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An equation for the Winger function is derived from the nonlinear two-dimensional Schrodinger equation. In 
the geometric optics approximation, it resembles a kinetic equation for which an exact solution is obtained. In 
particular, the solution describes self-focusing of radiation in a nonlinear medium. It is shown that wave 
beams with a certain type of initial angular divergence may propagate in the medium without self-focusing. 
The power of such beams may greatly exceed the critical power in the case of waveguide propagation. 
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1. INTRODUCTION 

Self-focusing of radiation in a nonlinear medium1 is 
in many c a s e s  a n  undesirable phenomenon that r e s t r i c t s  
the capabilities of instruments  and devices. In particu- 
l a r ,  es t imation of the conditions under which we can 
significantly increase  the power of radiation propagat- 
ing in a nonlinear medium without self-focusing is 
therefore of interest.  I t  is known that a waveguide 
regime of propagation is in which the 
self-focusing is compensated by diffraction divergence 
of the beam. However, in this case  the beam power P 
should have a definite value PC, that depends on the dur-  
ation of the radiation and the propert ies  of the medium. 
I t  is not possible to  guarantee a s table  (i.e., without 
focusing and divergence) regime of propagation of 
beams  with power P> PC, due to diffraction divergence. 

In this work, we show theoretically that  the reg ime of 
propagation without self-focusing is possible f o r  beams 
w i t h P  > PC, if the beams  have cer tain angular  character-  
is t ics  a t  the input to the nonlinear medium. F o r  ex- 
ample,  the phase front  of the beam should be s o  modu- 
lated that the initial angular  divergence of the beam a s  
a whole significantly exceeds the diffraction divergence 
over  the en t i re  aper tu re  of the beam and, in  addition, 
t h e r e  should be a cer tain dependence of t h e  angular  
spectrum of the wave vec tors  over  the t r a n s v e r s e  c r o s s  
sect ion of the beam. Then the self-focusing and the 
initial divergence can  cancel  each o ther  exactly. The 
s tab le  regime of propagation that we have discovered is 
unstable in  the s e n s e  that  the  beams  with l e s s  than the 
required initial divergence will  be  self-focused, and 
those  with a g r e a t e r  one will  diverge. However, by 
creat ing a n  initial divergence that  is sufficiently close 
to  the necessary  value, we can significantly increase  
the distance over  which the beam can be  propagated 
without appreciable change i n  i t s  p a r a m e t e r s .  

The initial point of our  calculations is the well-known 
parabolic equation. We have written out th i s  equation 
in Sec. 2 and c a r r i e d  out i ts  simplification, which c o r -  
responds to the quasi-classical  approximation in quan- 
tum mechanics (or to the geometr ic  optics approxima- 
tion). The mos t  frequently used form of the  quasi-  
c lassical  approximation has  involved purely quantum 
concepts such a s  4 functions, eigenvalues, and s o  on 
(in optics, wave concepts-the amplitude and the phase 

of the wave and s o  forth). F o r  o u r  purposes,  however, 
another  form of this  s a m e  approximation is m o r e  con- 
venient, based on the Wigner function and using such  
purely c lass ica l  concepts a s  coordinates ,  momenta,  
and part ic le  distribution functions o v e r  these  variables .  
Using the approximation mentioned, we obtain a non- 
l inear  integro-differential equation f o r  the Wigner func- 
tion, which has  the form of a kinetic equation. 

In Sec. 3 ,  we find the exact  solution of this equation 
and investigate its stability. Section 4 contains the d i s -  
cussion: there ,  f o r  completeness  of the  exposition, we 
formulate  s e v e r a l  of our  resu l t s  in  wave language. In 
the Appendix, we obtain fo r  the Wigner function in quan- 
tum mechanics a n  equation which is of possible metho- 
dological interest .  

2. METHOD OF THE KINETIC EQUATION IN  THE 
THEORY OF SELF-FOCUSING 

2.1. The  e lec t r ic  field E sa t i s f ies  the equation 

where  & = c,, + $%E '. We s e e k  a solution of (1) in the  
f o r m  of a bounded wave propagating along the Z axis:  

where  the vector  A l ies  in a plane perpendicular  to  the 
Z ax is ,  and the frequency w =ck/&Af2. We obtain 

which is a parabolic equation in the f o r m  of a two-di- 
mensional nonlinear SchrGdinger equation; in the s t a -  
tionary c a s e ,  when aA/at = 0, the r o l e  of the t i m e  is 
played by the z coordinate. 

We note that the divergence of the beam because of 
the Huygens-Fresnel principle is completely de te r -  
mined by the diffraction, which depends on the dis t r ibu-  
tion of the phase and amplitude of the field o v e r  the 
a p e r t u r e  of the beam. This  distribution can be r a t h e r  
complicated and include various spat ial  f requencies  
(various charac te r i s t i c  scales).  In  what follows we 
sha l l  analyze the case  in which there  a r e  two character-  
i s t i c  groups of spat ial  frequencies in this distribution: 
low and high frequencies. F o r  simplification of the 
f u r t h e r  discussion, we sha l l  a s s u m e  that  t h e r e  is  only 
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one low spat ial  frequency. If a plane wavefront cor -  
responds to i t ,  then we have the  divergence due to dif- 
f ract ion a t  the aper tu re  of the beam. If the wavefront 
has  a curvature,  then alongwith diffraction a t  the  aper tu re ,  
the re  is divergence due to the  curvature of the wavefront, 
which we sha l l  c a l l  regular .  The group of high spa t ia l  
frequencies will cause  what we  sha l l  a rb i t ra r i ly  cal l  
diffusion divergence (divergence of this type a r i s e s ,  f o r  
example, in the t ransmiss ion  of a beam through a 
frosted plate). 

Equation (2) is very  general.  It descr ibes  divergences 
of a l l  type a s  well a s  self-focusing. We sha l l  consider  
below the case  in  which 

where  the power of the beam P is equal to  

the vector  p = ( x ,  y), d2p = d d y ;  the c r i t i ca l  power, a s  is 
well known, is equal to 

I t  will be  shown below (Sec. 4.1) that  in  the c a s e  P>> Po, 
the necessary diffusion divergence tu rns  out to  b e  
much g r e a t e r  than the diffraction a t  the a p e r t u r e  and 
the la t ter  can be neglected. At the s a m e  t i m e ,  t h e r e  
is no t e r m  in Eq. (2) whose d i scard  would mean neglect 
of the diffraction divergence a t  the aperture.  There-  
fo re ,  the use of (2) c a r r i e s  with i t  a n  unjustified com- 
plication of the calculations. We develop a method that 
allows us to avoid the calculation of the diffraction 
divergence brought about by the low spa t ia l  frequen- 
cies.') 

2.2 On the basis  of the analogy with quantum statis- 
t ics  (see Ref. 7,  Sec. 5 o r  Ref. 8, Sec. 7), we intro- 
duce the Wigner function 

where the s c a l a r  amplitude A is determined f rom the 
condition A = e A ,  e being the unit polarization vector. 
All the vectors  p, s ,  e, and 5 l i e  in the  pat tern plane 
perpendicular t o  the Z ax is  and c ross ing  it a t  the point 
z.  The radiation intensity Z(t, z , p )  a t  the  given point p 
of the pat tern plane is obviously expressed  in t e r m s  of 
the Wigner function 

By definition, d E  =Zd2pdt is the energy which p a s s e s  in 
a t ime dt a c r o s s  the  c r o s s  sect ion d 2 p  of the pat tern 
plane z in a l l  direct ions (toward increasing 2). 

Using (21, i t  is not difficult to  obtain the  equation for  
W(p, s)  (we omi t  the arguments  t and z f o r  brevity): 

H e r e  and below, we c a r r y  out summation over  repeated 
indices. 

Expanding W i n  a s e r i e s  in 5 and a,, we get  

The symbol  

anw amp 
-.- 

as" dpn 

denotes 

where  the s u m  r u n s  o v e r  t h e n  different indices a, P ,  . . . . 
Equation (4) (o r  (5)) is equivalent t o  Eq. (3). But in 

(5) i t  is e a s y  to neglect the  diffraction effects a t  the 
a p e r t u r e  of t h e  en t i re  b e a m ,  while continuing to take 
the diffusion divergence into account. F o r  this  pur-  
pose,  i t  is necessary  to keep only the f i r s t  t e r m  n = O  
i n  the s u m  over  n. 

We emphasize that  such  a n  operation does not mean 
the limiting t ransi t ion k -  .o and total  neglect of the 
diffraction. Actually, the Wigner function depends on k  
as a p a r a m e t e r ,  and continuing to take this  dependence 
into account, we  t r e a t  the diffraction that is due to the 
high spa t ia l  f requencies  (i.e., the diffusion divergence) 
in the s a m e  fashion. In the l imi t  as k- we  would be 
obliged to a s s u m e  that  

The presence  of the 6 function in the r igh t  s i d e  of this  
equation means  that in the l imi t  as k- m we only take 
the regu la r  divergence into account. 

In the following, we sha l l  a s s u m e  that W(p, s )  a s  a 
function of s differs  f r o m  z e r o  in  a finite interval  of s ,  
which means allowance f o r  the diffusion divergence. Of 
c o u r s e ,  such a n  approximation is valid if the character-  
i s t i c  values of the low and high spa t ia l  frequencies a r e  
widely different f r o m  one another. 

Keeping only the f i r s t  t e r m  n = 0 in  the r ight  s i d e  of 
(5), we  obtain a n  equation of the type of the kinetic equa- 
tion of Boltzmann. Introducing the new notation 

ck" ce I =  w, I , = L  
32n" ~ E Z  

and set t ing a~/at =0,  we wr i te  down the obtained equa- 
tion in the f o r m  

Equation (6) is s i m i l a r  in f o r m  to the kinetic equation 
which descr ibes  the  motion of s e v e r a l  par t ic les  in the 
pat tern plane. H e r e  the function J(z, p ,  s) is s i m i l a r  to 
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FIG. 1. The dashed lines show the axes of the primed system 
of coordinates, which has its origin at  the point 0. The vector 
L is the projection of the vector L on the ( x ' ,  y') of the figure. 

the single-particle distribution function in kinetic theory; 
the coordinate z plays the role of time, the dimension- 
l e s s  vector s plays the role of the velocity of the par-  
ticle; the right s ide of (6) describes the interaction of 
the particles in the self-consistent-field approximation. 
Let  a ray emerge from some point 0 of the plane in the 
direction L, and le t  the polar and azimuthal angles of 
this direction be  6 and J, (see Fig. 1). Then the com- 
ponents of the vector s a r e  s,,= tan 6 cos 4, s#=tan 6 s in  $. 
We introduce the function f (z, p, 0,$)  such that  

whence 

The function f has a c lear  physical meaning. d E  
= fdtd2pdz9 is the energy which passes in a time d t  
through the a r e a  d2p in the direction of the solid angle 
d251. Obviously, 

r e  Jmf. 
I t  can be shown that f (z, p, 0, J,) is proportional to the 
number of rays which emanate from the point p of the 
plane z in the d2f2 direction. 

2.3. We car ry  out transformations that a r e  conven- 
ient fo r  what follows. We introduce the polar coordin- 
a tes  p and cp, in the plane taking a s  our origin the point 
of intersection of the plane of the pattern with the Z' 
axis (see Fig. 2). Le t  

S..=u Cos cp-V Sin cp, s,.=u sin c p f v  cos p. 

Obviously, u and v a r e  the radial and azimuthal com- 
ponents of the vectors (see Fig. 2). 

In place of (6), we obtain 

In what follows, we limit ourselves to the case  in 
which the entire picture is symmetric relative to the 
Z axis. Then the function J, and with i t  also I, does 
not depend on the angle q,  a s  a resul t  of which v and the 
derivative with respect  to v drop out of Eq. (7). We a r e  
seeking the conditions under which a stable propagation 
regime is possible when aJ/az =O. In this case 

3. EXACT SOLUTION OF THE NONLINEAR 
INTEGRO-DIFFERENTIAL EQUATION (8) 

3.1. Equations s imi lar  in type to (6)-(8) were inves- 
tigated in plasma theory (see, for  example, Refs. 9-11). 
Acting in the sp i r i t  of this thoery, we shall temporarily 
assume that  

i s  a known function. Then (8) t ransforms into a f i r s t  
o rde r  linear partial differential equation which can be 
solved. Writing out the equivalent equation 

we find its f i r s t  integral 

Then 

The function @ could be arb i t ra ry  were it not for the 
self-consistency condition (9). We introduce - 

F (x) = j d v 0  (s, v) . 
-- 

Then the condition (9) takes the form of an  integral 
equation for  the function F(x): 

where f l  =l(p)/Z2. Since F ( x )  0, it follows from (11) 
that F ( x c 0 )  =Oa tp  =Oa tp  = O .  Then( l1)  takestheform of 
an Abel equation and is easily solved: 

where x(x< 0) =0 ,  x(x> 0) = 1 is the Heaviside function. 
I t  remains for  us to solve the integral equation (10) for  
the function @(x ,  v), which takes the form 

FIG. 2. The polar coordinates of the point 0 in the plane of the j durn (x. V )  = - X ~ ~ ~ ~ ( X ) .  (12) 
the figure. One should note the difference in the definition of - - 
the angles + and 40. ~h~ letters vand denote the axes which Even in the class of functions @ 2 0  this equation has an  
the corresponding quantities u and v are  plotted. infinite number of solutions. 
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3.2. We consider two solutions of (12). 

1) Solution of the "fan" type. In this case ,  

All the rays emitting from the arb i t ra ry  point 0 in the 
plane of the pattern lie in a plane passing through the 
point 0 and the Z axis. These rays  form an  angle with 
the Z axis that is  no longer than 

(it is  understood that 21(p)/12<< 1). The value of the 
angular divergence of Om(p) depends on the total inten- 
si ty I(p) a t  the given point 0. 

2 )  Solution of the "bouquet" type. In this case,  

All the rays passing through an  arb i t ra ry  point 0 in 
plane of the pattern a r e  located symmetrically relative 
to the axis 2' which passes through this point parallel 
to the Z axis. 

In both cases,  the value of the angular divergence 
B,(p) is the same, but the distribution of the rays  in the 
range 0 s 8 d m ( p )  is different [compare (13) and (15)]. 

The solutions obtained pertain to the case in which the 
low spatial frequency corresponds to a plane wavefront. 
At the s ame  time, the angular divergence of the beam is  
purely diffusive. We note a beam having only a regular 
divergence (i.e., a smooth wavefront with curvature) 
does not satisfy Eq. (8). This can easily be shown by 
substituting the expression ~c r I (p )B(s  - ~ ( p ) )  in (8). 

3.3. We now investigate the stability of the results. 
At the entry to the nonlinear medium le t  the beam be 
described by the formulas (13) o r  (15), in which the 
substitution 

has been made. This means that the angular divergence 
is  less than ( E <  0) o r  grea ter  than ( E >  0) the correc t  
value (14). The quantity ( & I  is the relative e r r o r  of the 
initial angular divergence. Adding the te rm a ~ / a z  to the 
left s ide of (8) and substituting Eqs. (13) and (15) in (8), 
we obtain 

In order of magnitude, 

where r is the characteristic radius of the beam. 

Hence 

In accord with (16), the function J increases,  i.e., 
the beam is focused if the angular divergence is smal l  
(&< 0) and conversely. At a given angular divergence 
Bm(p) a s  a function of p we can introduce the character- 
is t ic  power of the beam 

In our case  this power is the analog of the critical 
beam power: if P> P*, then the beam diverges in the 
medium and conversely. This resul t  is entirely under- 
standable from general considerations, A significant 
change in the parameters of the beam takes place over 
a distance 

where R =r(1,/1,)"~ i s  the self-focusing distance. 

4. DISCUSSION 

4.1. We have shown that the character  of the self- 
focusing of beams in a nonlinear medium depends e s -  
sentially on the original divergence. 

Let  a beam with arb i t ra ry  dependence I ( p )  be  incident 
on the medium. This dependence uniquely determines 
the law of initial angular divergence: 

a t  which the critical power P* in (17) is  equal to the 
beam power. Such a beam will propagate without 
change in its parameters.  We again note that the dis-  
cussed divergence is purely diffusive. 

The diffraction divergence a t  the aperture,  which i s  
equal in o rde r  of magnitude to ~ / r ,  turns out in our 
case  to be much smal ler  than the initial diffusion div- 
ergence, e,, in a s  much a s  we have, by vir tue of (3) 
and (14), 

In addition to (19), the most stringent condition I(p)/ 
I,<< 1 should be satisfied; this means that the diffusion 
divergence of the beam i s  much less  than n/2. It i s  not 
possible to obtain a beam of the needed type by passing 
a thin parallel beam through a defocusing lens, since 
this leads to the appearance of regular divergence only. 
The appearance of diffusion divergence is easiest  to 
represent  a s  the result  of the transmission of the paral- 
le l  beam through a plate that produces modulation of 
the wave front. If a i s  the characteristic amplitude of 
the modulation, and 1 is i ts  characteristic scale,  then 
the diffusion divergence that develops is equal to 2a/l 
in o rde r  of magnitude. This relation should vary over 
the cross  section of the plate a s  [I(~)]' '~. At the exit 
from the plate the rays will divergence in each elemen- 
ta ry  c ros s  section of the beam, in accord with the law 
that we need. A beam of such a type can approach very 
close to ideal beams considered by us in Sec. 3. The 
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effective value of c in Eq. (18) fo r  such a beam will be 
smal l  and the beam travels a large distance without 
self-focusing and divergence. The divergence that we 
need can, fo r  example, be given by a frosted (phase) 
plate and a lso  by an  amplitude plate. 

4.2. Upon passage of a beam through a plate which 
creates diffusion divergence, fluctuations of the inten- 
sity can develop over the cross  section of the beam. 
However, in regions with increased intensity, the self- 
focusing will not develop. Actually, the characterist ic  
s i ze  of such a region is connected with the divergence 
8 ,  by the relation dB, EX. But in our case ,  by virtue of 
the condition (14), we obtain 

Thus, each region contains a power not exceeding the 
cri t ical  value. 

In addition, if the regions with increased intensity 
a rose  a s  the result  of interference, then the location of 
these regions over the c ros s  section of the beam will 
change rapidly with increase in z .  Therefore, fine- 
scale self-focusing will not occur. 

4.3. Suppression of self-focusing a f t e r  transmission 
of a parallel beam through an etched phase plate was ob- 
served experimentally in Ref. 12. The authors of Ref. 
12 connected the suppression with the splitting of the 
beam into severa l  regions for each of which the condition 
p< Po holds. We note that this circumstance can be 
not the only and not even the principal reason for  the 
observed phenomenon. Upon transmission of the 
beam through the etched phase plate, diffusion diver- 
gence a r i s e s  inevitably, and, a s  we have shown in this 
paper, can cause the observed suppression of the self- 
focusing. 

4.4. We obtained Eqs. (6)-(8) neglecting the diffrac- 
tion of the entire beam by the aperture in the initial 
equations (2), (4) and (5). In this connection, we note 
that Eqs. (6)-(8) can be written down simply from 
heuristic considerations taking into account, in the 
approximation of geometric optics, not the trajectory of 
a single ray, a s  is usually done, but the motion of 
a ray  ensemble characterized by a certain ray  distribu- 
tion function. It is therefore possible that the region 
of applicability of Eqs. (6)-(8) turns out to be  broader 
than the region of applicability of Eq. (2). Thus the 
method that we have developed allows us to consider 
the diffusion divergence of the beam in the approxima- 
tion of geometric optics. 

The authors thank G. A. Aaskar'yan, I?. V. Bunkin, 
V. E. Zakhakrov, S. P. Novikov and V. N. Tsytovich 
f o r  discussions. 

APPENDIX 

We consider the one-dimensional SchrGdinger equation 

a ii2 azg ih-=--- 
at 2m axa + V(x)$ .  (A. 1) 

Elementary calculation shows that, by virtue of this 
equation, the Wigner function, which is equal to 

sat isf ies the equation 

a w  p a y  ( - 1 ) - p  azn+'w dzn+'v -+- ---- -- 
at m a~ dx a p  

" = I  
(2n+1) !4" dpZn+' dxzn+' ' 

Equations (A.l) and (A.2) a r e  equivalent, but i t  is  
clearly seen from Eq. (A.2) how quantum mechanics 
transforms into classical kinetics in the limiting case 
ti- 0. Actually, in this case,  the right s ide  of (A.2) can 
be neglected and W ( t , p ,  x )  can be identified with the one- 
dimensional distribution function f (t,  p ,  x )  of kinetic 
theory. 

The Wigner function contains al l  the information on 
the quantum system and is a very convenient tool, for 
example, in the investigation of the stat is t ics  of an en- 
semble of oscillators located in a thermostat  and excited 
by external action,'=-l5 o r  in the determination of the 
f i r s t  quantum corrections to the classical  equations 
of motion.'' 

Equation (A.2) for  the Wigner function i s ,  in our  
view, of definite methodological interest ,  s ince (A.2) 
is a n  exact quantum equation, and a t  the s ame  t ime,  
in contrast with (A.l), there i s  a smooth transition to 
the classical theory. 

"1n the one-dimensional case. when 6 2 ~ / 6 y 2  = 0 there i s  prob- 
ably no need of such a method, since Eq. (2) can be solved 
exactly by the method of the inverse p r ~ b l e r n . ~ * ~  
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