho.' Such a 
correlator appears also in the theory of resonant fluo- 
rescence of an atom, in which the method of correlation 
functions i s  Certain properties of the anoma- 
lous correlator were discussed by us briefly earlier.* 

52. FORMULATION OF THE PROBLEM 

The second-order correlator, which determines the 
counting rate of the pair coincidences, is given by5: 

G (rl, t,; rz, t,) =(E(-)(rl, tl) E(-1 (rt, t2) 
X E(+' (r,, t,) El+) (r,, t,) >, t,>t,. 

The angle brackets denote averaging over the vacuum of 
the photon field and over the states of the medium; 
,@(*'(r, t) is the positive-frequency part of the Heisen- 
berg operator of the electromagnetic field I?'-'(r, t) is 
the Hermitian adjoint of &"'(r, t). We note that the se- 

quence of the field operators in G is essential; it i s  de- 
termined by the sequence in which the photons a re  reg- 
istered by detectors 1 and 2. 

If the scattered field @'*'(r, t) is mixed at the detect- 
ors with the external field E(r, t), then the field opera- 
tor consists in this case of three parts: 

it+' (r, t) =E(r, t) +i.'+' (r, t )  +&+' (r, t). 

where ~ k ) ( r ,  t) i s  the operator of the vacuum field and 
a, i s  the photon annihilation operator. 

In the lowest approximation in the scattered field we 
have the following expression for G (we leave out the 
constant component - I E 1 '): 
G(1, 2)=[g+(2, i )F( i )E(2)+(g- (2 ,  4)+g0(2,1))E'(1)E'(2)+c.c.I 

+g+(2, 2) IE(1) 12+g+(1, 1) IE(2) 1 2 .  (2) 

We have introduced here the following correlation func- 
tions of the scattered and vacuum fields: 

2 1) = 2 +  1 ,  2 I = +  2 +  ( 1 ) .  (3) 

The correlator G contains thus three correlation func- 
tions. The autocorrelation function g+ determines the 
radiation spectrum; it satisfies the condition gr (2 , l )  
=g,(l, 2). There i s  no such condition for the functions 
go and g-,  and therefore their spectral functions are  
complex. From the physical point of view the function 
g+ describes the correlation between the acts of abso rp  
tion and emission of field quanta. Accordingly, the 
function g- describes the correlation of two absorption 
acts that are  separated in time. It will be shown below 
that the only observable quantity is the sum of the func- 
tions g =go +g-. 

The external field i s  assumed to be classical and 
monochromatic with a frequency close to the frequency 
of the atomic transition wo: 

The medium is assumed to be optically transparent, 
i.e., 

2nkJ Im x(A) <I. (4) 
Here x (A)  i s  the susceptibility of the medium to the 
pump field, I is the dimension of the interaction regime, 
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and ko =wo/c. It i s  implied that the condition (4) i s  sat- 
isfied also for the scattered field, s o  that it can be de- 
termined by perturbation theory with respect to the at- 
om density n. 

$3. CALCULATION OF THE CORRELATORS 

We choose the origin inside the scattering medium. 
We then have in the Fraunhofer zone 

t l := t r . z - r , , , /~ .  

Here $"(t) i s  the positive-frequency part of the dipole- 
moment operator of an atom located at the point r,(t) 
=r,(O) +v,t in the Heisenberg representation. By nle2 
=rLz / r l , z  we denote the directions of the scattered rays. 
The summation i s  over the particles of the medium. 

Going to the continuous limit, we introduce the opera- 
tor of the dipole moment per unit phase space of the 
medium 

?"' ( r .  v ,  t )  = p  ( r ,  V ,  t )  e-''I 

and separate in it the factor that oscillates at the fre- 
quency of the external field: 

cp"'(I, V, t l l )P(+' (I ,  V ,  t t 1 ) >  

=d2 e x p [ - i o ( t , ' ~ t [ ) ]  F,- ( r ,  V ,  T ) ,  (6 1 
T=t/-t,', 

where d i s  the dipole moment of the transition. The 
correlation functions F,- depend slowly (compared with 
an exponential) on the difference between the t imes T 

and satisfy the generalized Bloch equation (9). 

In the case of narrow atomic resonances and small  
detunings, the following inequality holds 

cl lBy,  A, (7) 
and allows us to neglect the retardation in the slow os- 
cillations of the dipole moment of the atom. In this ap- 
proximation, the correlators (3) a r e  represented a s  
sums of products of spatial and temporal functions, with 
go and g- having equal spatial parts. This allows us  to 
express the correlators of the scattered light in t e rms  
of the correlators of the medium F,-(r, v, T) in the fol- 
lowing manner": 

n =nl at T > 0 and n =n, at T < 0. f(v) denotes the atom- 
velocity distribution function, whichis hereafter assumed 
to be Maxwellian. The fact that the sum of the correlators 
go andg- admits of sucha representation is not obvious, and 
the next section will be devoted to  a derivation of Eq. 
(8). 

54. EQUATION FOR THE CORRELATION FUNCTIONS 

The correlation functions F,-(r, v, T) a r e  determined 
from the generalized Bloch equations, which take for 
T > 0 the form 

Here p(r,v) is the average induced dipole moment of the 
atom located at the point r and having a velocity v; V(r) 
= d ~ ( r ) / ~  i s  the Rabi frequency; v, = y/2 * i A .  The width 
of the upper level is y ,  and the lower is assumed to  be 
the ground level. 

Equations (9) should be solved with the following ini- 
t ial  conditions (at T = 0): 

F--(r ,  v ,  0 )  =O; F+- ( r ,  v, 0 )  = i / a ( l + q ( ~ ,  v ) ) ;  

Fo-(I ,  V ,  0) =-p (r, V )  , 
(10) 

where q is the level-population difference. Equations 
(9) and (10) a r e  written for an arbitrary inhomogeneous 
field with allowance for  the motion of the atoms. For  
immobile atoms, they coincide with the equations con- 
sidered in Refs. 2 and 3. For T < 0 the equations for F,- 
a r e  given in the Appendix. 

To obtain equations for the correlator (i?~'(2)~'"(1)), 
we write down the Bloch equation for the atomic opera- 
to r s  of the dipole moment $"'(r, v,  t) and of the popula- 
tion-difference t ( r , v ,  t) (Refs. 6 and 7): 

Here 

9, (r, t )  =ei"'dEo (r, t )  lh 

i s  the "slow" part of the zero-point oscillation operator. 
Equation (11) i s  obtained by substituting in the Bloch 
operator equation the electromagnetic-field operator 
expressed from Maxwell's equations in t e rms  of the di- 
pole-moment operator and the operator of the zero- 
point field oscillations. The sequence of the operators 
i s  important here: when (1 1) i s  averaged over the pho- 
ton vacuum we obtain the usual Bloch equation. 

Multiplying (11) from the left by Vo(2) and introducing 
the correlation functions 

P ( 2 ,  1 ) = ( V o ( 2 ) p ( 1 ) ) ,  R ( 2 ,  1 ) = ( V 0 ( 2 ) p ' + ' ( l ) ) ,  

Q ( 2 , 1 ) = ( ~ ~ ( 2 ) q ( l ) ) ,  

we obtain the following equations: 

In the resonance approximation, the correlator of the 
zero-point oscillations i s  of the form 

In the derivation of (12) we have carried out a simplest 
separation of the mean value of the three operators 
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($0(2)?31)i(1)). Such a separation is rigorous in the 
"white noise" approximation, to which the correlator 
(1 3) corresponds. 

At t2 > t , ,  by virtue of the causality principle, P, R ,  
and Q are  equal to zero. We note that Eqs. (9) and (12) 
a re  of like structure and differ only in the right-hand 
sides and in the initial conditions. 

Separating from P the purely spatial factor A(P  =Ape), 
we can represent the correlator go in the form (T < 0) 

nb k' 
go = -exp[-io (ttl+t,') I 

rtr2 
x j drdvf(v)exp{-ik(nI+n2)r+ikn,vz)po(r, v, z). 

The correlator g- i s  expressed in similar fashion in 
terms of F,.(r,v,T). Using the equations for F,, at T <  0 
[see the Appendix, Eq. (A :2)] and Eqs. (12), we readily see 
that the function F,- +Po satisfiesat T > 0 the same equa- 
tions and initial conditions a s  the function F,,  at T >  0. Thus, 
the combination F-, +Po i s  an even function of T and this 
allows us to represent the correlator g in the form (8). 

$5. SPATIAL STRUCTURE OF THE CORRELATION 
FUNCTIONS 

In an inhomogeneous pump field (for example, in a 
standing light wave) the functions F,-(r, v, T) constitute a 
set of spatial harmonics 

F,- (r, v, z) = x e " g r ~ + -  (q,  v, z) . 
a 

Since the functions F,, depend quadratically on the ex- 
ternal field, the Fourier series contains only even har- 
monics. Using this expansion, we obtain the following 
equations for the correlators: 

If we substitute the correlation functions (15) in the 
equation for G( l ,  2), then the rapid oscillations at the 
optical frequency vanish, and only the dependence on the 
slow time T remains. 

The spatial structure of the correlator i s  determined 
by 6 functions that express the conditions of the spatial 
locking. Since we assume that the resonance approxi- 
mation i s  satisfied with a high degree of accuracy [con- 
dition (7)], the absolute value of the external-fieldvector 
is assumed wherever possible to be equal to k,. We 
present next estimates for the correlators in the most 
typical cases of a traveling and a standing light wave. 

Traveling wave 

In the field of a plane traveling wave E(r) =~e'~o"only 
F+-(~=O) and ~ - - ( q  =b) differ from zero in the expan- 
sion (14). The correlator g+ then reaches its maximum 
when the scattered rays have the same direction, n, 
=n,. The correlator g differs from zero only for for- 
ward scattering, when n, and n, a re  close in direction 
to that of the propagation of the external field k, (Fig. 
1). Near this direction, in a small solid angle -(k01)-~, 
we find that g-g+. 

FIG. 1. Pattern of scattering in a traveling-wave field. The 
correlator g+ differs from zero for arbitrary orientation of 
the scattered field, while the correlator g is nonzero only for 
forward scattering. The scattering region is shown shaded. 

The forward-scattered field can be distinguished from 
the external monochromatic field either by its spectral 
composition (the spectral functions are  calculated in 
§6), or by its polarization (57). The anomalous corre- 
lator g can be observed in simpler fashion, however, in 
a standing light wave. 

Standing wave 

In the case of a standing light wave E(r)  = E cos b r  
the expansion (14) contains all the harmonics with q that 
are  multiples of ko. 

However, the condition of spatial locking is satisfied 
only by harmonics with q = 0, *I&,. At q = *b the corre- 
lator g is anisotropic and i s  concentrated in a small 
solid angle near the directions ib; this case is analo- 
gous to scattering in a field of a traveling wave. More 
interesting i s  a case q =O. In this case a contribution 
to the correlator g+ i s  made by rays having the same 
direction (n, =n2), while the correlator g receives con- 
tributions from oppositely scattered rays (n, =+). 
For the anomalous correlator, this case correqponds to 
absorption of two photons from oppositely traveling 
waves, so that the momentum transferred to the atom i s  
zero. Then the emission of two photons should take 
place in opposite directions, to keep the momentum of 
the atom unchanged. This is shown schematically in 
Fig; 2. In a standing wave, the correlators g, and g are  
of the same order of magnitude for an arbitrary scat- 
tering angle. 

We note that in the field of a standing light wave the 
wave front of the weak signal is inverted because of the 
four-photon i n t e r a c t i ~ n . ~ ~  This effect was observed ex- 
perimentally in Ref. 10, and the coefficients of reflec- 
tion of a weak signal from a standing wave were calcu- 
lated by us in the resonance approximation earlier." 

In the case considered by us here, the role of the 
weak signal is played by the scattered field. Because of 

FIG. 2. Pattern of scattering in a standing wave. In this case 
both correlators are nonzero for any direction. In the corre- 
lators g, oppositely scattered rays correlate. 
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the reversal of the wave front, oppositely directed rays 
correlate in the anomalous mean values. We must em- 
phasize the substantial difference between the classical 
picture of reflection of a weak signal from a continuous 
medium situated in the field of a standing wave, and the 
quantum picture of the scattering, which takes into ac- 
count the fluctuations of the scattering medium. In the 
former case the intensity of the reflected signal is pro- 
portional to the square of the density of the particles 
and to the square of the intensity of the pump field. In 
the latter case we have correlators g+ and g that a r e  
linear in the density and in the intensity of the external 
field. Obviously, greatest practical interest attaches 
to the investigation of these correlators in the case of 
low density of the medium and low intensity of the ex- 
ternal field (correlators that a r e  quadratic in the atom 
density were considered earl ier  in Ref. 12). 

If we measure in experiment the correlation of op- 
positely scattered photons, then we can determine only 
the function g, since g+ makes no contribution to G(l, 2) 
in this case. This circumstance can be important when 
it comes to observing a weak signal against the back- 
ground of strong thermal radiation, inasmuch a s  there 
a r e  no anomalous correlators for thermal radiation. In 
the case of light rays that intersect at an arbitrary an- 
gle, strongly anisotropic correlators a r i se  and a re  
concentrated near the surfaces of the synchronism 
cones.'' Thus, by choosing a definite configuration of 
the external field we can observe various correlation 
functions of the scattered field. 

86. TEMPORAL CORRELATORS 

a) Homogeneous broadening 

In the case y>>kgvo (vO is the thermal velocity of the 
atoms) the temporal correlators F+-(7) do not depend on 
the concrete geometry of the external field. We denote 
the Fourier transforms of the functions F+-(7) and F-- 
( 1  T 1 )  by f+-(S2) and f--(S1). The function f+_(n) is a spec- 
t r a l  function of the scattered radiation. It is real  and is 
independent of the phase of the external field. This 
function was calculated earlier in the resonance-fluo- 
rescence p r ~ b l e m . ' ~  The functions F--(/ T 1 ) and f--(S1) 
a re  proportional to the square of the complex amplitude 
of the external field and a r e  complex. We shall assume 
that the phase of the external field inside the scattering 
medium i s  zero. Then the contribution of the anoma- 
lous correlator to the counting ra te  of the paired coin- 
cidences can be represented in the form 

where cpL2 is the optical path difference between the 
scattered and reference signals incident on the detec- 
tors  1 and 2. By varying the phase of the reference 
signal we can separate the real  o r  imaginary part of the 
anomalous correlator. 

We present now the expression obtained for F - - ( / T ~ )  
for the solution (9) and compare it with F+-(7). In the 
approximation linear in the intensity of the external 
field we have 

FIG. 3. Plots of the functions Re (-6_ -) and Im (v- -). The 
frequency unit is taken to be y. Curves 1 .2 ,  and 3 corresponds 
to A = 1, 4, and 8, respectively. The function 6(Q) is omitted; 
f--(n) is  an even function of the frequency Q .  

In this approximation, the dipole-moment correlator 
e 'W7~+-(7) breaks up into a product of the average dipole 
moments (p(-)(t~))(p"'(ti)). It describes the undisplaced 
component of the scattered radiation. The correlator 

exp[-io (t , '+tlf)] F-- ( 1 r 1 ) 

breaks up into the product (p"'(t~))(p'+'(t;)) only at y? 

>> 1. At 7 = 0 the correlator g vanishes. The reason i s  
that the atom cannot absorb two photons simultaneously. 
An effect of this kind (anti-grouping of the photons) was 
observed experimentally in Ref. 14 in the study of the 
correlator of the intensities of scattered light. 

We present the expressions for the spectral functions: 

The anomalous-correlator spectrum (shown in Fig. 3) 
contains not only the undisplaced component, but also 
two Lorentz peaks that a r e  symmetrically placed rela- 
tive to the external-field frequency. Thus, in the lowest 
approximation in the intensity of the external field, the 
anomalous correlator contains more information on the 
scattering medium (on the line width) than the correla- 
tor g+. 

We present also an expression forF*-(7) in the next 
order in E' 

dE A 7 .  
F+- ( r )  -2  1 1 ( - 2 + e ~ ~ ' ' ~ ' ~ [  C O S ( A T )  + -sln(AI T I )  1) , 

V -  A 

b) lnhomogeneous broadening 

So far,  the atoms were assumed to be at rest. The 
thermal motion leads to an inhomogeneous broadening 
of the spectral lines. Let us  see  how the correlation 
functions change under the conditions of strong Doppler 
broadening kooo >> I v- I. In the case  of a traveling wave, 
the correlator averaged over the thermal motion of the 
atoms is of the form 

<F,- ( r )  )== dvf ( v )  F+- (q=O, V ,  ~ ) e " ~ ~ ~  

AZ (rkDu, sin 0)' 
4 
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Here 9 ik the angle between the propagation direction 
and the observation direction. The correlation time 
(kovo sin @)-I depends on the direction of the scattered 
ray. We see that by varying the detuning A or  the cor- 
relation time T we can obtain from the correlator 
(F,-(T))T information only on the Doppler width of the 
line. Since the anomalous correlator for a traveling 
wave differs from zero only in the case of forward scat- 
tering, the thermal motion of the atoms does not change 
the width of the spectral function. 

In the case of a standing light wave there remains in 
the correlator F,.(T))~ only the real part, equal to the 
real part of expression (17). The anomalous correlator 
has, for an arbitrary observation direction, the form 

n" ( 7 [ (kav0r sin e )  a < F - - ( l ~ l ) > ~ - -  - - 
kouev- 4 

If 8- 1, we should consider delay times r < (kovo)-'. 
Under this condition we have I v. 1 T c< 1 and the factor v-, 
which contains the natural line width, drops out of Eq. 
(18). Therefore at large observation angles we can ob- 
tain from the anomalous correlator information only on 
the Doppler-broadened line. At a small observation an- 
gle 9 < "//kovo and at y ~ -  1, by tuning the frequency of 
the external field, we can determined from the anoma- 
lous correlator (18) the natural line widthunder the con- 
ditions of strong Doppler broadening. 

For strong transitions (for example, for atoms of al- 
kali metals), the parameter y/kovo i s  not very small, of 
the order of -10'~. Therefore the separation of the 
scattered field from the incident one entails no great 
difficulty. For weak transitions (y/kuo i s  small) such a 
separation can be carried out by using the polarization 
properties of the scattered field. 

57. POLARIZATION PROPERTIES OF THE 
SCATTERED-FI ELD CORRELATORS 

In the analysis of the polarization properties of scat- 
tered radiation, account must be taken of the degenera- 
cy of the atomic levels. We represent the field in the 
form of a sum of fields with definite polarization 

where n =r / r .  The anomalous correlator of the com- 
ponents of the polarization is of the form 

k' 
( i . , ( r l t . ) i , ,  ( s t , )  )= -exp[- io  (t ,'+tlr) ] I dr dv f ( v )  

r,r, . - 
X z e x p { - i k r ( n , + n , )  +ikvn,r)<&,,(r,v, t,') 

"L 

X am,v, (r ,  v ,  t i r )  ) (e'a(nz)dp,m,) (es t (nt)dv,m,) .  (19) 

The lower and upper levels have angular momenta ji and 
j2, and their sublevels are  designated respectively by 
the indices p and m. By d,,, we denote the dipole-mo- 
ment matrix element. The equation for the two-dimen- 
sional atomic correlator (6(2);(1)) can be easily calcu- 
lated with the aid of the Bloch equations with account 
taken of the degeneracy of the atomic states,15 using the 
method described in 84. 

Let the pump field be a superposition of opposing 
waves with polarizations E ( ' ) :  

Then in the lowest order in the pump field we obtain the 
expression 

<a,,(v, t2') ( v ,  t i )  )= [ vATLV&!~ (e-v-7-e-'kT') 

Equation (20) contains only the interference term con- 
nected with the absorption of the photons from different 
light beams. Substituting (20) in (19) and summing over 
the sublevels, we have 

x exp (ik.vn,s) G.[ ( ( e a ~ ( n l )  @E("').(e'2(n,) @E(-"').) 
d 
x R - - l  

The curly bracket denotes a 6j symbol, and { a ~ b : ,  is 
the tensor product of the vectors a and b of rank u. Let 
the scattered fields and the pump fields propagate along 
a single line 

To separate the scattered field from the incident field, 
we consider the field configuration shown in Fig. 4. The 
polarization of the opposing waves will be assumed lin- 
ear and orthogonal, and the polarization of the scattered 
field in the directions ni and n2 a re  specified by the unit 
vectors e(nl) II E"' and e(n2) II E'-'. In other word@, we 
are  considering the correlation of fields that a r e  back- 
scattered without change of polarization2' (this process 
is shown schematically in Fig. 4 by the dashed line). 
Obviously, in this situation the scattered field can be 
easkly discriminated by means of its polarization from 
the pump field passing through the medium. Calcula- 
tions carried out for this special case in accordance 
with Eq. (21) yield 

where N i s  the total number of scattering particles. The 
dependence of the coefficient GI +G2 on the angular mo- 
mentum of the lower level j ,  =j  for transitions with A j  
= 0, i 1  i s  given below: 

FIG. 4. Scheme of the polarizations of the pumpand scattered- 
signal waves. The standing light wave is  made up of two 
linearly polarized rays with orthogonal polarization vectors 
E% The reflected waves are shown dashed. The polarizations 
of the reflected waves are designated by e(ni) and e(n2). 
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We see  that the considered effect is possible for atoms 
whose lowest state has a nonzero angular momentum. 

At y r  > 1 the exponential in (22) can be neglected, and 
the anomalous correlator depends on the frequency of 
the external field only via the factor vl i .  Thus, the a- 
nomalous correlator (22) has under the conditions of 
the strong Doppler broadening a Lorentz shape with a 
natural width y/2. 

58. CONCLUSION 

The foregoing analysis shows that the measurement of 
the space-time correlation function G(1,2) makes it 
possible to determine the normal and anomalous corre- 
lators of the complex amplitudes of the scattered field. 
Under ordinary conditions, a plane traveling wave i s  in- 
cident on the scattering medium, and light scattered at 
a certain angle is emitted. It i s  possible then to meas- 
ure  only the spectral function of the normal correlator. 
The anomalous correlator makes a contribution to  the 
forward scattering, and is therefore difficult to meas- 
ure it against the background of the strong pump field. 
In a standing-wave field the scattering picture is great- 
ly different. In this case,  by measuring the correlation 
of the rays scattered in the same direction, o r  of op- 
positely scattered rays, we can determine separately 
the normal o r  the anomalous field correlators. These 
correlators turn out to be of the same order and the a- 
nomalous correlator carr ies  just as  complete informa- 
tion on the scattering medium a s  the ordinary spectral 
function. The spectral function of the anomalous corre- 
lator is  complex and its phase is  determined accurate 
to the phase difference between the pump field and the 
reference signal. By varying this difference we can 
separate the real  or imaginary part of the spectral 
function f--(f2). 

In the linear approximation in the intensity of the ex- 
ternal field, the normal correlator contains only the 
undisplaced component, whereas the anomalous corre- 
lator has also displaced components [see Eq. (16)]. 
This circumstance can be significant in the spectro- 
scopy of narrow atomic and molecular resonances, 
since it makes it possible to  separate the fine structure 
of the resonance levels against the background of the 
Doppler broadening. It is important to emphasize that 
this is possible in an approximation linear in the inten- 
sity of the external field, in contrast to laser-spectro- 
scopy methods, which a r e  based on nonlinear effects. 

It should be noted that the measurement of the anom- 
alous correlators may turn out to be useful also in the 
study of other (nonresonant) media (dielectrics, liquid 
crystals, etc.). They can be used to obtain additional 
information not only on the spectra but also on the spa- 
tial properties of the scattering medium. 

APPENDIX 

The correlation function F-- satisfies the relation 
F?(T) =F,,(-7). Therefore to find F-, at r < 0 it suffices 
to calculate at 7 > 0 the function F,,, which satisfies a 
system of equations similar to (9) ,  

( v )  F I )  F F-+=- iV(r)  Po+, (A-1) 

( + ) t o + + p ( - v ~ )  = 2 i F + V ( )  F - + V . ( r )  ] 

with the following initial conditions at 7 =0: 

F++=O; F - t = i / z ( l - q ) ;  FOt=pv. 

From this we get for r < 0 

with initial conditions at r = 0: 

The authors thank V. I. Perel'  for a number of valu- 
able critical remarks. 

I) We leave out the monochromatic (undisplaced) radiation 
component, which contributes only to the forward scattering. 

')We might also say that we a r e  dealing with forward field 
scattering with change of polarization. 
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