
Influence of commensurability on the competition between 
superconducting and insulating states 

K. B. Efetov 
L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 16 April 198 1)  
Zh. Eksp. Teor. Fiz. 81, 1099-1 112 (September 1981) 

A quasi-one-dimensional system in which superconducting and insulating states compete is considered. A 
study is made of the influence of commensurability on the nature of the ground state. It is shown that there is 
a range of vectors q ,  <q < q,, which represent commensurability and are much smaller than the reciprocal 
lattice period, in which superconductivity is favored. An insulating state is favored for the other values of q. 
One of the superconductor-insulator transitions is of the first order and the other is of the second order. 
Variation of q reveals regions with the superconducting order parameters which vary or are constant in space. 
A comparison is made with the properties of organic conductor (TMTSF),PF, on the assumption that q varies 
(although slowly) with pressure. 

PACS numbers: 74.90. + n, 72.60. + g 

1. INTRODUCTION tion between electrons in different chains gives rise to 

Recent experiments revealed superconductivity of 
(TMTSF),PF,, which is an organic conductor,' At 
zero pressure and temperatures T < 15°K the compound 
(TMTSF),PF, is an insulator. Increase in pressure 
reduces the temperature of the transition to the insulat- 
ing state, so  that a t  12 kbar and 0.9 OK the transition is 
to the superconducting state. The properties of the 
conductor in question a re  strongly anisotropic. In 
particular, the conductivity ratios a re  u,/u, a 300 and 
U,/U, -3 .lo4, where the b axis i s  directed along stacks 
of TMTSF molecules. Along the a axis the stacks a re  
in direct contact, whereas along the c axis they a re  
separated by the PF, chain. 

Subsequent experiments have revealed an unusual 
pressure dependence of the properties of this conduc- 
tor. The transition from the insulating to the super- 
conducting states in the vicinity of 9 kbar i s  clearly of 
the first  order, a s  indicated by the results of the ex- 
periments reported by Andres et a1 .3 and Greene and 
~ n g l e r , ~  who discovered that superconductivity did not 
disappear when pressure was reduced to 5 kbar. This 
transition is abrupt without formation of an interme- 
diate (along the pressure scale) metallic state. Quite 
unexpectedly a further increase in pressure reduces 
strongly the superconducting transition temperature. 
Between 12 and 24 kbar this temperature falls from 
0.9 to 0.19 OK. One should point out that the pres- 
sures applied in these experiments can alter the inter- 
atomic distances by just a few percent. s Therefore, i t  
is difficult to explain this behavior by a change in the 
interaction constants. 

We shall propose a model in which small changes in 
a parameter produce a sequence of insulator-super - 
conductor -insulator transitions. We shall assume that 
electrons can move in a system of metallic chains and 
the probability of jumps from one chain (filament) to 
another i s  not very high. We shall consider the case 
when electrons a re  repelled strongly on a given chain 
but a re  attracted between different chains. This strong 
repulsion alters the statistics so  that a description in 
terms of zero-spin fermions is possible. The attrac- 

a competition between the superconducting and in- 
sulating states. The result is very sensitive to the 
commensurability of the structure period of the in- 
sulator with the period of the normal lattice. We shall 
consider the case corresponding to the experimental 
situation in (TMISF),PF,, when a band is quarter- 
filled and there i s  also a weak potential with a period 
equal to twice the lattice period. 

This potential doubles the unit cell. If the super- 
structure period is equal exactly to the unit cell 
period, such commensurability simply favors the 
insulating state. However, slight deviations from the 
exact commensurability may initiate a transition to the 
superconducting state. Further increase in the non- 
commensurability again makes the insulating state 
preferable. The theory proposed below can explain 
the experimental situation if we assume that the in- 
sulating structure period varies (though slowly) with 
pressure. 

2. SELECTION OF THE MODEL 

We shall now consider a system of conducting chains. 
We shall assume that electrons can move along chains 
or  jump from chain to chain. We shall postulate that 
the probability of such jumps i s  sufficiently low, s o  
that we can use a quasi -one -dimensional description. 
The Hamiltonian of the system will be written in the 
form 

- - 

1.V l,l.O,ol I,* 

(1) 
where af,(a,,) a re  the creation and annihilation opera- 
tors of an electron a t  a site i with a spin o; E ,  is the 
Fermi energy. 

The f i rs t  term in Eq. (1) describes the jumps of 
electrons from site to site. In accordance with the 
quasi-one-dimensional nature of the model, i t  i s  as- 
sumed that J ( r )  depends strongly on the direction r, 
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where J(b) >>J(a), J(c), b is the direction along the 
chains, a and c a re  the directions across the chains. 
The quantities J(a) and J(c)  can generally be different. 
The second term in Eq. (1) describes the repulsion of 
electrons a t  one site and the third term represents the 
interaction of electrons a t  different sites. The last 
term in Eq. (1) allows for the periodic fields. In ac- 
cordance with the experimental data on (TMTSF),PF, 
in Ref. 6 we shall assume that the period h(r) i s  double 
the lattice period. For simplicity, we shall retain only 
the first  harmonic in the last  term: 

where a i s  the lattice period along the conducting 
chains. The other harmonics a re  unimportant. 

We shall consider below the case of strong repulsion 
a t  one center 

T O > J ( ~ ) ,  ~ ( r ) ,  h(r). (3 
This strong repulsion a t  one center has the effect 

that configurations with two electrons a t  one site a re  
unlikely. These configurations can be excluded from 
our analysis by adopting a description in terms of 
zero-spin fermions. In this case the configurations 
which a re  unfavorable from the energy point of view 
a re  eliminated by vanishing of the wave functions of 
these fermions because of the Pauli principle. Al- 
lowance for the strong repulsion by a change in the 
particle statistics was used by Girardeau7 to describe 
a Bose gas. The corresponding formulas for a Fermi 
gas with a strong repulsion a t  one site were obtained 
by Ovchinnikov. We shall adopt a similar procedure 
in the case of the Hamiltonian (1) subject to the condi- 
tions (2) and (3); this gives 

where ci and c, a re  the creation and annihilation opera- 
tors of zero-spin fermions a t  a site i .  The equivalence 
of the Hamiltonians (1) and (4) implies identity to the 
eigenstates in the limit of infinitely strong repulsion. 
The system is then characterized by a strong spin de- 
generacy which is lifted only i f  we include the higher 
orders in J/y,. 

In the case of zero-spin fermions the dependence of 
the Fermi momentum on the density differs somewhat 
from the corresponding dependence in the presence of 
spin. Simple calculations give 

2~~=2npo la ,  (5 
where p, is the Fermi momentum of zero-spin fer-  
mions; po is the number of fermions per one site (which 
is identical with the number of electrons); a is the lat- 
tice period. The value of the Fermi momentum p, 
given by Eq. (5) is, for a given density, twice the 
Fermi momentum calculated for noninteracting elec- 
trons with finite spin. 

We shall carry out further calculations for the ef- 
fective Hamiltonian (4) by considering the interaction 
of fermions a s  a perturbation. At sufficiently low 

temperatures and for low probabilities of jumps from 
chain to chain we have logarithmically diverging cor- 
rections corresponding to the Cooper and Peierls dia- 
grams. The Peierls singularities appear also for suf- 
ficiently high probabilities of jumps if the Fermi su r -  
face has regions which coincide in the case of parallel 
transport. The Cooper singularities a r e  insensitive to 
these jumps. 

Summation of logarithmic diagrams can be carried 
out in the parquet approximation, txactly as this was 
done by ~ o r ' k o v  and Dzyaloshinskii. Following their 
work, we shall separate the interaction constants y tk 
and y p  corresponding to the forward and backward 
scattering, where i and k label the chains (filaments). 
The equations for these vertices will be written in the 
form 

The system (6) differs from the corresponding equa- 
tions for electrons with finite sping only by the pre-  
sence of a factor 1/2 in the third term on the right- 
hand side of the first  equation. If there is exactly half 
an electron per one site, another vertex y, describing 
jumps appears in the system. However, even in the 
absence of jumps the system (6) is fairly complex. As 
in Ref. 9, only a qualitative analysis can be carried out 
for arbitrary initial conditions. Nevertheless, one 
may say that for specific initial conditions there should 
be a competition between the superconducting and in- 
sulating states. Electron jumps from chain to chain 
a re  important for the existence of such competition. 
In the absence of jumps the appearance of supercon- 
ducting solutions is unlikely, since they a r e  described 
by unstable "standing poles."g Clearly, only jumps 
can make these poles stable. The parquet equations 
were investigated by Prigodin and Firsovl0 allowing 
for jumps. 

The possibility of competition between the supercon- 
ducting and insulating states may be studied more 
clearly by considering only the ladder diagrams of the 
Cooper and Peierls types. If electrons a t  different 
si tes attract one another, poles appear in the super- 
conducting and insulating channels. At sufficiently 
low temperatures we may expect averages 
(c;(p)c;(-p)) and (c;(p)c,(p-a$,)), where the indices i 
and k label the chains, and p is the momentum along 
the chains. The question which of these states is pre-  
ferred for given interactions cannot be answered by 
employing the parquet o r  self-consistent field ap- 
proximations. We shall not solve this difficult problem 
but we shall study a system using a free-energy func- 
tional written in the Ginzburg-Landau form and de- 
duced from the above phenomenological considerations. 

3. PHENOMENOLOGICAL DESCRIPTION WITH THE 
AID OF THE GINZBURG-LANDAU FREE ENERGY 

It follows from the considerations in the preceding 
section that a state formed a t  low temperatures can 
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be superconducting o r  insulating. A slight change in 
the initial parameters, such a s  the probability of 
jumps from chain to chain and the density-density 
interaction, can result in a transition from one 
state to the other. This situation will be described us- 
ing the Ginzburg-Landau free energy 

The free energy of Eq. (7) includes two complex 
order parameters A and n ,  which determine the super- 
conducting and insulating gaps, respectively. In terms 
of zero-spin fermions, considered in the preceding 
section, the existence of the order parameters A and 
n corresponds to pairing described by (c,(p)c,(-P)) 
and (c;(p)c,(p - 2 J p ) ) .  Using Eq. (6), we can find the 
order of magnitude of the quantities A and H :  

where y is the characteristic magnitude of the inter- 
action of electrons located in different chains and a t  
different sites. 

We shall assume that the quantities A, and A, a r e  
very close to one another, so  that the following in- 
equality is satisfied: 

l A ~ - A ~ l l A , < i .  (9) 
We shall subsequently assume that the difference 

between the possibilities of formation of the insulating 
superconducting states i s  entirely due to the dif- 
ference between A, and A,. Consequently, the second 
and third terms a re  invariant under the substitution 
A == H . This invariance simplified our study of the 
system but i t  is not essential to our reasoning. 

In principle, the free energy of Eq. (7) may contain 
a term of the ~ B ( A ( ~ ]  H 1 '  type. The presence of this 
term permits simultaneous existence (even in the ab- 
sence of commensurability effects) of finite order pa- 
rameters A and n ,  provided f i s  sufficiently large. 
However, i f  

this intermediate phase does not appear. All the cal- 
culations given below will be made for the f =  0 case. 
When the inequality (9a) is satisfied, the results a re  
not affected qualitatively by th? assumption that f = 0. 

The third term contains the sums over all the three 
directions in a crystal. In the case of a quasi-one- 
dimensional system we have, 

where C, is the direction along the chains, whereas C, 
and C, are  the two directions which a r e  perpendicular 
to the conducting chains. The orders of magnitude of 
the coefficients A,,,, B, and C a re  given by 

In Eq. ( l l ) ,  we have T, - &oe-l'lY1~("), where c ,  i s  
the cutoff energy, N(0) is the density of states, and v 
is the velocity on the Fermi surface. The coefficients 
C, and C, in Eq. (7) depend in a complex manner on 
the jumps f rom chain to chain, and on the interaction 
between different chains. The explicit form of these 
coefficients i s  not important to us. 

The last term i s  associated with commensurability 
effects. In a situation such a s  that in (TMTSF),PF,, 
when the external field period h ( r )  i s  equal to twice 
the lattice period and the band occupancy is close to 
1/4, we find from Eqs. (5) and (8) the corr~spondence 

h (i) c,+ci = h(Q) c~,c, -  V~ (e""x+e-lqP~X), 

P,Q 

It is assumed that q << a/a, which corresponds to an 
occupancy close to 1/4. Equation (12) is valid if the 
external field i s  sufficiently weak, so  that the following 
inequality i s  satisfied: 

We can calculate all the thermodynamic quantities 
using the expression for the free-energy functional 
(7). We shall assume that C, and C, a r e  not very 
small and the temperature T is not very close to the 
critical value. The physical quantities a re  then found 
from the condition for a minimum of the free energy 
and the contribution of fluctuations i s  small. Simple 
estimates demonstrate that the criterion of smallness 
of the contribution of fluctuations is the inequality 

The inequality (14) shows that the contribution of 
fluctuations i s  small in a wide range of parameters. 
Moreover, the criterion of smallness of fluctuations 
is not in conflict with the hypothesis of the possibility 
of insulating pairing of the Peierls  type, since this 
requires only the existence of parts on the Fermi sur- 
face which can be made to coincide by parallel trans- 
fer.  

It is convenient to introduce a vector C with the 
following four components: 

Z,=xl,  Za=x", Zs=Ar,  2,-A", (15) 
where x', A' and u*, A" a r e  the real  and imaginary 
par ts  of the insulating and superconducting order pa- 
rameters,  respectively. When the inequalities (91, 
(13), and (14) a r e  obeyed, the modulus of the vector C 
i s  determined exactly by the condition for a minimum 
of the free energy of Eq. (7) and i t  i s  given by 

If the condition (16) is satisfied and the vector C is 
written in the form 

where S is a four-component unit vector defined by 
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S,=cos 9 cos X ,  Sz=cos 9 sin X ,  

S,=sin 8 cos cp, &',=sin 8 sin cp, 

we can reduce the free-energy function to 

- V cos ( q x + ~ ) c o s  9 + - sinz 0 dr, 
2 " 1 (19) 

B 'I* h, 
A - A  V V  ( )  - - . 

yToii* 

The free energy of Eq. (19) can be rewritten in a 
simpler form by introducing dimensionless variables 

Substituting Eq. (21) into Eq. (20) and dropping the 
unimportant constant terms, we obtain 

1 1 1 
F = K . ~  [-i- (VB)z+T ( V ~ ) ' c o s ~ B + -  (Vcp)zsinzB 

2 

- cos ( q u + ~ )  cos 0 + - sina 0 du dv  dt,  
(22) 

2 I 

It i s  clear from Eq. (22) that a minimum of the free 
energy i s  obtained for cp = const and for values of I9 
and x dependent on just one coordinate u. Variation of 
the energy F of Eq. (22) with respect to I9 and x 
yields the following equations for an extremum 

@l3 1 * '  ----( du' 2 du ) s i n 2 ~ + c o s ( ~ u + ~ ) s i n ~ + ~ s i n 2 9 = 0 .  2 
(23) 

-- do dx & cos O+sin(x+qu) +2 sin 9 -- 
du' ( d u  d u ) = "  

These equations should be supplemented by the condi- 
tion of vanishing of the gradients on the boundary: 

Equations (23) and (24) together with the conditions 
for an energy minimum describe completely the be - 
havior of the system in question provided we a re  suf- 
ficiently far from a transition point. We shall show 
below that this behavior depends strongly on the quan- 
tity q. If the solution of Eq. (23) i s  I9= 0, the system 
has insulating properties. If 8 #  0, there is nonzero 
component of the superconducting order parameter 
and this clearly means that superconductivity appears 
in the system. In the next two sections we shall study 
the solutions of Eqs. (23) and (24) for different values 
of q. 

4. INSULATOR-SUPERCONDUCTOR TRANSITION 

So far, we have made no assumptions about the sign 
of /3 in Eqs. (22) and (23). In principle, this sign can 
be positive or  negative. However, we shall confine 
our discussion to the more interesting case /3> 0, 
which corresponds to a situation such that the insulating 
state is preferred in the absence of commensurability 
effects. We shall begin with low values of q.  If the 
superstructure period i s  identical with the normal 
lattice period, then q= 0. In this case, the solutions of 

Eqs. (23) and (24) minimizing the free energy a re  ob- 
vious: 

For nonzero values of the solution begins to depend 
on the coordinates. It is clear from Eqs. (23) and (24) 
that the solution with I9 = 0 always exists. However, 
in a certain range of q this solution does not corre- 
spond to the energy minimum. We can show this by 
expanding the free energy (22) in terms of small de- 
viations 0, and X, from the solution go= 0 and x,(u) 
of the system (23). If 

60-0, (26) 

the system (23) reduces to the well-known pendulum 
equation. This equation describes also a Josephson 
junction in a magnetic field and many other physical 
phenomena. If we use the results of Ref. 11, we find 
that 

xo=-qu if q,<4/n. (26a) 
Formally, the solution (26a) does not satisfy the 

boundary conditions (24) and, therefore, i t  i s  valid only 
sufficiently far from the boundaries. The influence of 
the boundaries i s  unimportant if a sample i s  sufficient- 
ly large and we can then use the solution (26a). Ex- 
panding the energy (22) near the extremum (26) we ob- 
tain 

F. =+ J ~ ~ v ~ , ~ ~ + ~ ~ + i - ~ ~ o : + ~ v ~ , ) ~ + ~ . ' ~ d ~ d ~ ~ t .  

(27) 
It follows from Eq. (27) that i f  

q2>g,z=1+g, (28) 
the solution represented by Eqs. (26) and (26a) does 
not correspond to a free-energy minimum. Our study 
of the instability is valid in the case of sufficiently 
small values of p, such that 

b< (4/n)'-I. 
(29) 

We shall assume that the condition (29) i s  satisfied. 
Instability of the solution with 9 =  0 in the case when 
the inequality (28) i s  satisfied implies a nonzero value 
of 8.  Near q, the value of 9 should be small. Expand- 
ing the system (23) near the solution represented by 
Eqs. (26) and (26a) and retaining terms up to 8, we 
obtain 

The second term in Eq. (30) is unimportant i f  8<< 1. 
Therefore, Eq. (30) i s  simply the Ginzburg-Landau 
equation. We can see that if > q,, there is a nonzero 
solution independent of the coordinates: 

The solution described by Eq. (31) is valid if q -& 
<< 1. However, a coordinate-independent solution a l -  
ways exists, although it  does not always correspond 
to the absolute minimum of the f ree  energy. In this 
solution the dependence of x on the coordinates is 
described by Eq. (26a). Substituting Eq. (26a) in Eq. 
(23), we obtain the equilibrium value of 0:  
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cos 0~=( i j~ - i 3 ) - ' .  (32) 

The solution (32) exists  if q > q,. As in Eq. (311, i t  
is valid provided we a r e  not sufficiently close to a 
boundary. If 2 i s  close to q,, when 8, is small ,  Eq. 
(32) reduces to Eq. (31). For large values of q, the 
angle 8, approaches n/2. We can show that the solution 
(32) always corresponds to a t  leas t  a local energy 
minimum. We shall do this by expanding the expres-  
sion fo r  the f r e e  energy (22) near the solution r ep re -  
sented by Eqs. (26a) and (32) and retain t e rms  up to 
the squares of deviations 8, and x,: 

+ lal ( k L  cosL O.+COS 0.) +ikp sin 200 ] ,  

In Eq. (34), Fo is the f ree  energy on an extremal t r a -  
jectory corresponding to Eqs. (26a) and (32). In Eq. 
(33), 8, and X, a r e  the Fourier  components of the de- 
viations; 8, is the solution of Eq. (32). 

Calculation of the eigenvalues A,,, of the quadratic 
form (33) yields 

1 * [ ( l a  sin2 0.  +-- 2 cos 0 .  +4kZ sin2 Z B . ~ ' ]  "'). (35) 
cos eo 

A simple analysis of Eq. (35) fo r  moderate values of 
p shows that both eigenvalues A,,, a r e  always positive. 
This proves that the solution represented by Eqs. (26a) 
and (32) always corresponds to a t  leas t  a local mini- - - 
mum. If the range of smal l  values of q -9 ,  this mini- 
mum i s  absolute, a s  can be demonstrated by Eq. (30). 
We shall show in the next section that, in addition to a 
solution independent of the coordinates, we can also 
have solutions which vary in space. If q is sufficiently 
large, such solutions a r e  preferred for  energy reasons. 
A further increase in q gives r i s e  to a transition back 
to the insulating state with 8 =  0. 

5. SUPERCONDUCTOR-INSULATOR TRANSITION 

In this section we shall consider the case  P<< 1. We 
shall show that when this condition i s  satisfied, the 
superconductor - insulator transition occurs in the 
range of large values of the parameter  >> 1.  In this 
range the solution of the system (23) should be found 
by expanding 8 and x a s  Fourier  s e r i e s .  The rat io of a 
given t e rm to the preceding one i s  smal l  if q is large,  
s o  that we need retain only the f i r s t  few t e rms  of each 
ser ies .  

It should be noted that the equations in the system 
(23) together with the boundary conditions a r e  not af-  
fected by the substitutions X -  -x, u - -u. This means 
that 8(u) i s  an even function and ~ ( u ) .  Consequently, 
we shall seek a solution in the form 

0=8+C cos qu+b cos 2 @ + .  . . , 
(36) 

x = F  sin iju+ d sin 2 q u f .  . . . 

In the main approximation, i t  i s  sufficient to include 
in the system (36) only the zeroth and f i r s t  harmonics. 

Substituting Eq. (36) into Eq. (23) and equating the 
coefficients of the same harmonics, we find that 

1 1 c = - - s i n i j ,  F=-- 
ii' ij2 cos 8 ' 

sin 2 ~ ( - i / I i j L ~ 2 + i / , ~ )  -'/,F sin B+'l2C cos 8=0. (37) 

Substituting the values of 2 and 2 from the f i r s t  two 
equations into the third, we obtain the equation for 

sin 20 (B-1/2ij2) 10. 

It follows from Eq. (38) that inclusion of the f i r s t  
harmonic with respect to l/a renormalizes the quan- 
tity 0. Equation (38) then has two solutions: 

8=0, 8=n/2 .  (39) 
If 2 > (2/3)-', an energy minimum corresponds to the 
f i r s t  solution, whereas if < (2/3)", i t  corresponds to 
the second solution. This result  means that if i s  
sufficiently large,  the insulating state i s  again p re -  
ferred.  

The nature of the transition cannot be determined 
from the f i r s t  approximation. Calculations in the 
higher order  can be car r ied  out conveniently by sub- 
stituting the sys tem (36) into the expression for  the 
f ree  energy (22). After integration over space the 

A - d -  

f r e e  energy F becomes a function of 8, a, b, c, - - -  and 2. 
Variation of F with respect  to the parameters  a ,  b, c ,  
and a, followed by calculation of the f r ee  energy a t  
extremal values, gives 

where C2 i s  the sample volume. 

A comparison of the coefficients of the harmonics, 
which will not be given here  explicitly, leads to the 
conclusion that the approximation employed i s  valid if 

1/q2 cog B g l .  (41) 

Therefore, Eq. (40) i s  valid for  values of 3 which a r e  
not too close to r/2. Minimizing Eqs. (40) with respect  
to 8, we obtain 

Equation (42) always has solutions given by Eq. (39). 
Strictly speaking, the solution 8= lr/2 is outside the 
range of validity of Eqs. (40) and (42). Nevertheless, 
the exact value of 8 should be close to n/2. If q2 is 
sufficiently close to (Zp)", we obtain an  additional 
solution: 

2 1 
s i n 2 ~ = - ( B - ~ g ~ - - ) .  

11'" 2q2 

This solution exists  if 
Qci<ii<Tcz; 

QCt2=1/2B+B, qCza=1/2p+"/,$ 

and corresponds to a maximum. 
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If the conditions of Eq. (44) a r e  satisfied, then both 
solutions of Eq. (39) represent minima. In the other 
cases only one of the solutions of Eq. (39) corresponds 
to a minimum and the minimum at 8= 0 exists for 
?>j,,, whereas the minimum at  O= lr/2 exists for 
q <gel. Simultaneous existence of two minima in the 
range described by Eq. (44) indicates a first-order 
phase transition. Moreover, there is a minimum de- 
scribed by Eq. (32), which i s  discussed in the preced- 
ing section. 

We shall determine which of these three states is 
preferred by calculating the f ree  energy a t  the relevant 
minima. Using Eqs. (34) and (40), we obtain 

-1/4q2+3/64ij', 8=0 
-1/2q2f  8/2-1/8qe-8/46., 8=n/2. 
-1/2q2+p/2-8/26', cos eo=l/  (qz-p) (45) 

It follows from Eq. (44) that if G 2  < (Zfl)", the 
strongly preferred state is the one with 8 =  a/2. When a i s  increased, the third state with cos 0, = (q2 - P)-' 
becomes preferred. This state should occur in the 
range 

A further increase in has the effect that the lowest 
energy is exhibited by the state with 3 = O .  

It should be noted that if q 2  < (2p)-', the solution of .9 
corresponding to a minimum depends on the coor- 
dinates, because it contains nonzero harmonics of Eq. 
(36). Therefore, in this range the magnitude of the 
superconducting gap varies in space. 

The existence of local minima may give r i se  to 
metastable states and to superconductivity even in the 
range where the insulating state i s  preferred for ener- 
gy reasons. 

All the calculations in the preceding two sections 
a re  based on the free-energy functional of Eq. (22) 
which contains only the phases of the order parame- 
ters.  This approximation i s  valid if q[(T) << 1, where 
[(T) - v / T , ~ ' ' ~  is the size of an electron pair. If 
q -q,,, this inequality i s  comparable with the condition 
P<< 1 and i t  imposes restrictions on the proximity of 
the reduced temperatures of the superconducting r, 
and insulating T, transitions: 

It follows from the system (46a) that when the in- 
equality (13) i s  obeyed, there is a range in which all 
the quantitative results obtained above a r e  valid. The 
qualitative results on the insulator-superconductor- 
insulator sequence of transitions is valid in a wider 
range. 

6. CONCLUSIONS 

It follows from our investigation that proximity to 
commensurability may favor superconductivity. The 
phase diagram depends on the vector q which governs 
this proximity. An increase of q from zero causes a 

FIG. 1. Dependence of the average value of 8 corresponding to 
a free-energy minimum on the commensurability vector q. In 
the shaded region the value of 0 varies in space. Superconduc- 
tivity exists in the interval q, < q<  qc4. 

system under discussion to go over the insulating to 
the superconducting state and back to the insulating 
state. In the superconducting state there is a transi-  
tion from a homogeneous superconductivity with a 
coordinate -independent order parameter to an in - 
homogeneous ~ ~ ~ e r c o n d u c t i v i t ~  whose order parameter 
varies in space. This can be demonstrated by com- 
paring the solution corresponding to a minimum and 
given by Eq. (31) in the case when q - 1 with the solu- 
tion given by Eq. (36) when q>> 1. Near a transition an 
inhomogeneous state clearly represents a soliton lat-  
tice. Unfortunately, this explicit form of the solitons 
representing solutions of the system (23) i s  not known. 
A further increase in q again leads to the preference 
for the homogeneous superconductivity, which i s  fol- 
lowed by a transition to an insulator. The last two 
transitions a re  of the first  order. The sequence of the 
transitions i s  shown schematically in Fig. 1. 

It is important to s t r ess  that all the transitions occur 
as a result of very small (compared with the reciprocal 
lattice period) changes in q. We can use Eqs. ( l l ) ,  
(20), (21), and (44) to write down readily (in terms of 
dimensional units) the order of magnitude of the vector 
q,, corresponding to the last transition to the insulating 
state: 

In Eq. (47), p, and &, represent the Fermi momentum 
and energy, whereas T, and T, a re  the reduced tem- 
peratures representing the proximity to the tempera- 
ture of the transitions to the insulating and supercon- 
ducting states, respectively. The quantity yN(0) i s  
the dimensionless interaction occurring in the expo- 
nential function that finds T, in the system (11). 

In the case of the organic conductor (TMTSF),PF, 
a transition occurs in the vicinity of 15 OK. There- 
fore, yN(0) should be of the order of unity. If we as -  
sume that r1 and r 1  - r2 a r e  also of the order of unity, 
we find that the ratio of q,, top, i s  proportional to the 
ratio of the external periodic field to the Fermi ener- 
gy. We have considered above a model with a quarter- 
filled band in a field h,  whose period i s  twice the lat-  
tice period. This model was selected to correspond 
to the properties of (TMTSF),PF ,. According to Ref. 
6, an alternation of periods 3.63 and 3.66 occurs 
along the molecular stacks. This difference between 
the periods suggests that the ratio h,/&, is of the 
order of 0.01. It follows from Eq. (47) that the ratio 
qcZ/pF -0.01 is of the same order of magnitude. 
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The dependence of the nature of the ground state on 
the commensurability vector q described above explains 
the alternation of phases in (TMTSF),PF, under pres-  
sure i f  we assume that the pressure can alter  the vec- 
tor q and that a t  zero pressure the value of q i s  finite, 
a s  denoted by a cross  in Fig. 1. If we also assume 
that an increase in pressure reduces the vector q,  
then a t  some pressure the system should go over from 
the insulating to the superconducting states, and this 
transition should be of the f i rs t  order. Metastable 
superconductivity can then exist well inside the in- 
sulating range of conditions. This i s  in agreement with 
the experiments reported in Refs. 3-5. A further in- 
crease in the pressure should reduce the superconduct- 
ing gap and a t  the second critical pressure this gap 
should vanish. 

This behavior i s  in good qualitative agreement with 
the experimental results of Refs. 4 and 5, where  the 
pressure dependence of the critical superconducting 
temperature was determined. Although the transition 
temperature was not calculated, i t  was natural to a s -  
sume that it decreased on reduction in the supercon - 
ducting order parameter. When the condition 

is satisfied, we can expect the superconducting transi- 
tion temperature T, found experimentally to be of the 
same order a s  T,. However, if we take the field to be 
h ,  -30°K, as deduced from the observed degree of di- 
merization and i f  we also postulate that yN(0) -1 a s  
well a s  rl, 7, -7, -1, we find that P is of the order of 
unity. In this case the maximum value of 9 in Fig. 1 
should be considerably less  than n/2, which corre  - 
sponds to a low value of T ,  observed experimentally. 
Superconductivity disappears completely for large 
values of 0. 

Clearly, in a substance without band intersection, 
such a s  (TMTSF),PF,, commensurability cannot de- 
pend strongly on pressure.  In a purely one-dimension - 
a1 system free of defects there can be no change in 
commensurability a t  al l ,  because this would be in con- 
flict with the Luttinger theorem. However, if the 
Fermi surface is more complex, then insulating in- 
stabilities may appear because of the existence of r e -  
gions which can be made to coincide by translation by 
a certain vector Q (Ref. 12). In this situation the vec- 
tor i s  most likely determined by the properties of the 
Fermi surface rather than by the lattice. Pressure  
can distort the Fermi surface and cause changes in 
the vector Q and this can alter  slightly the commen- 
surability vector. The pressure dependence of the 
commensurability vector was observed experimentally 
for (TTT),1,, ( ~ e f .  13), which again does not exhibit 
band intersection. 

The whole of the above discussion is based on a 
model with a strong repulsion a t  one center and attrac- 
tion between different centers. In the zeroth approxi- 
mation the spin variables corresponding to the strong 

repulsion a r e  separated from the other variables and 
the substance exhibits paramagnetic properties. Al- 
lowance for the corrections may give r i se  to an anti- 
ferromagnetic ordering with a small  antiferromagnetic 
order parameter. Such ordering was reported in Ref. 
14. A strong repulsion gives r i se  to an insulating 
pairing with a momentum 4pF. In the case of 
(TMTSF),PF, this momentum is identical with the di- 
merization field, s o  that the anomaly in question i s  
difficult to observe. This is in agreement with the re-  
sults  of an experimental study of x-ray scattering,'' 
which failed to detect 2pF o r  4pF anomalies. The as- 
sumption of a strong Coulomb repulsion in (TMTSF),PF, 
(TMTSF),PF, was made in Ref. 16. The proximity of 
the system to superconductivity a t  normal pressure 
may account for the strong dependence of the resistance 
on the magnetic field in the vicinity of 20°K ( ~ e f .  I ) ,  
since superconducting fluctuations should be important 
in this temperature range. Allowance for  fluctuations 
and a study of thermodynamics should be made in 
future. 

The author is grateful to S. A. ~ r a z o v s k i i  and A. I. 
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